函数的极值与导数教学设计
作为一名辛苦耕耘的教育工作者,总不可避免地需要编写教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。教学设计应该怎么写才好呢?以下是小编精心整理的 函数的极值与导数教学设计,希望能够帮助到大家。
一、目标
知识与技能:理解极大值、极小值的概念;能够运用判别极大值、极小值的方法来求函数的极值;掌握求可导函数的极值的步骤;
过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
二、重点难点
教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.
教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.
三、教学过程
函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.
四、学情分析
我们的学生属于平行分班,学生已有的知识和实验水平有差距。需要教师指导并借助动画给予直观的认识。
五、教学方法
发现式、启发式
新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
提问
(二)情景导入、展示目标。
设计意图:步步导入,吸引学生的注意力,明确学习目标。
1、有关概念
(1).极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的.所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点
(2).极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点
(3).极大值与极小值统称为极值
在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点:
(4)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是大或小;并不意味着它在函数的整个的定义域内最大或最小。
(5)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个
(6)极大值与极小值之间
无确定的大小关系。即一个函数的极大值未必大于极小值,如上图所示,是极大值点,是极小值点,而>
(7)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点
2.判别f(x0)是极大、极小值的方法:
若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值
3.求可导函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数f′(x)
(2)求方程f′(x)=0的驻点(一阶导数为0的x的值)
(3)检查f′(x)=0的驻点左右的符号;如果左正右负,那么f(x)在这个驻点处取得极大值;如果左负右正,那么f(x)在这个驻点处取得极小值;如果左右不改变符号,那么f(x)在这个驻点处无极值
(三)合作探究、精讲点拨。
例1.(课本例4)求的极值
解:因为,所以。
令,得
下面分两种情况讨论:
(1)当>0,即,或时;(2)当<0,即时.
当x变化时,,的变化情况如下表:
2(-2,2)2
+0-0+
极大值
极小值
因此,=;
函数的图像如图所示。
例2求y=(x2-1)3+1的极值
解:y′=6x(x2-1)2=6x(x+1)2(x-1)2,令y′=0解得x1=-1,x2=0,x3=1
当x变化时,y′,y的变化情况如下表
-1(-1,0)0(0,1)1
-0-0+0+
?无极值?极小值0?无极值?
∴当x=0时,y有极小值且y极小值=0
例3设,在和处有极值,且=-1,求,,的值,并求出相应的值。
解:,∵是函数的极值点,则-1,1是方程的根,即有?,又,则有,由上述三个方程可知,,,此时,函数的表达式为,∴,令,得,当变化时,,的变化情况表:
-1(-1,1)1
+0-0+
极大值1极小值-1
由上表可知,,
(学生上黑板解答)
多媒体展示探究思考题。
在学生分组实验的过程中教师巡回观察指导。(课堂实录)
(四)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(五)发导学案、布置预习。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
九、板书设计
极大值:
极大值点:
极小值:
极小值点:
极值:
十、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!
【 函数的极值与导数教学设计】相关文章:
《集合与函数》课件设计05-08
一次函数的教学设计课件02-17
函数与反函数关于什么对称10-12
三角函数优秀的教学设计模板12-27
三角函数优秀教学设计范文12-28
教学设计与反思03-30
《对数函数》课件设计05-08
背影教学设计与反思设计10-28
《背影》的教学设计与反思10-29
乡愁的教学设计与反思11-13