三角函数的教学设计范文(精选11篇)
作为一名为他人授业解惑的教育工作者,时常需要准备好教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。我们该怎么去写教学设计呢?以下是小编收集整理的三角函数的教学设计范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
三角函数的教学设计 1
(一)概念及其解析
这一栏目的要点是:阐述概念的内涵;在揭示内涵的基础上说明本课内容的核心所在;必要时要对概念在中学数学中的地位进行分析;明确概念所反映的数学思想方法。在此基础上确定教学重点。
概念
描述周期现象的数学模型,最基本而重要的背景:匀速圆周运动。
定义域:(弧度制下)任意角的集合;对应法则:任意角α的终边与单位圆的交点坐标为(x,y),正弦函数为y=sinα,余弦函数为x=cosα;值域:[-1,1]。
概念解析
核心:对应法则。
思想方法:函数思想--一般函数概念的指导作用;形与数结合--象限角概念基础上;模型思想--单位圆上的点随角的变化而变化的规律的数学刻画。
重点:理解任意角三角函数的对应法则--需要一定时间。
(二)目标和目标解析
一堂课的教学目标是教学目的的具体化,是教学活动每一阶段所要实现的教学结果,是衡量教学质量的标准。当前,许多教师没有意识到制定教学目标的重要性,他们往往只从“课标”或“教参”上抄录,而且表述目标时,“八股”现象严重。我们主张,课堂教学目标不以“三维目标”(知识与技能、过程与方法、情感态度价值观)或“四维目标”(知识技能、数学思考、解决问题、情感态度)分列,而以内容及由内容反映的思想方法为载体,将数学能力、情感态度等隐性目标融于其中,并用了解、理解、掌握等及相应的行为动词经历、体验、探究等表述目标,特别要阐明经过教学,学生将有哪些变化,会做哪些以前不会做的事。
为了更加清晰地把握教学目标,以给课堂中教和学的行为做出准确定向,需要对教学目标中的关键词进行解析,即要解析了解、理解、掌握、经历、体验、探究等的具体含义,其中特别要明确当前内容所反映的数学思想方法的教学目标。
教学目标:
理解任意角三角函数(正弦、余弦、正切)的定义。
目标解析:
(1)知道三角函数研究的'问题;
(2)经历“单位圆法”定义三角函数的过程;
(3)知道三角函数的对应法则、自变量(定义域)、函数值(值域);
(4)体会定义三角函数过程中的数形结合、数学模型、化归等思想方法。
(三)教学问题诊断分析
这一栏目的要点是:教师根据自己以往的教学经验,对学生认知状况的分析,以及数学知识内在的逻辑关系,在思维发展理论的指导下,对本内容在教与学中可能遇到的困难进行预测,并对出现困难的原因进行分析。在上述分析的基础上指出教学难点。
教学问题诊断和教学难点:
认知基础
(1)函数的知识--“理解三角函数定义”到底要理解什么?--三要素;
(2)锐角三角函数的定义--背景(直角三角形)、对应关系(角度 比值)、解决的问题(解三角形)--侧重几何特性;
(3)任意角、弧度制、单位圆--在直角坐标系下讨论问题的经验,借助单位圆使问题简化的经验。
认知分析
(1)三角函数是一类特殊函数,“三角函数”是“函数”的下位概念,用“概念同化”方式学习,要理解“三要素”的具体内涵,其中核心是“对应法则”;
(2)从锐角三角函数到任意角三角函数,一种“形式推广”,载体要从直角三角形过渡到直角坐标系,其核心是要明确用坐标定义三角函数的思想方法;
(3)体会将“任意点”化归到“单位圆上的点”的意义--求简的思想。
教学难点
(1)先要在弧度制下(用单位圆的半径度量角)实现角的集合与实数集的一一对应,再实现数到坐标的对应,不是直接的对应,会造成理解困难;
(2)锐角三角函数的“比值”过渡到坐标表示的比值,需要从函数角度重新认识问题;
(3)求简到“单位圆上点的坐标”,思想方法深刻,学生不易理解。
(四)教学过程设计
在设计教学过程时,如下问题需要予以关注:
强调教学过程的内在逻辑线索;
要给出学生思考和操作的具体描述;
要突出核心概念的思维建构和技能操作过程,突出思想方法的领悟过程分析;
以“问题串”方式呈现为主,应当认真思考每一问题的设计意图、师生活动预设,以及需要概括的概念要点、思想方法,需要进行的技能训练,需要培养的能力,等。
另外,要根据内容特点设计教学过程,如基于问题解决的设计,讲授式教学设计,自主探究式教学设计,合作交流式教学设计,等。
1.复习提问
请回答下列问题:
(1)前面学习了任意角,你能说说任意角概念与平面几何中的角的概念有什么不同吗?
(2)引进象限角概念有什么好处?
(3)在度量角的大小时,弧度制与角度制有什么区别?
(4)我们是怎样简化弧度制的度量单位的?
(设计意图:从为学习三角函数概念服务的角度复习;关注的是思想方法。)
2.先行组织者
我们知道,函数是描述客观世界变化规律的重要数学模型。例如指数函数描述了“指数爆炸”,对数函数描述了“对数增长”等。圆周运动是一种重要的运动,其中最基本的是一个质点绕点O 做匀速圆周运动,其变化规律该用什么函数模型描述呢?“任意角的三角函数”就是一个刻画这种“周而复始”的变化规律的函数模型。
(设计意图:解决“学习的必要性”问题,明确要研究的问题。)
3.概念教学过程
问题1 对于三角函数我们并不陌生,初中学过锐角三角函数,你能说说它的自变量和对应关系各是什么吗?任意画一个锐角 α,你能借助三角板,根据锐角三角函数的定义找出sinα的值吗?
(设计意图:从函数角度重新认识锐角三角函数定义,突出“与点的位置无关”。)
问题2 你能借助象限角的概念,用直角坐标系中点的坐标表示锐角三角函数吗?
(设计意图:比值“坐标化”。)
问题3 上述表达式比较复杂,你能设法将它化简吗?
(设计意图:为“单位圆法”作铺垫。学生答出“取点P(x,y)使x2+y2=1”后追问“为什么可以这样做?)”
教师讲授:类比上述做法,设任意角α的终边与单位圆交点为P(x,y),定义正弦函数为y=sinα,余弦函数为x=cosα。
(设计意图:“定义”是一种“规定”;把精力放在定义合理性的理解上。)
问题4 你能说明上述定义符合函数定义的要求吗?
(设计意图:让学生用函数的三要素说明定义的合理性,以此进一步明确三角函数的对应法则、定义域和值域。)
例1 分别求自变量π/2,π,- π/3所对应的正弦函数值和余弦函数值。
(设计意图:让学生熟悉定义,从中概括出用定义解题的步骤。)
例2 角α的终边过P(1/2, - /2),求它的三角函数值。
4.概念的“精致”
通过概念的“精致”,引导学生认识概念的细节,并将新概念纳入到概念系统中去,使学生全面理解三角函数概念。这里包括如下内容:
三角函数值的符号问题;
终边与坐标轴重合时的三角函数值;
终边相同的角的同名三角函数值;
与锐角三角函数的比较:因袭与扩张;
从“形”的角度看三角函数--三角函数线,联系的观点;
终边上任意一点的坐标表示的三角函数;
还可以引导学生思考三角函数的“多元联系表示”,例如,把实数轴想象为一条柔软的细线,原点固定在单位点A(1,0),数轴的正半轴逆时针缠绕在单位圆上,负半轴顺时针缠绕在单位圆上,那么数轴上的任意一个实数(点)t 被缠绕到单位圆上的点 P(cost,sint).
5.课堂小结
(1)问题的提出--自然、水到渠成,思想高度--函数模型;
(2)研究的思想方法--与锐角三角函数的因袭与扩张的关系,化归为最简单也是最本质的模型,数形结合;
(3)归纳概括概念的内涵,明确自变量、对应法则、因变量;
(4)用概念作判断的步骤、注意事项等。
(五)目标检测设计
一般采用习题、练习的方式进行检测。要明确每一个(组)习题或练习的设计目的,加强检测的针对性、有效性。练习应当由简单到复杂、由单一到综合,循序渐进地进行。当前,要特别注意摒除“一步到位”的做法。过早给综合题、难题有害无益,基础不够的题目更是贻害无穷。题目出不好、练习安排不合理是老师专业素养低的表现之一。
三角函数的教学设计 2
知识目标:
1.理解锐角的正弦函数、余弦函数、正切函数、余切函数的意义
2.会由直角三角形的边长求锐角的正、余弦,正、余切函数值
能力、情感目标:
1.经历由情境引出问题,探索掌握数学知识,再运用于实践过程,培养学生学数学、用数学的意识与能力。
2.体会数形结合的数学思想方法。
3.培养学生自主探索的精神,提高合作交流能力。
重点、难点:
1.直角三角形锐角三角函数的意义。
2.由直角三角形的边长求锐角三角函数值。
教学过程:
一、创设情境
前面我们利用相似和勾股定理解决一些实际问题中求一些线段的长度问题。但有些问题单靠相似与勾股定理是无法解决的。同学们放过风筝吗?你能测出风筝离地面的高度吗?
学生讨论、回答各种方法。教师加以评论。
总结:前面我们学习了勾股定理,对于以上的问题中,我们求的是BC的长,而的AB的长是可知的,只要知道AC的长就可要求BC了,但实际上要测量AC是很难的。因此,我们换个角度,如果可测量出风筝的线与地面的夹角,能不能解决这个问题呢?学了今天这节课的内容,我们就可以很好地解决这个问题了。
(由一个学生比较熟悉的事例入手,引起学生的学习兴趣,调动起学生的学习热情。由此导入新课)
二、新课讲述:
在Rt△ABC中与Rt△A1B1C1中∠C=90°, C1=90°∠A=∠A1,∠A的对边、斜边分别是BC、AB,∠A1的对边、斜边分别是B1C1、A1B2 (学生探索,引导学生积极思考,利用相似发现比值相等)
若在Rt△A2B2C2中,∠A2=∠A,那么
问题1:从以上的探索问题的过程,你发现了什么?(学生讨论)
结论:这说明在直角三角形中,只要一个锐角的.大小不变,那么无论这个直角三角形的大小如何,该锐角的对边与斜边的比值是一个固定值。
在一个直角三角形中,只要角的大小一定,它的对边与斜边的比值也就确定了,与这个角所在的三角形的大小无关,我们把这个比值叫做这个角的正弦,即∠A的正弦= ,记作sin A,也就是:sin A=
几个注意点:
①sin A是整体符号,不能所把看成sinA;
②在一个直角三角形中,∠A正弦值是固定的,与∠A的两边长短无关,当∠A发生变化时,正弦值也发生变化;
③sin A表示用一个大写字母表示的一个角的正弦,对于用三个大写字母表示的角的正弦时,不能省略角的符号“∠”;例如表示“∠ABC”的正弦时,应该写成“sin∠ABC”;
④ Sin A= 可看成一个等式。已知两个量可求第三个量,因此有以下变形:a=csinA,c=
由此我们又可以知道,在直角三角形中,当一个锐角的大小保持不变时,这个锐角的邻边与斜边、对边与邻边、邻边与对边的比值也是固定的。分别叫做余弦、正切、余切。
在Rt△ABC中
∠A的邻边与斜边的比值是∠A的余弦,记作
∠A的对边与邻边的比值是∠A的正切,记作
∠A的邻边与对边的比值是∠A的余切,记作
(以上可以由学生自行看书,教师简单讲述)
锐角三角函数:以上随着锐角A的角度变化,这些比值也随着发生变化。我们把sinA、csA、tanA、ctA统称为锐角∠A的三角函数
问题2:观察以上函数的比值,你能从中发现什么结论?
结论:
①、锐角三角函数值都是正实数;
②、0<sinA<1,0<csA<1;
③、tanActA=1。
三、实践应用
例1 求出如图所示的Rt△ABC中∠A的四个三角函数值
解
问题3:以上例子中,若求sin B、tan B 呢?
问题4:已知:在直角三角形ABC中,∠C=90,sin A=4/5,BC=12,求:AB和cs A
(问题3、4从实例加深学生对锐角三角函数的理解,以此再加以突破难点)
四、交流反思
通过这节课的学习,我们理解了在直角三角形中,当锐角一定时,它的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的,这几个比值称为锐角三角函数,它反映的是两条线段的比值;它提示了三角形中的边角关系。
五、课外作业:
同步练习
三角函数的教学设计 3
一、锐角三角函数
正弦和余弦
第一課时:正弦和余弦(1)
教学目的
1、使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。
2、使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。
重点、难点、关键
1、重点:正弦的概念。
2、难点:正弦的概念。
3、关键:相似三角形对应边成比例的性质。
教学过程
一、复习提问
1、什么叫直角三角形?
2、如果直角三角形ABC中∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可用什么记号来表示?
二、新授
1、让学生阅读教科书第一页上的插图和引例,然后回答问题:
(1)这个有关测量的实际问题有什么特点?(有一个重要的测量点不可能到达)
(2)把这个实际问题转化为数学模型后,其图形是什么图形?(直角三角形)
(3)显然本例不能用勾股定理求解,那么能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。)
(4)这个实际问题可归结为怎样的数学问题?(在Rt△ABC中,已知锐角A和斜边求∠A的对边BC。)
但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。
2、在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。
类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2 这就是说,当∠A=450时,∠A的对边与斜边的比值等于/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。
那么,当锐角A取其他固定值时,∠A的对边与斜边的比值能否也是一个固定值呢?
(引导学生回答;在这些直角三角形中,∠A的对边与斜边的.比值仍是一个固定值。)
三、巩固练习:
在△ABC中,∠C为直角。
1、如果∠A=600,那么∠B的对边与斜边的比值是多少?
2、如果∠A=600,那么∠A的对边与斜边的比值是多少?
3、如果∠A=300,那么∠B的对边与斜边的比值是多少?
4、如果∠A=450,那么∠B的对边与斜边的比值是多少?
四、小结
五、作业
1、复习教科书第1-3页的全部内容。
2、选用課时作业设计。
三角函数的教学设计 4
一、案例实施背景
本节课是九年级解直角三角形讲完后的一节复习课
二、本章的课标要求:
1、通过实例锐角三角函数(sinA、cosA、tanA)
2、知道特殊角的三角函数值
3、会使用计算器由已知锐角求它的三角函数值,已知三角函数值求它对应的锐角
4、能运用三角函数解决与直角三角形有关的简单实际问题
此外,理解直角三角形中边、角之间的关系会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,进一步感受数形结合的数学思想方法,通过对实际问题的思考、探索,提高解决实际问题的能力和应用数学的意识。
三、课时安排:
1课时
四、学情分析:
本节是在学完本章的前提之下进行的总复习,因此本节选取三个知识回顾和四个例题,使学生将有关锐角三角函数基础知识条理化,系统化,进一步培养学生总结归纳的能力和运用知识的能力
因此,本节的重点是通过复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识。进一步体会三角函数在解决实际问题中的作用,从而发展数学的应用意识和解决问题的能力
五、教学目标:
知识与技能目标
1、通过复习使学生将有关锐角三角函数基础知识条理化,系统化
2、通过复习培养学生总结归纳的能力和运用知识的能力
过程与方法:
1、通过本节课的复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识
2、通过复习锐角三角函数,进一步体会它在解决实际问题中的作用
情感、态度、价值观
充分发挥学生的积极性,让学生从实际运用中得到锻炼和发展
六、重点难点:
1.重点:锐角三角函数的定义;直角三角形中五个元素之间的相互联系
2.难点:知识的深化与运用
七、教学过程:
知识回顾一:
(1) 在Rt△ABC中,C=90, AB=6,AC=3,则BC=_________,sinA=_________,cosA=______,tanA=______, A=_______, B=________.
知识回顾二:
(2) 比较大小: sin50______sin70
cos50______cos70
tan50______tan70
知识回顾三:
(3)若A为锐角,且cos(A+15)= ,则A=________。
本环节的'设计意图:通过三个小题目回顾:
1、锐角三角函数的定义:
在Rt△ABC中,C=90
锐角A的正弦、余弦、和正切统称A的锐角三角函数。
2、直角三角形的边角关系:
(1)三边之间的关系:
(2)锐角之间的关系:B=90
(3)边角之间的关系:
sinA= cosA= tanA= sinB= cosB= tanB=
3、解直角三角形:
由直角三角形中的已知元素,求出所有未知元素的过程,叫做解直角三角形。
4、特殊角的三角函数值
三角函数
锐角A
sin A
cos A
tan A
30
45
60
5、锐角三角函数值的变化:
(1)当A为锐角时,各三角函数值均为正数, 且
(2)当A为锐角时,sinA、tanA随角度的增大而增大,cosA随角度的增大而减小
例题解析
【例1】在⊿ABC中,AD是BC边上的高,E是AC的中点,BC=14,AD=12,sinB=0.8,求DC及tanCDE。
解题反思:通过本题让学生明白:
1、必须在直角三角形中求锐角的三角函数;
2、等角代换间接求解
【例2】要在宽为28m的海堤公路的路边安装路灯,路灯的灯臂AD长3m,且与灯柱CD成120角,路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直,当灯罩的轴线通过公路路面的中线时,照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?
解题反思:通过本题让学生知道解决这类问题时常分为以下几个步骤:
①理清题目所给信息条件和需要解决的问题;
②通过画图进行分析,将实际问题转化为数学问题;
③根据直角三角形的边角关系寻找解决问题的方法;
④正确进行计算,写出答案。
【例3】一艘轮船以每小时30海里的速度向东北方向航行,当轮船在A处时,从轮船上观察灯塔S,灯塔S在轮船的北偏东75方向,航行12分钟后,轮船到达B处,在B处观察灯塔S,S恰好在轮船的正东方向,已知距离灯塔S8海里以外的海区为航行安全区域,问:如果这艘轮船继续沿东北方向航行,它是否安全?
解题反思:解决这类问题时常用的模型:
小结:
P93 例3
P94 检测评估
教学反思:
锐角三角函数在解决现实问题中有着重要的作用,但是锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系。锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。
在今后教学过程中,自己还要多注意以下两点:
(1)还要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。
(2)我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角。而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。
三角函数的教学设计 5
教学目的:
⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;
2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;
3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力。
教学重点:
同角三角函数的基本关系
教学难点:
(1)已知某角的一个三角函数值,求它的其余各三角函数值时正负号的选择;
(2)三角函数式的化简;
(3)证明三角恒等式。
授课类型:
新授课
知识回顾:
同角三角函数的基本关系公式:
典型例题:
例1.已知sin =2,求α的其余三个三角函数值
例2.已知: 且 ,试用定义求 的'其余三个三角函数值
例3.已知角 的终边在直线=3x上,求sin 和cs 的值
说明:已知某角的一个三角函数值,求该角的其他三角函数值时要注意:
(1)角所在的象限;
(2)用平方关系求值时,所求三角函数的符号由角所在的象限决定;
(3)若题设中已知角的某个三角函数值是用字母给出的,则求其他函数值时,要对该字母分类讨论
小结:
几种技巧
课后作业:
板书设计(略)
三角函数的教学设计 6
教学目标:
掌握二倍角的正弦、余弦、正切公式,能用上述公式进行简单的求值、化简、恒等证明;引导学生发现数学规律,让学生体会化归这一基本数学思想在发现中所起的作用,培养学生的创新意识
教学重点:
二倍角公式的推导及简单应用
教学难点:
理解倍角公式,用单角的三角函数表示二倍角的三角函数
教学过程:
Ⅰ.课题导入
前一段时间,我们共同探讨了和角公式、差角公式,今天,我们继续探讨一下二倍角公式。我们知道,和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推。
先回忆和角公式
sin(α+β)=sinαcosβ+cosαsinβ
当α=β时,sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
当α=β时cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
当α=β时,tan2α=2tanα1-tan2α
Ⅱ.讲授新课
同学们推证所得结果是否与此结果相同呢?其中由于sin2α+cos2α=1,公式C2α还可以变形为:cos2α=2cos2α-1或:cos2α=1-2sin2α
同学们是否也考虑到了呢?
另外运用这些公式要注意如下几点:
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有当α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)时才成立,否则不成立(因为当α=π2 +kπ,k∈Z时,tanα的值不存在;当α=π4 +kπ2 ,k∈Z时tan2α的.值不存在)。
当α=π2 +kπ(k∈Z)时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:
即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情况下,sin2α≠2sinα
例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情况下,才有可能成立[当且仅当α=kπ(k∈Z)时,sin2α=2sinα=0成立]。
同样在一般情况下cos2α≠2cosαtan2α≠2tanα
(3)倍角公式不仅可运用于将2α作为α的2倍的情况,还可以运用于诸如将4α作为2α的2倍,将α作为 α2 的2倍,将 α2 作为 α4 的2倍,将3α作为 3α2 的2倍等等。
三角函数的教学设计 7
一、教学内容:三角函数
【结构】
二、要求
(一)理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。
(二)掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)
(三)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。
(四)会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωx φ)的简图、理解A、ω、 < 1271864542"> 的意义。
三、热点分析
1. 近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.
2. 对本章内容一般以选择、填空题形式进行考查,且难度不大,从xxxx年至xxxx年考查的内容看,大致可分为四类问题
(1)与三角函数单调性有关的问题;
(2)与三角函数图象有关的问题;
(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;
(4)与周期有关的问题
3. 基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、或技巧),分析综合(由因导果或执果索因),实现转化。解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解。
4. 立足课本、抓好基础。从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在中首先要打好基础。在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度。
四、复习建议
本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:
(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理。
(2)对公式要抓住其特点进行。有的公式运用一些顺口溜进行。
(3)三角函数是阶段研究的一类初等函数。故对三角函数的性质研究应结合一般函数研究方法进行对比。如定义域、值域、奇偶性、周期性、图象变换等。通过与函数这一章的对比,加深对函数性质的理解。但又要注意其个性特点,如周期性,通过对三角函数周期性的复习,类比到一般函数的周期性,再结合函数特点的研究类比到抽象函数,形成解决问题的能力。
(4)由于三角函数是我们研究的一门基础工具,近几年高考往往考查知识网络交汇处的知识,故学习本章时应注意本章知识与其它章节知识的联系。如平面向量、参数方程、换元法、解三角形等。(20xx年高考应用题源于此)
(5)重视数学思想方法的复习,如前所述本章都以选择、填空题形式出现,因此复习中要重视选择、填空题的一些特殊解题方法,如数形结合法、代入检验法、特殊值法,待定系数法、排除法等。另外对有些具体问题还需要掌握和运用一些基本结论。如:关于对称问题,要利用y=sinx的对称轴为x=kπ+ (k∈Z),对称中心为(kπ,0),(k∈Z)等基本结论解决问题,同时还要注意对称轴与函数图象的交点的纵坐标特征。在求三角函数值的问题中,要学会用勾股数解题的方法,因为高题一般不能查表,给出的数都较特殊,因此主动发现和运用勾股数来解题能起到事半功倍的效果。
(6)加强三角函数应用意识的训练,1999年高考理科第20题实质是一个三角问题,由于考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成障碍,思路受阻实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践第一的.观点。总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的方法。
(7)变为主线、抓好训练。变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,三角函数次数的变换,三角函数式表达形式的变换等比比皆是,在训练中,强化“变”意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律。针对高考中的题目看,还要强化变角训练,经常注意收集角间关系的观察分析方法。另外如何把一个含有不同名或不同角的三角函数式化为只含有一个三角函数关系式的训练也要加强,这也是高考的重点。同时应掌握三角函数与二次函数相结合的题目。
(8)在复习中,应立足基本公式,在解题时,注意在条件与结论之间建立联系,在变形过程中不断寻找差异,讲究算理,才能立足基础,发展能力,适应高考。
在本章内容中,高考试题主要反映在以下三方面:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。多数题型为选择题或填空题;其次是三角函数式的恒等变形。如运用三角公式进行化简、求值解决简单的综合题等。除在填空题和选择题出现外,解答题的中档题也经常出现这方面内容。
另外,还要注意利用三角函数解决一些应用问题。
三角函数的教学设计 8
【教学目标:】
1.通过对初中锐角三角函数定义的回忆,掌握任意角三角函数的定义法,并掌握用单位圆中的有向线段表示三角函数值.
2.掌握已知角 终边上一点坐标,求四个三角函数值.(即给角求值问题)
【教学重点:】
任意角的三角函数的定义.
【教学难点:】
任意角的三角函数的定义,正弦、余弦、正切这三种三角函数的几何表示.
【教学用具:】
直尺、圆规、投影仪.
【教学步骤:】
1.设置情境
角的范围已经推广,那么对任一角 是否也能像锐角一样定义其四种三角函数呢?本节课就来讨论这一问题.
2.探索研究
(1)复习回忆锐角三角函数
我们已经学习过锐角三角函数,知道它们都是以锐角 为自变量,以比值为函数值,定义了角 的正弦、余弦、正切、余切的三角函数,本节课我们研究当角 是一个任意角时,其三角函数的定义及其几何表示.
(2)任意角的三角函数定义
如图1,设 是任意角, 的终边上任意一点 的坐标是 ,当角 在第一、二、三、四象限时的情形,它与原点的距离为 ,则 .
定义:①比值 叫做 的正弦,记作 ,即 .
②比值 叫做 的余弦,记作 ,即 .
图1
③比值 叫做 的正切,记作 ,即 .
同时提供显示任意角的三角函数所在象限的课件
提问:对于确定的角 ,这三个比值的大小和 点在角 的终边上的位置是否有关呢?
利用三角形相似的知识,可以得出对于角 ,这三个比值的大小与 点在角 的终边上的位置无关,只与角 的大小有关.
请同学们观察当 时, 的终边在 轴上,此时终边上任一点 的横坐标 都等于0,所以 无意义,除此之外,对于确定的角 ,上面三个比值都是惟一确定的.把上面定义中三个比的前项、后项交换,那么得到另外三个定义.
④比值 叫做 的余切,记作 ,则 .
⑤比值 叫做 的正割,记作 ,则 .
⑥比值 叫做 的余割,记作 ,则 .
可以看出:当 时, 的'.终边在 轴上,这时 的纵坐标 都等于0,所以 与 的值不存在,当 时, 的值不存在,除此之外,对于确定的角 ,比值 , , 分别是一个确定的实数,所以我们把正弦、余弦,正切、余切,正割及余割都看成是以角为自变量,以比值为函数值的函数,以上六种函数统称三角函数.
(3)三角函数是以实数为自变量的函数
对于确定的角 ,如图2所示, , , 分别对应的比值各是一个确定的实数,因此,正弦,余弦,正切分别可看成从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数,当采用弧度制来度量角时,每一个确定的角有惟一确定的弧度数,这是一个实数,所以这几种三角函数也都可以看成是以实数为自变量,以比值为函数值的函数.
即:实数→角(其弧度数等于这个实数)→三角函数值(实数)
(4)三角函数的一种几何表示
利用单位圆有关的有向线段,作出正弦线,余弦线,正切线,如下图3.
图3
设任意角 的顶点在原点 ,始边与 轴的非负半轴重合,终边与单位圆相交于点 ,过 作 轴的垂线,垂足为 ;过点 作单位圆的切线,这条切线必然平行于轴,设它与角 的终边(当 为第一、四象限时)或其反向延长线(当 为第二、三象限时)相交于 ,当角 的终边不在坐标轴上时,我们把 , 都看成带有方向的线段,这种带方向的线段叫有向线段.由正弦、余弦、正切函数的定义有:
这几条与单位圆有关的有向线段 叫做角 的正弦线、余弦线、正切线.当角 的终边在 轴上时,正弦线、正切线分别变成一个点;当角 的终边在 轴上时,余弦线变成一个点,正切线不存在.
(5)例题讲评
三角函数的教学设计 9
一、教学内容:椭圆的方程
要求:理解椭圆的标准方程和几何性质.
重点:椭圆的方程与几何性质.
难点:椭圆的方程与几何性质.
二、点:
1、椭圆的定义、标准方程、图形和性质
定 义
第一定义:平面内与两个定点 )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距
第二定义:
平面内到动点距离与到定直线距离的比是常数e.(0
标准方程
焦点在x轴上
焦点在y轴上
图 形
焦点在x轴上
焦点在y轴上
性 质
焦点在x轴上
范 围:
对称性: 轴、 轴、原点.
顶点: , .
离心率:e
概念:椭圆焦距与长轴长之比
定义式:
范围:
2、椭圆中a,b,c,e的关系是:(1)定义:r1+r2=2a
(2)余弦定理: + -2r1r2cos(3)面积: = r1r2 sin ?2c y0 (其中P( )
三、基础训练:
1、椭圆 的标准方程为 ,焦点坐标是 ,长轴长为___2____,短轴长为2、椭圆 的值是__3或5__;
3、两个焦点的坐标分别为 ___;
4、已知椭圆 上一点P到椭圆一个焦点 的距离是7,则点P到另一个焦点5、设F是椭圆的一个焦点,B1B是短轴, ,则椭圆的离心率为6、方程 =10,化简的结果是 ;
满足方程7、若椭圆短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率为
8、直线y=kx-2与焦点在x轴上的椭圆9、在平面直角坐标系 顶点 ,顶点 在椭圆 上,则10、已知点F是椭圆 的右焦点,点A(4,1)是椭圆内的一点,点P(x,y)(x≥0)是椭圆上的一个动点,则 的最大值是 8 .
【典型例题】
例1、(1)已知椭圆的中心在原点,焦点在坐标轴上,长轴长是短轴长的3倍,短轴长为4,求椭圆的方程.
解:设方程为 .
所求方程为
(2)中心在原点,焦点在x轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1,求椭圆的方程.
解:设方程为 .
所求方程为(3)已知三点P,(5,2),F1 (-6,0),F2 (6,0).设点P,F1,F2关于直线y=x的对称点分别为 ,求以 为焦点且过点 的椭圆方程 .
解:(1)由题意可设所求椭圆的标准方程为 ∴所以所求椭圆的标准方程为(4)求经过点M( , 1)的椭圆的标准方程.
解:设方程为
例2、如图所示,我国发射的第一颗人造地球卫星运行轨道是以地心(地球的中心) 为一个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km,远地点B(离地面最远的点)距地面2384km,并且 、A、B在同一直线上,设地球半径约为6371km,求卫星运行的轨道方程 (精确到1km).
解:建立如图所示直角坐标系,使点A、B、 在 轴上,则 =OA-O = A=6371+439=6810
解得 =7782.5, =972.5
卫星运行的轨道方程为
例3、已知定圆
分析:由两圆内切,圆心距等于半径之差的绝对值 根据图形,用符号表示此结论:
上式可以变形为 ,又因为 ,所以圆心M的轨迹是以P,Q为焦点的椭圆
解:知圆可化为:圆心Q(3,0),设动圆圆心为 ,则 为半径 又圆M和圆Q内切,所以 ,即 ,故M的轨迹是以P,Q为焦点的椭圆,且PQ中点为原点,所以 ,故动圆圆心M的轨迹方程是:
例4、已知椭圆的焦点是 |和|(1)求椭圆的方程;
(2)若点P在第三象限,且∠ =120°,求 .
选题意图:综合考查数列与椭圆标准方程的基础知识,灵活运用等比定理进行解题.
解:(1)由题设| |=2| |=4
∴ , 2c=2, ∴b=∴椭圆的方程为 .
(2)设∠ ,则∠ =60°-θ
由正弦定理得:
由等比定理得:
整理得: 故
说明:曲线上的点与焦点连线构成的三角形称曲线三角形,与曲线三角形有关的问题常常借助正(余)弦定理,借助比例性质进行处理.对于第二问还可用后面的几何性质,借助焦半径公式余弦定理把P点横坐标先求出来,再去解三角形作答
例5、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向 轴作垂线段PP?@,求线段PP?@的中点M的轨迹(若M分 PP?@之比为 ,求点M的轨迹)
解:(1)当M是线段PP?@的中点时,设动点 ,则 的坐标为
因为点 在圆心为坐标原点半径为2的圆上,所以有 所以点
(2)当M分 PP?@之比为 时,设动点 ,则 的坐标为
因为点 在圆心为坐标原点半径为2的圆上,所以有 ,即所以点
例6、设向量 =(1, 0), =(x+m) +y =(x-m) +y + (I)求动点P(x,y)的轨迹方程;
(II)已知点A(-1, 0),设直线y= (x-2)与点P的轨迹交于B、C两点,问是否存在实数m,使得 ?若存在,求出m的值;若不存在,请说明理由.
解:(I)∵ =(1, 0), =(0, 1), =6
上式即为点P(x, y)到点(-m, 0)与到点(m, 0)距离之和为6.记F1(-m, 0),F2(m, 0)(0
∴ PF1+PF2=6>F1F2
又∵x>0,∴P点的轨迹是以F1、F2为焦点的椭圆的右半部分.
∵ 2a=6,∴a=3
又∵ 2c=2m,∴ c=m,b2=a2-c2=9-m2
∴ 所求轨迹方程为 (x>0,0<m<3)
( II )设B(x1, y1),C(x2, y2),∴∴ 而y1y2= (x1-2)? (x2-2)
= [x1x2-2(x1+x2)+4]
∴ [x1x2-2(x1+x2)+4]
= [10x1x2+7(x1+x2)+13]
若存在实数m,使得 成立
则由 [10x1x2+7(x1+x2)+13]=
可得10x1x2+7(x1+x2)+10=0 ①
再由
消去y,得(10-m2)x2-4x+9m2-77=0 ②
因为直线与点P的轨迹有两个交点.
所以
由①、④、⑤解得m2= <9,且此时△>0
但由⑤,有9m2-77= <0与假设矛盾
∴ 不存在符合题意的实数m,使得
例7、已知C1: ,抛物线C2:(y-m)2=2px (p>0),且C1、C2的公共弦AB过椭圆C1的右焦点.
(Ⅰ)当AB⊥x轴时,求p、m的`值,并判断抛物线C2的.焦点是否在直线AB上;
(Ⅱ)若p= ,且抛物线C2的焦点在直线AB上,求m的值及直线AB的方程.
解:(Ⅰ)当AB⊥x轴时,点A、B关于x轴对称,所以m=0,直线AB的方程为x=1,从而点A的坐标为(1, )或(1,- ).
∵点A在抛物线上,∴
此时C2的焦点坐标为( ,0),该焦点不在直线AB上.
(Ⅱ)当C2的焦点在AB上时,由(Ⅰ)知直线AB的斜率存在,设直线AB的方程为y=k(x-1).
由 (kx-k-m)2= ①
因为C2的焦点F( ,m)在y=k(x-1)上.
所以k2x2- (k2+2)x+ =0 ②
设A(x1,y1),B(x2,y2),则x1+x2=
由
(3+4k2)x2-8k2x+4k2-12=0 ③
由于x1、x2也是方程③的两根,所以x1+x2=
从而 = k2=6即k=±
又m=- ∴m= 或m=-
当m= 时,直线AB的方程为y=- (x-1);
当m=- 时,直线AB的方程为y= (x-1).
例8、已知椭圆C: (a>0,b>0)的左、右焦点分别是F1、F2,离心率为e.直线l:y=ex+a与x轴,y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设 = .
(Ⅰ)证明:(Ⅱ)若 ,△MF1F2的周长为6,写出椭圆C的方程;
(Ⅲ)确定解:(Ⅰ)因为A、B分别为直线l:y=ex+a与x轴、y轴的交点,所以A、B的坐标分别是A(- ,0),B(0,a).
由 得 这里∴M = ,a)
即 解得
(Ⅱ)当 时, ∴a=2c
由△MF1F2的周长为6,得2a+2c=6
∴a=2,c=1,b2=a2-c2=3
故所求椭圆C的方程为
(Ⅲ)∵PF1⊥l ∴∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有PF1=F1F2,即 PF1=C.
设点F1到l的距离为d,由
PF1= =得: =e ∴e2= 于是
即当(注:也可设P(x0,y0),解出x0,y0求之)
【模拟】
一、选择题
1、动点M到定点 和 的距离的和为8,则动点M的轨迹为 ( )
A、椭圆 B、线段 C、无图形 D、两条射线
2、设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是 ( )
A、 C、2- -1
3、(20xx年高考湖南卷)F1、F2是椭圆C: 的焦点,在C上满足PF1⊥PF2的点P的个数为( )
A、2个 B、4个 C、无数个 D、不确定
4、椭圆 的左、右焦点为F1、F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为 ( )
A、32 B、16 C、8 D、4
5、已知点P在椭圆(x-2)2+2y2=1上,则 的最小值为( )
A、 C、
6、我们把离心率等于黄金比 是优美椭圆,F、A分别是它的左焦点和右顶点,B是它的短轴的一个端点,则 等于( )
A、 C、
二、填空题
7、椭圆 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .
8、设F是椭圆 的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2, ),使得FP1、FP2、FP3…组成公差为d的等差数列,则d的取值范围是 .
9、设 , 是椭圆 的两个焦点,P是椭圆上一点,且 ,则得 .
10、若椭圆 =1的准线平行于x轴则m的取值范围是
三、解答题
11、根据下列条件求椭圆的标准方程
(1)和椭圆 共准线,且离心率为 .
(2)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为 和 ,过P作长轴的垂线恰好过椭圆的一个焦点.
12、已知 轴上的一定点A(1,0),Q为椭圆 上的动点,求AQ中点M的轨迹方程
13、椭圆 的焦点为 =(3, -1)共线.
(1)求椭圆的离心率;
(2)设M是椭圆上任意一点,且 = 、 ∈R),证明 为定值.
【试题答案】
1、B
2、D
3、A
4、B
5、D(法一:设 ,则y=kx代入椭圆方程中得:(1+2k2)x2-4x+3=0,由△≥0得: .法二:用椭圆的参数方程及三角函数的有界性求解)
6、C
7、( ;(0, );6;10;8; ; .
8、 ∪
9、
10、m< 且m≠0.
11、(1)设椭圆方程 .
解得 , 所求椭圆方程为(2)由 .
所求椭圆方程为 的坐标为
因为点 为椭圆 上的动点
所以有
所以中点
13、解:设P点横坐标为x0,则 为钝角.当且仅当 .
14、(1)解:设椭圆方程 ,F(c,0),则直线AB的方程为y=x-c,代入 ,化简得:
x1x2=
由 =(x1+x2,y1+y2), 共线,得:3(y1+y2)+(x1+x2)=0,又y1=x1-c,y2=x2-c
∴ 3(x1+x2-2c)+(x1+x2)=0,∴ x1+x2=
即 = ,∴ a2=3b2
∴ 高中地理 ,故离心率e= .
(2)证明:由(1)知a2=3b2,所以椭圆 可化为x2+3y2=3b2
设 = (x2,y2),∴ ,∵M∴ ( )2+3( )2=3b2
即: )+ (由(1)知x1+x2= ,a2= 2,b2= c2.
x1x2= = 2
x1x2+3y1y2=x1x2+3(x1-c)(x2-c)
=4x1x2-3(x1+x2)c+3c2= 2- 2+3c2=0
又 =3b2代入①得
为定值,定值为1.
三角函数的教学设计 10
教学目的:
知识目标:1.理解三角函数定义. 三角函数的定义域,三角函数线.
2.理解握各种三角函数在各象限内的符号.?
3.理解终边相同的角的同一三角函数值相等.
能力目标:
1.掌握三角函数定义. 三角函数的定义域,三角函数线.
2.掌握各种三角函数在各象限内的符号.?
3.掌握终边相同的角的同一三角函数值相等.
授课类型:复习课
教学模式:讲练结合
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1、三角函数定义. 三角函数的定义域,三角函数线,各种三角函数在各象限内的符号.诱导公式第一组.
2.确定下列各式的符号
(1)sin100°cs240° (2)sin5+tan5
3. .x取什么值时, 有意义?
4.若三角形的两内角,满足sincs 0,则此三角形必为……( )
A锐角三角形 B钝角三角形 C直角三角形 D以上三种情况都可能
5.若是第三象限角,则下列各式中不成立的是………………( )
A:sin+cs 0 B:tansin 0
C:csct 0 D:ctcsc 0
6.已知是第三象限角且,问是第几象限角?
二、讲解新课:
1、求下列函数的定义域:
(1) ; (2)
2、已知 ,则为第几象限角?
3、(1) 若θ在第四象限,试判断sin(csθ)cs(sinθ)的符号;
(2)若tan(csθ)ct(sinθ)>0,试指出θ所在的象限,并用图形表示出 的取值范围.
4、求证角θ为第三象限角的.充分必要条件是
证明:必要性:∵θ是第三象限角,?
∴
充分性:∵sinθ<0,∴θ是第三或第四象限角或终边在y轴的非正半轴上
∵tanθ>0,∴θ是第一或第三象限角.?
∵sinθ<0,tanθ>0都成立.?
∴θ为第三象限角.?
5 求值:sin(-1320°)cs1110°+cs(-1020°)sin750°+tan495°.
三、巩固与练习
1 求函数 的值域
2 设是第二象限的角,且 的范围.
四、小结:
五、课后作业:
1、利用单位圆中的三角函数线,确定下列各角的.取值范围:
(1) sinα
2、角α的终边上的点P与A(a,b)关于x轴对称 ,角β的终边上的点Q与A关于直线=x对称.求sinαescβ+tanαctβ+secαcscβ的值.
三角函数的教学设计 11
[教材分析]:
反三角函数的重点是概念,关键是反三角函数与三角函数之间的联系与区别。内容上,自然是定义和函数性质、图象;教学方法上,着重强调类比和比较。
(1)立足课本、抓好基础
现在高考非常重视三角函数图像与性质等基础知识的考查,所以在学习中首先要打好基础。
(2)三角函数的定义一定要清楚
我们在学习三角函数时,老师就会强调我们要把角放在平面直角坐标系中去讨论。角的顶点放在坐标原点,始边放在X的轴的正半轴上,这样再强调六种三角函数只与三个量有关:即角的终边上任一点的横坐标x、纵坐标y以及这一点到原点的距离r中取两个量组成的比值,这里得强调一下,对于任意一个α一经确定,它所对的.每一个比值是确定的,也就说是它们之间满足函数关系。并且三者的关系是,x2+y2=r2,x,y可以任意取值,r只能取正数。
(3)同角的三角函数关系
同角的三角函数关系可以分为平方关系:sin2α+cos2α=1、tan2α+1=sec2α、cotα2+1=csc2α,倒数关系:tanαcotα=1,商的关系:tanα=sinα/cosα等等,对于同角的三角函数,直接用三角函数的定义证明比较容易,记忆也比较方便,相关角的三角函数的关系可以分为终边相同的角、终边关于x轴对称的角、终边关于直线y=x对称的角、终边关于y轴对称的角、终边关于原点对称的角五种关系。
(4)加强三角函数应用意识
三角函数产生于生产实践,也被广泛应用与实践,因此,应该培养我们对三角函数的应用能力。
如何学好高中三角函数的方法就是以上的四点,在这四点的基础上大家可以寻找最适合自己的点侧重去运用。
1教学目标
⑴:使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形
⑵:通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. ⑶:渗透数形结合的数学思想,培养学生良好的`学习习惯.
2学情分析
学生在具备了解直角三角形的基本性质后再对所学知识进行整合后利用才学习直角三角形边角关系来解直角三角形。所以以旧代新学生易懂能理解。
3重点难点
重点:直角三角形的解法
难点:三角函数在解直角三角形中的灵活运用以实例引入,解决重难点。
4教学过程
4.1第一学时教学活动活动1导入
一、复习旧知,引入新课
一、复习旧知,引入新课
1.在三角形中共有几个元素? 2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
答:(1)、三边之间关系:a2 +b2 =c2 (勾股定理) (2)、锐角之间关系:∠A+∠B=90° (3)、边角之间关系
以上三点正是解的依据.
3、如果知道直角三角形2个元素,能把剩下三个元素求出来吗?经过讨论得出解直角三角形的概念。
复习直角三角形的相关知识,以问题引入新课
注重学生的参与,这个过程一定要学生自己思考回答,不能让老师总结得结论。
PPT,使学生动态的复习旧知
活动2讲授
二、例题分析教师点拨
例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=,a=,解这个直角三角形.例2在Rt△ABC中,∠B =35o,b=20,解这个直角三角形
活动3练习
三、课堂练习学生展示
完成课本91页练习
1、Rt△ABC中,若sinA= ,AB=10,那么BC=XXXXX,tanB=XXXXXX.
2、在Rt△ABC中,∠C=90°,a=,c=,解这个直角三角形.
3、如图,在△ABC中,∠C=90°,sinA= AB=15,求△ABC的周长和tanA的值
4、在Rt△ABC中,∠C=90°,∠B=72°,c=14,解这个直角三角形(结果保留三位小数).
四、课堂小结
1)、边角之间关系2)、三边之间关系
3)、锐角之间关系∠A+∠B=90°.
4)、“已知一边一角,如何解直角三角形?”
活动5作业
五、作业设置
课本第96页习题28.2复习巩固第1题、第2题。
【三角函数的教学设计】相关文章:
三角函数教学设计05-06
三角函数教学设计范文(精选11篇)11-17
任意角的三角函数教学设计(精选11篇)05-17
高一《两角和与差三角函数》教学设计07-04
《任意角的三角函数》第一课时教学设计03-12
锐角三角函数教学反思04-20
《三角函数的诱导公式》教学反思04-22
《任意角的三角函数》教学反思03-28
锐角三角函数教学反思04-20
《任意角的三角函数》教学反思04-07