解决问题的策略教学设计

时间:2021-04-26 09:31:07 教学设计 我要投稿

解决问题的策略教学设计

  作为一名老师,时常要开展教学设计的准备工作,借助教学设计可以让教学工作更加有效地进行。我们应该怎么写教学设计呢?下面是小编收集整理的解决问题的策略教学设计,仅供参考,大家一起来看看吧。

解决问题的策略教学设计

解决问题的策略教学设计1

  教学目标:

  1、使学生经历用"一一列举"的策略解决简单实际问题的过程,能有条理的分析数量关系,并获得问题的答案。

  2、沟通"一一列举"和"列表"两种策略的联系,通过列表,帮助学生养成有序列举的习惯。3、在学生感受这一策略的特点和价值的同时,进一步发展思维的条理性和严密性。

  教学过程:

  一、课堂导入

  同学们,以前我们曾学过哪些解决问题的策略?好的策略可以帮助我们顺利地解决问题,今天这堂课,我们要学习一种新的策略,这种策略和以前学习的策略还有很大的关系呢!

  二、教学例1

  1、导语:我们来看看第一个问题。

  出示:园艺工人用6根1米长的栅栏围成一个长方形花圃,他是怎样围的?

  (1)师:你可以算一算,或者画一画。写好后和你的同桌说说你是怎样想的?

  (2)学生汇报板书:长(m)2,宽(m)1

  师:说说你是怎样想的?和他想得一样的同学请举手。

  小结:看来这个花圃只有一种围法。

  2、导语:我们再来看看另一个花圃:

  出示:园艺工人准备用10根1米长的栅栏,围成一个大一些的长方形花圃,有几种不同的围法?

  (1)师:长和宽都有哪些情况?请你思考之后写在作业纸上。

  (2)学生汇报板书:长(m)43,宽(m)12

  师:你有几种围法?你呢?

  师:还有没有其他的围法?看来我们已经找全了答案。(板书:全)

  小结:第一个花圃,我们找到了1种围法,第二个花圃,我们找到两种不同的围法,像这样把符合要求的答案一一的找出来,这种方法叫做一一列举,(板书:一一列举),"一一列举"这就是我们今天要学习的新策略。

  3、导语:下面请同学们用这个策略来解决一个问题。

  出示例1:王大叔用18根1米长的栅栏,围成一个长方形羊圈,有几种不同的围法?

  (1)请你思考之后,把不同的围法一一列举到第一张表格上。

  (2)学生汇报(投影展示三张作业纸:不全、全而无序、全而有序)

  师:这位同学列举了三种围法,他找全了吗?你有几种围法?那他缺哪一种?(教师在三种围法的表格中,填写第四种围法)现在全了吗?这张表格中剩下的空格还要不要填了?

  (3)我们来看看,和他列举的顺序不一样的请举手,把你的给大家看看,请你介绍一下你是怎样想的?

解决问题的策略教学设计2

  教学目标

  1、进一步掌握在具体情境中能用列举法解决实际问题。

  2、进一步感受使用列举法时的有序性。

  3、进一步发展运用数学方法解决生活问题的意识,提高解决问题的能力。

  教学准备:教学光盘

  教学过程:

  一、复习导入

  谈话:前两节课我们学习了什么内容?你有什么收获?

  二、指导练习

  1、完成练习十一第6题。

  先让学生说说是怎么想的,然后小结:我们用列举法解决问题时,应当注意些什么?

  2、完成练习十一第7题。

  指名读题,问:观察表格,你有什么发现?

  48个1平方厘米的正方形拼成的长方形周长是多少?你是这样想的?

  3、完成练习十一第八题。

  指名读题,问:“只是向东、向北走”是什么意思?

  指导学生完成:我们可以将直线相交的点用字母代替,列举出所有的路线,并按一定的顺序列举。

  4、完成路线十一第9题。

  出示题目,要求仔细读题。

  三、完成思考题。

  出示思考题,让学生独立完成。(可在书上画一画)并进行集体订正。

解决问题的策略教学设计3

  教学内容

  义务教育课程标准实验教科书青岛版小学数学五年级下册第139页的内容。

  教学目标

  1、让学生经历回顾与探索运用转化策略解决问题的过程,初步感受转化策略的价值。

  2、使学生初步学会运用转化的策略分析问题,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。

  3、使学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,获得成功的体验。

  教学重点

  感受“转化”策略的价值,会用“转化”的策略解决问题。

  教学难点

  会用“转化”的策略解决问题。

  教学过程

  课前交流,孕伏转化策略:

  教师:同学们,你听说过曹冲称象的故事吗?(听说过)

  教师:好的故事总能给人以启迪,从这个故事中,你受到了哪些启发呢?学生自由交流感受,教师适时小结:曹冲能将复杂的事情与简单的事情相转化,从而巧妙的解决了问题,真是有志不在年高,了不起,相信同学们也会有不俗的表现。

  一、直观演示,发现转化策略

  课件出示:

  师:请你仔细观察,认真思考,哪个图形面积大呢?拿出彩色题纸,可以用笔画一画、算一算,想办法比较出哪个图形的面积大?

  师:有答案了吗?哪个图形的面积大?谁来说说。

  生1:两个图形的面积相等。生2:两个图形的面积相等。

  师:你是如何比较出来的?

  生:(边演示边说)我们把这块切开放到这块,都变成了长5个格、宽4个格的长方形。

  教师注意引导学生说出方法,如何平移、旋转的?

  师:听明白了吗?想的巧妙,讲的也非常清楚。谁再来说一说?

  师:原来的图形不规则,不容易比较大小。同学们都是利用了图形凹凸的特点想到了这个好办法,非常善于观察、思考。下面我们再来清晰的演示一下这个变化过程。请看,(课件演示)平移,旋转,瞧,哪个图形面积大?(相等)真是一目了然,原来的两个不规则图形通过平移、旋转都变成了规则的的图形。 (板书:不规则图形 规则图形)你们知道吗,这是一种解决问题的策略,这种策略就叫转化(板书课题)

  师:这样转化,什么变了?什么没变?

  生:周长变了,面积没变。

  师:还有什么变了?(形状变了。)

  师:你抓住了问题的关键,的确,这样转化,形状变了,面积却没变。(板书:形变积不变)

  二、唤醒记忆,回顾转化策略

  1.图形面积、体积方面的应用。

  师:同学们,其实,在以前的学习中,我们就经常用到转化的策略解决问题,比如说一些图形的面积公式、体积公式的推导,就常常用到转化的策略,你们能想起来吗?自己先想一想,然后跟小组的伙伴交流交流。

  师:有的同学迫不及待的想说了,谁来说?

  生:在学习图形的面积时,三角形的面积。把两个完全一样的三角形拼成一个平行四边形。

  师:这是把一个三角形的面积转化成了平行四边形面积的一半。没错,这就是转化。

  师:还有谁想说?

  生:把两个完全一样的梯形拼成一个平行四边形。

  师:这是把什么转化成什么?

  生:梯形转化成平行四边形

  师:准确的说,这是把梯形转化成平行四边形面积的(一半)

  这也是转化。还有吗?

  生:把平行四边行转化成长方形。

  生:圆也是把圆分成若干个小扇形,然后再拼成一个近似的长方形。

  生:圆柱是把圆柱转化成长方体。

  师:这也是用转化解决的新问题。

  课件出示:

  平行四边形的面积公式推导 三角形的面积公式推导

  梯形的面积公式推导 圆的面积公式推导

  圆柱的体积公式推导 圆锥的体积公式推导

  师:大家来看,我们曾经用转化的策略解决了这么多新问题。选一个你最喜欢的、或者感觉有困难的,同位互相说一说。

  2.数与计算方面的应用。

  师:从某种意义上来说,学习数学就是不断学会转化的过程。不仅在图形的世界里常常应用转化的策略解决问题,而且,在看似简单的计算中也蕴含着转化,回忆一下,在学习数与计算时,哪些地方用到了转化的策略呢?

  生:小数乘法是转化为整数乘法,分数除法是转化为分数乘法来进行计算的……

  出示:2.5×0.4 1.25÷0.5

  + ÷

  师:请看,这儿有一组题,可以动笔算一算,体会体会转化的作用,看看从中你又能发现什么,然后在小组内交流交流。

  (学生活动是巡视关注:是否会表达。)

  生:2.5×0.4是把小数乘法转化整数乘法。

  生:1.25÷0.5是把小数除法转化除数是整数的除法。

  师:说的真好,谁能像他这样,举个例子也说说自己的发现。

  生:计算 + ,是把异分母分数转化成同分母分数。

  师:说得真完整。

  师:很高兴你和大家分享你的发现,重复的我们就不说了,谁还有不同的发现?

  师:在计算这几个题的时候,我们都用到了转化的策略,转化前和转化后有什么关系?

  生:得数相同。

  师:你可真了不起,一下就抓住了转化的实质,转化前和转化后结果不变。(板书:得数相等)

  三、实践应用,体验转化策略

  1.巧用转化写分数。

  2.巧用转化求周长。

  鼓励学生独立做在作业纸上,然后,组织汇报、交流。

  师:周长各是多少厘米?有答案了就举手。

  师:左边图形的周长是多少?(16厘米)

  师:右边图形的周长可有难度了。

  生:也是16厘米。

  师:你怎么想的?

  学生边指边说想法。

  师:你是想把这四条边平移是吗?

  师:大家来看,他是把这个图形想象成了什么?(长方形)能行吗?

  师:我们来看一下(课件演示)真像大家想的那样,这是把什么转化成什么?

  生:把不规则图形转化成长方形。

  师:这样转化什么变了,什么没变?

  生:面积变了,周长没变。

  师:还有要补充的吗?

  生:形状也变了。

  师:咱们同学不仅会观察,还很会想象。我们在用转化策略解决问题的时候观察很重要,想象也很重要。感受到用转化策略解决问题的乐趣了没有?我们再来解决一个问题。

  3.巧用转化求面积与周长。(只列式,不计算。)

  师:请同学们认真观察,大胆的想象,仔细的思考。要求这个图形的面积,如何转化呢?

  师:这么快就会了,谁来说?

  生:能转化成一个半圆。

  师:怎么转化呀?

  生:把那块割下来,补到缺少的那块。

  课件演示

  师:是这样吗?这样果真就转化成了一个半圆。看来咱们同学用转化解决问题已经得心应手了。不过这个问题要变一下

  师:如果要求这个图形的周长,该怎样转化呢?

  生1:把左边的半圆平移到右边,转化成一个小圆,用大圆周长的一半加上小圆的周长。

  师:还有不同的想法吗?

  生2:整个一个图形可以转化成一个大圆。

  师:怎么就能转化成大圆的周长?

  引导学生思考大小圆之间的关系。

  生:大圆的周长是小圆周长的2倍。

  师:你怎么知道大圆的周长就是小圆周长的2倍?

  生:大圆半径是小圆的2倍,大圆周长也是小圆的2倍,小圆的周长是大圆的二分之一,合起来就是一个大圆的周长。

  师:咱们同学们真了不起,想到了不同的转化方法,并且这种转化的方法使问题变得非常简单。

  4、巧用转化计算。

  出示: + + +

  师:继续我们的探索之旅,你准备怎样解决这个问题?做在作业纸上。

  生:通分,都变成分母是16的分数。

  师:可以。通分也是一种转化,再仔细观察算式,你能发现其中蕴含的规律吗?

  生:每个分数的分子都是1,分母依次乘2。

  师:你能试着再往下写两个分数吗?

  生: + + + + +

  提问:如果是这个算式,你还想用通分去做吗?那有没有更简便的方法呢?

  课件出示正方形图

  引导学生分析涂色部分的大小可以用1减去空白部分的大小,1-

  师:明明是个加法算式,怎么变成减法算式了?

  生:因为这里还空缺一个 。

  师:听明白了吗?这位同学借助图形帮助进行算式的转化,非常善于观察和思考。

  5.关注生活。

  如何求1张纸的厚度? 如何求1个灯泡的体积?

  四、畅谈收获,提升转化策略

  师:通过今天的研究探索,你有哪些收获?

  学生交流。

  师:看来,大家的收获真不少,最后,有两句话想与同学们分享分享。

  出示:

  解题时,往往不对问题进行正面的攻击,而是将它不断变形,直至转化为已经能够解决的问题。

  ——数学家路莎彼得

解决问题的策略教学设计4

  教学目标:

  1、知识与技能:

  学生在解决简单实际问题的过程中,初步体会用列表的方法整理相关信息的的作用,学会用列表的方法整理简单实际问题所提供的信息,学会运用从已知条件想起或从所求问题想起的策略分析数量关系,寻找解决问题的有效方法。

  2、过程与方法:

  通过自主探索、动手实践、合作交流等学习活动,学生经历提取信息,发现问题,列表整理条件,解决问题的知识获取过程,从而搜集信息,整理信息,发现问题、分析问题、解决问题的能力得以提高,并发展他们的推理能力。

  3、情感态度与价值观:

  通过学习,学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点、难点:

  重点:用列表的方法整理问题情境中的信息,用从条件想起或从问题想起的方法分析数量关系。

  难点:正确整理、分析数学信息关系,学会通过所整理的信息决策问题解决策略,并内化成自己的问题解决策略。

  教学准备:

  课件

  教学过程:

  一、故事引入,感受策略。

  课前同学们都看了《司马光砸缸救人》的故事,这个故事讲述了司马光遇到了要救落入大水缸里的孩子的问题。救人的办法有很多,如:可以从缸口把孩子拉出来,但是由于在场的都是孩子,人还没有缸高呢,力气就更小了,不可能能把落水的孩子拉出来;再如:也可以去叫大人来救,但是可能时间不允许……这些办法都不能很快地把落水的孩子救出来。在这种特殊情况下司马光通过动脑筋、想办法,终于看到了一块石头,于是想出了“砸缸放水救孩子”的办法救了落水孩子一命。司马光通过自己的观察和思考,在许多办法中选择砸缸救人的最好办法,就是一种大智慧,这样的过程就是应用策略解决救人的问题(板书:策略)。这是生活中的应用策略解决问题,其实在我们的数学学习中也经常遇到问题,也要动脑筋、想办法解决问题,要更好、更快地解决问题就必须采用一些解决数学问题的策略。今天我们就来研究数学中的“解决问题的策略”。

  板书课题:解决问题的策略

  二、合作探索,领悟内涵。

  1、创设情境,感知列表整理的方法。

  (1)导入语:

  师:小朋友们都喜欢逛超市吧,今天有三位小朋友相约来到了超市里,他们准备买同一种笔记本,他们遇到了什么问题呢?我们一起去看一看。

  (2)出示情境图,听录音,(录音中增加了“小华用去多少元?”和小军说的话“我用42元买笔记本,可以买多少本?”)要求小华用去多少元?我们要用到哪些条件呢?学生回答后,课件只留下有用信息,提问:你能找到信息中的关键词吗?你能将这些关键词整理写出来吗?学生交流,相互补充逐步简洁成:

  小明3本18元

  小华5本?元

  添上表格线,形成一张完整的表格:

  小明3本18元

  小华5本?元

  板书:列表整理信息

  (3)问:谁能不看图,只看表格就能复述题目的意思?学生复述后,比较表格和情景图,你觉得哪儿的条件和问题,看上去更加简洁,排列的更加整齐?

  2、分析解决问题,感受列表的价值。

  (1)独立思考如何解决题中的这个问题。想好后在小组里交流。全班交流。归纳解决这个问题的两种思路:从条件想起,从问题想起。

  板书:分析列式解答

  讨论:要求小华用去多少元,可以怎么想?(学生活动)

  师:同学们在解题时,会有两种不同的思路。一种从已知条件想起,想:根据买3本用去18元,可以先求出1本的价钱;也可以从要求的问题想起,想:要求买5本用去多少元,先要求出1本的价钱。

  这样一来,你会列式解答了吗?请行动起来(学生活动)。

  课件出示:

  18÷3=6(元)

  6×5=30(元)

  答:小华用去30元。

  师:核对一下,你做对了吗?

  (2)师归纳:解决条件较多的问题时,我们可以把有用的信息和问题列表整理,使数量之间的关系更加清晰,从而很快找出解决问题的方法。列表是一种非常有效的解决问题的策略。

  (3)下面我们就用列表的策略来帮小军算算42元可以买多少本笔记本?课件出示问题和空表格。

  同桌交流,再集体交流,相机完善表格。

  小明3本18元

  小军?本42元

  列式解答后,请一名学生说出解题思路。

  18÷3=6(元)

  42÷6=7(元)

  答:小军买了7本。

  (4)课件同时出示上述两个表格。问:求小华用去多少元和小军能买多少本,在思考过程中有什么相同的地方?有什么不同的地方?(引导学生依据屏幕上的列式回答)

解决问题的策略教学设计5

  教学内容:

  教科书第88~89页的例1、例2和“练一练”,练习十六的相关习题

  教学目标:

  1、使学生在解决实际问题的过程中学会用“倒推”的策略寻求解决问题的思路,并能根据实际的问题确定合理的解题步骤,从而有效地解决问题。

  2、使学生在对自己解决实际问题过程的不断反思中,感受“逆推”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  学会用倒推的解题策略解决实际问题

  教学难点:

  根据具体问题确定合理的解题步骤

  教学准备:

  多媒体课件,练习纸。

  教学过程:

  一、激趣导入,初步建立倒推法的一般解题流程

  1、路线倒推

  师:前不久,学校组织大家去春游,还记得吗?

  生:记得

  师:游玩后一位同学写了这样的一篇数学日记。来,听一听。

  (录音:我们8点从学校出发,一路经过长江大桥、老山风景区,最后到达雏鹰军校。下午沿原路返回,你知道我们的返回路线吗?出示:学校→长江大桥→老山风景区→雏鹰军校)

  师:谁能回答?

  生:返回路线是从雏鹰军校出发,经过老山风景区、长江大桥,最后到学校。

  (出示:学校←长江大桥←老山风景区←雏鹰军校)

  师:原来你是倒过来想的。

  2、翻牌倒推

  师:下面老师玩一个小魔术,想不想看?

  生:想

  师:看好了。

  (出示三张牌:先第一张和第二张交换位置,再将第二张和第三张交换位置)

  师:要想知道原来这三张牌是怎样摆放的,怎么办?

  生:(上台操作)先交换第二张和第三张位置,再交换第一张和第二张位置。

  师:你为什么这样操作?

  生:我是倒过来想的,刚才最后交换的是第二和第三张,那我就先交换这两张,在交换第一张和第二张。

  师:原来你也是倒过来想的。

  3、运算倒推

  师:我们再来玩一个小游戏,比比谁的反应快!

  (出示:)

  师:你能立刻报出表示多少吗?

  生:18

  师:你是怎么想的?

  生:6×5=3030-20=1010+8=18

  师:你也是倒过来想的

  4、小结

  师:刚才这3个问题,大家都是怎么想的?

  生:倒过来想的

  :师:在数学上,我们把倒过来想的方法称之为“倒推”(板书:倒推)

  今天这节课,我们就一起来研究怎样用倒推解决生活中的实际问题。

  二、教学例题,探究倒推法

  1、(出示例题:小明原来有一些邮票,今年又收集了24张,送给小军30张后,还剩52张。小明原来有多少张邮票?)

  师:你了解到哪些信息?

  生:我知道了小明原有一些邮票,收集了24张,送给小军30张,剩52张。求小明原来有多少张邮票?

  师:你能将这些信息进行整理吗?

  同座位讨论,其中一人记录。

  生:(同座位讨论整理过程)

  师:谁来介绍一下你们是怎么整理的?

  生:原有?张→又收集24张→送给小军30张→还剩52张

  师:我们已经整理了信息,你准备怎样解决这个问题?试一试。

  生:(尝试解题)

  师:谁来介绍你的计算方法?

  生1:52+30-24=58(张)

  师:你能具体说说算式的意思吗?

  生:从结果开始想,送出的要收回,而收集的要去掉。

  师:你听懂了吗?

  这个结果正确吗?你有办法验证吗?

  生:58+24—30=52(张)

  师:你是用顺推的方法,看剩下的是不是52张。

  这一题你还有不同的计算方法吗?

  生2:52+(30-24)=58(张)

  师:你能解释算式意思吗?

  生:在变化过程中,小明的邮票总共减少了6张,所以要用剩下的52张加上6张。

  师:听懂了吗?

  通过计算我们知道了小明原来有52张邮票。

  2、小结:

  师:第一种解法,是从结果出发,按顺序倒推出原来的情况。第二种解法,先比较小明的邮票是增加了还是减少了,再从结果出发倒推退出原来的情况。

  师:这两种解法列式不同,但在思考过程中有什么相同点?

  生:都采用了倒推的方法。

  师:为什么你们都选择倒推解决这个问题呢?

  生:比较简单,容易理解。

  师:原来用倒推解决这种问题,是一种既简洁又方便的解题策略。(板书:解决问题的策略)

  3、试一试

  出示图:

  师:你从图中你知道了什么?

  生:甲乙两杯果汁原来共重400毫升,从甲杯倒入乙杯40毫升,两杯果汁就同样多了,求原来两杯果汁各有多少毫升?

  师:你会解决这个问题吗?试一试。

  师:谁来说说你是怎么解决的?

  生1:400÷2=200(毫升)

  甲:200+40=240(毫升)

  乙:200-40=160(毫升)

  师:你能具体说说这三步的意思吗?

  生1:400÷2=200(毫升)求的是现在甲、乙两杯有多少毫升,再把到入乙杯的40毫升倒回去,200+40=240(毫升),求出甲原来有多少毫升,200-40=160(毫升),求出乙原来有多少毫升。

  师:他是用倒推的方法解决的,还有不同的方法吗?

解决问题的策略教学设计6

  教学内容:苏教版五年级数学(上册)第63-64页例1、例2和“练一练”。

  教学目标:

  1、使学生经历用“一一列举”的策略解决简单实际问题的过程,能有条理的分析数量关系,并获得问题的答案。

  2、沟通“一一列举”和“列表”两种策略的联系,通过列表,帮助学生养成有序列举的习惯。

  3、在学生感受这一策略的特点和价值的同时,进一步发展思维的条理性和严密性。

  教学重点:

  能对信息进行分析并用“一一列举”的策略解决实际问题。

  教学难点

  能不重复、不遗漏地有条理地一一列举解决实际问题。

  教学准备

  课件、小棒、表格

  教学过程:

  一、复习导入。(2分钟)

  1、复习:同学们,我们已经学了长方形的周长和面积的计算方法,回忆一下,长方形的周长怎么求?长方形的面积怎么求?(生答师帖卡片)

  请大家齐读一遍。同学们真了不起,学过的知识能记得那么牢!

  2、导入:同学们,以前我们学了一些策略来解决怎样求长方形的周长和面积,今天王大叔遇到了新的难题,大家请看。

  二、教学例1。(18分钟)

  1、出示例1:王大叔用18根1米长的栅栏,围成一个长方形羊圈,有几种不同的围法?

  2、(读题):同学们愿意帮王大叔这个忙吗?

  王大叔遇到了什么难题?谁来说一说?

  师:应该怎样围呢?老师已经为同学们每桌准备了18根小棒,每一根代表1米,请同桌2人合作用小棒在桌子上围一围。在摆之前老师有个说明:(1)每次都要把18根小棒用完。(2)围成一种后就数长和宽各是多少米,记录在老师发给的表一中。(3)尽可能少的移动一些小棒让它变成另一种不同的'围法,再进行记录。

  先想想怎样摆才摆得快,比比看哪一组合作得又快又好。开始动手操作吧!(师巡视,并与生个别交流:还可以怎么摆?不要动太多的小棒。)

  (有的学生已经完成,要鼓励没完成的学生。)

  注意收集有序和无序两张表格准备展示。(看中后可拿大笔给学生描大一些)

  好了,同学们,请停止操作,用很短的时间把小棒收起来。

  3、到底有多少种不同的围法呢?老师手上有两组同学的记录表。(投影)

  大家更欣赏哪种记录方法?为什么?

  (师相机板书:按顺序)

  4、请这位同学说说看,刚才你是怎么想的?(生回答)

  你怎么知道宽是1米的时候长就是8米呢?你是怎么算出来的?

  (生答师展示18÷2=9米)

  大家认为先从宽开始考虑好还是先从长开始考虑好?

  (从最小的宽开始考虑比较好,顺序较明确。)

  5、下面我们就从宽是1米开始摆一摆。

  (学生说教师展示围法)

  6、我还可以继续摆。(展示宽5长4)

  这样行不行?为什么?大家观察一下这个长方形实际是前面4个长方形中的哪一个?重复了,因此我们要把它去掉。(单击鼠标擦掉)

  同学们发现了没有?按顺序摆有什么好处?

  (师相机板书:不重复不遗漏)

  这位同学真了不起,掌声送给他好吗?

  哪位同学刚才没有按顺序排列的请改成按顺序排列好吗?

  7、同学们数数看,一共有多少种不同的围法?(展示答)

  8、小结揭示课题:像刚才这样把事情发生的可能按照一定的顺序,有条理的列举出来,从而找到问题的答案。这就是我们帮王大叔解决问题的一种策略,这种策略叫做一一列举。(板书:解决问题的策略——一一列举)齐读课题。

  我们在一一列举时应注意几点是什么?(按顺序、不重复、不遗漏)

  9、下面我们把每种摆法的面积分别计算出来好吗?

  同学们,在这4种不同的围法当中,你认为王大叔的羊圈用哪种围法比较合适?为什么?(第四种面积最大,养得羊最多。)

  10、说得太好了!请继续观察这张表,你还有什么发现?(面积越来越大)这跟它的长和宽有什么关系?(在周长不变的前提下,长与宽的长度越接近,面积就越大。)

  同学们真是太厉害了!没想到在围长方形的同时,还有一个意外的发现。

  11、同学们,刚才我们学了一种新的策略——有序的一一列举,列举时应注意什么?下面我们就用这个策略来解决一个实际问题,大家有没有信心?

  三、教学例2(10分钟)

  1、出示例2:订阅下面的杂志:最少订阅1本,最多订阅3本。有多少种不同的订阅方法?(读题)

  2、“最少订阅1本,最多订阅3本”是什么意思?

  (生答师展示:可以订阅1本,可以订阅2本,也可以订阅3本)

  3、那我们应该从订几本开始想起比较好?(从只订阅1本开始想起)

  4、下面我们就一起来列举出来好吗?(我们可以怎么订?还可以怎么订?)

  (生说师展示)同学们真是太聪明了,一下子就把所有的!法都列举出来了。!

  5、其实我们还有更简单的办法,那就是列表,用“√”表示订法,订哪本就在相对应的格里打“√”,一列就表示一种订阅方法。同学们能不能利用这张表格,按一定的顺序列举出所有情况呢?请拿出表二试着填一填,不明白的同桌可以讨论讨论。

  6、师展示学生作业,有序和无序两张表格比较。

  7、集体评:第一张表列举出所有情况了没有?再看第二张表列举出所有情况了没有?两位同学都列举出了所有的情况,大家更欣赏哪张表呢?为什么?

  请这位同学说说看,刚才你是怎么做的?(生说师课件展示)你真了不起,刚学的知识就能够运用自如!

  刚才哪位同学没按顺序列举的请改成按顺序列举好吗?

  8、同学们数数看,一共有多少种不同的订阅方法?我们一起来答出来吧?(齐答)

  9、小结:看来同学们已经学会了运用一一列举的方法,来解决生活中的一些实际问题,想一想:要想得到全部答案,列举时要注意什么?

  (按顺序、不重复、不遗漏)

  一一列举在生活中随处可见,不经意我们就会遇见它,有时他还会出现在我们的投镖游戏中。

  四、拓展运用知识,解决生活问题。(9分钟)

  1、出示“练一练”,生齐读题。

  2、同学们玩过投镖游戏吗?投中两次是什么意思?(两镖都投在靶上)

  我们来投一次好吗?(让学生举起手来一起做投镖的动作)你想得到多少环?再投第二镖,投中多少环?会有几种情况出现?(可能两次都投中同一个环数,也可能两次投中不同的环数。那老师就根据这两种可能制成一张表。)

  3、展示表格:画“√”表示投中,一个“√”表示一镖。一列就表示一种情况。请同学们拿出表3,按一定的顺序列举出所有情况。

  4、师展示表,哪位同学愿意上来填这张表?

  5、集体评:他这样填可以吗?为什么?按顺序有什么好处?(如果有时间,就让这位同学说说是怎么想的)

  刚才哪位同学没按顺序列举的请改成按顺序列举好吗?

  6、请同学们观察总环数,你有什么发现?(注意:有两个16环,答题时只写一次就行了,不要重复。)

  齐答。

  五、总结全课(1分钟)

  同学们,这节课我们学了什么策略?列举时需要注意什么?

  (生答师展示)

  六、结束语

  同学们,我们在解决问题的时候,采用一一列举可以使复杂的问题变得更简单,老师希望同学们在生活中利用这种方法去为我们的生活排忧解难,这正是我们数学的魅力之所在。

  好了,这节课我们就上到这里,下课!

  板书:长方形的周长=(长+宽)×2

  长方形的面积=长×宽

  解决问题的策略——一一列举

  按顺序

  不重复

  不遗漏

解决问题的策略教学设计7

  教学内容:

  苏教版五年级数学(上册)第94-95页例1及随后的“练一练”,练习十七第1-3题。

  教学目标:

  1、使学生经历用“一一列举”的策略解决简单实际问题的过程,能运用列举的策略找到符合要求的所有答案。

  2、使学生在对自己解决实际问题过程的不断反思中,感受列举策略的特点和价值,进一步发展思维的条理性和严密性。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  让学生体会策略的价值,并使学生能主动运用策略解决问题。

  教学难点:

  在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。

  教学准备:

  课件、小棒、表格。

  教学过程:

  一、谈话导入。(2分钟)

  谈话:同学们,我们以前学到过解决问题的策略,想一想:我们都学过哪些策略啊?(板书:从条件想起,从问题想起,画图,列表)

  引入课题:今天我们就继续来学习解决问题的策略。

  二、教学例1。(20分钟)

  (一)弄清题意,引发需求

  1、出示例1:王大叔用22根1米长的木条围一个长方形花圃,怎样围面积最大?

  2、(指名读题):从题中你能获得哪些数学信息?你还能发现题目当中隐藏的信息吗(2人答)?(长方形的周长是22米)(掌声)

  师:周长一定是22米,是保持不变的,长和宽也会像周长这样保持不变吗?长和宽在变化,那么面积也就有大(顿)有小。

  师:长和宽可能会是几米?指名答 (板书: 长: 9 宽: 2 )

  他猜得对吗?再指名答理由(2人)。(板书:长+宽:22÷2=11(米) )

  设疑:还有不同的围法吗?(有)大家想一想:在这么多围法当中(板书:),要想知道怎样围面积最大,可以怎么做?(把所有围法都列举出来)大家想不想亲自动手来围一围?

  (二)尝试列举,感知策略

  1、分层提出要求:

  ?请你用22根小棒摆出不同的长方形,将结果填写在记录单中。

  ?也可以直接填写记录单,再通过摆小棒来验证自己的猜想是否正确。

  学生操作,师注意收集(A:遗漏B:重复C:全但无序D:有序)的表格进行投影展示。

  2、比一比:大家更欣赏哪种记录方法?(D)为什么?(板书:按顺序)按顺序列举有什么好处?(板书: 不重复 不遗漏)

  师:这位同学真了不起,掌声送给他。(掌声)

  师:请刚才没有按顺序填写的同学改成按顺序填写,老师也来改一改。( 补齐板书:长(m):10 9 8 7 6

  宽(m): 1 2 3 4 5 )

  7、同学们数数看,一共有多少种不同的围法?(5种)现在你知道怎样围面积最大吗?(长6米,宽5米)你是怎么知道的?

  (补齐板书:面积(㎡):101824 2830)看来我们还要对列举出来的结果进行分析、比较,这样才能选出我们想要的。

  8、小结揭示课题:像刚才这样把事情发生的所有结果按照一定的顺序一一列举出来,也是一种解决问题的策略,我们通常就称它为“一一列举”的策略。(板书:——一一列举)齐读课题。

  (三)反思回顾,加深理解

  1、提出要求:回顾刚才解决问题的过程,你有什么体会?(列举能帮助我们解决问题,列举时要有序思考,对列举的结果要进行比较)

  2、进一步要求:其实列举的策略同学们并不陌生。大家思考一下:在以前的学习中,我们曾经运用列举的策略解决过哪些问题?小组交流。(如:一年级:10的分与合)

  追问:用列举的策略解决问题有什么好处?在列举时需要注意些什么?

  过渡:王大叔有个女儿叫小芳,他送给小芳一个礼物,是什么呢?对,小闹钟

  三、拓展应用,丰富体验。(16分钟)

  1、出示“练一练”第1题。(突出“有序”)

  (1)指名读题,指名板演。

  (2)学生尝试解答,组织交流反馈:重点让板演的学生说说是怎样列举的。

  过渡:你们喜欢学校的饭菜吗?小芳也很喜欢,让我们来看一看小芳所在学校食堂的饭菜情况。

  出示练一练第二题。

  进行荤菜搭配时,可以按表中的样子从荤菜想起,也可以从素菜开始一一列举,一共有12种不同的搭配。

  过渡:小芳有一个爱好是上网,在课余时间经常通过浏览一些网站来增长自己的见识。大家是否知道网站为了及时发布最新的消息,都需要定期更新。我们一起来了解一下。

  2、出示“练习十七”第2题。(突出“对结果要比较、观察”)

  (1)指名读题,师引导学生观察A网站怎样更新后再提出要求:先在下表里画一画,再回答。

  (2)组织交流反馈:重点突出对列举的结果要观察、比较。

  联系生活:上网确实很好玩,但同时郑老师也对大家提一个小小的要求:希望大家要做到“文明上网、适度上网”,千万不能沉迷于网络。

  过渡:小芳除了喜欢上网之外还有一个爱好是收集邮票,先课件出示4张邮票(师介绍“邮票”,认识邮票面值),再课件出示问题(师介绍“邮资”:就是指邮票的面值之和。)

  3、出示“练习十七”第3题。(引出分类列举的思想)

  提问:你打算怎样解决这一题?指名回答,生口头说出按怎样的思路来列举即可。

  四、总结全课

  同学们,这节课我们学了什么策略?你有哪些收获?还有什么要提醒大家的?(列举时需要注意什么)

  同学们,在我们的生活中,采用“一一列举”的策略常常可以使复杂的问题变得简单,使混乱的思维变得清晰,这正是我们学习数学的魅力之所在。

解决问题的策略教学设计8

  一、教材分析:

  这节课主要学习用列表的方法收集、整理信息,用从所求问题想起的策略分析数量关系,寻找解决问题的有效方法。在列表整理信息时,本课例题呈现的信息更复杂,而且在列表时所求的问题也没有表示出来,需要学生先根据要求的问题选择相关信息列表,然后再确定解决问题的方法。

  二、学情分析:

  这部分内容主要是在学生掌握了简单实际问题、两步计算实际问题的结构和数量关系,学会了从条件出发、从问题出发分析数量关系的策略,积累了比较丰富的解决实际问题经验的基础上,教学两积之和等实际问题,帮助学生初步学会用列表的策略整理条件和问题,感悟从条件和问题出发分析数量关系的策略,总结和归纳解决问题的一般步骤。

  三、教学目标:

  1、学生在解决简单实际问题的过程中,初步体会用列表的方法整理相关信息的作用,学会用列表的方法整理简单实际问题所提供的信息,学会运用从已知条件想起或从所求问题想起的策略分析数量关系,寻找解决问题的有效方法。

  2、通过自主探索、动手实践、合作交流等学习活动,学生经历提取信息,发现问题,列表整理条件,解决问题的知识获取过程,从而搜集信息,整理信息,发现问题、分析问题、解决问题的能力得以提高,并发展他们的推理能力。

  3、通过学习,学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:用列表的方法整理问题情境中的信息,用从条件想起或从问题想起的方法分析数量关系。

  教学难点:带着问题去寻找策略,分析数量关系。

  四、教学方法:

  教学中要知道学生通过对解决问题过程的回顾和反思,不断增强运用有关策略解决问题的自觉性。引导学生在用列表的方法解决问题的过程中,学会用自己的语言解释结果的合理性。

  五、教学过程:

  (一)创设情境,感知策略

  谈话:首先,我们来玩个小比赛。这边两组叫红队,这边两组叫蓝队。拿出老师给你们准备的课程表。比赛规则很简单,请你找到老师所描述的科目,然后圈起来,圈好的同学立刻起立,咱们看看,哪队同学反应最快,注意,老师喊停以后,你就不能再动笔,也不能再站。明白了吗?红蓝两队的队员你们准备好了吗?

  师:你觉得这个比赛公平吗,为什么?

  师小结:小小课程表用不同方法进行整理获得的效果就不一样,所以我们做任何事都要选择好的方法讲究策略,今天我们就一起来学习解决问题的策略(板书)

  师:这两种整理的方法,你喜欢哪一种?

  谈话:同学们都认为用列表的策略来整理课程让我们看得更清楚、一目了然,那我们就一起来研究列表的策略。(板书:列表)其实生活中列表整理的例子非常多,咱们一起来看一看(日历、值日表),咱们身边还有很多数学问题也可以用列表的策略来解决。

  (二)激发内需,形成策略

  1、联系生活,教学新课

  (1)出示例题中的已

  知条件。

  (2)看了这些信息,引导学生思考体会。(信息比较多)

  师:条件这么多,看来需要整理一下,那可以怎么整理呢?

  (3)根据学生反馈将所有的条件整理进一个表格中。

  (4)出示问题:桃树和梨树一共有多少棵?

  那你觉得解决这个问题需要用到表格中的所有信息吗?为什么?

  小结:所以解决问题时,我们可以直接根据问题来整理信息。

  (5)直接出示问题和简化的表格。

  下面,请你想一想先算什么?再算什么?最后怎样?

  (6)那你能说一说这题有怎样的数量关系吗?你是怎么想到的?

  ①学生反映从问题想起。(板书)

  ②回到表格,引导学生还可以从条件想起分析数量关系。

  (7)让学生分布列算式解答,指名板演。

  3×7=21(棵)

  4×5=20(棵)

  21+20=41(棵)

  订正时提问:你每一步求出的是什么?

  (7)答案是否正确?先进行检验,再与同学交流。

  提醒学生:以后解题时都要对解决问题的结果进行检验,发现错误要及时订正。

  3、这道题还有一问,请想一想:求杏树比梨树多多少棵,应该怎样解答?

  请同学们先独立列表整理,然后说说怎样分析数量关系。

  4、比较,小结

  刚才我们一起解答了两个问题,你发现在解答这两个问题的过程中有什么共同点和不同点吗?

  学生讨论、交流,总结得出解决问题时一般要经历的另外3个步骤。

  (三)巩固拓展,提升策略

  过渡:其实生活中,我们还有很多地方用到了列表的策略。学校里就有一些数学问题,让我们一起去看一看吧。

  1、“练一练”第一题

  独立看书明确题意。(请学生说说在图中知道了哪些数学信息)

  问:看过图后,你从图中得到了哪些信息?指名学生说一说。图上有这么多的信息,你能用列表的策略把这些信息整理好吗?(学生整理信息)

  班级交流:说说你是怎样想的?每步算式求出的是什么?(先求三、四年级分别有多少人)

  2、“练一练”第2题

  师:学校里的江老师也有问题要同学们解决,我们来看下。

  学生读题,明确题意。

  请同学们根据题目的条件和问题在作业纸上独立列表整理。

  班级交流,说说是怎样想的,每一步求的是什么问题?

  3。、“练习九”第1题和第2题

  请学生一起读题。(第2题先解答,再检验)

  (四)全课总结

  问:今天我们学习了什么解决问题的策略,那你有哪些收获?

  讲述:其实,解决问题的策略还有很多很多,我们今天只是初步学习了其中的一种——用列表的方法整理信息的策略。谁能说说我们一般在解决怎样的数学问题时可以用到这个策略?相信在今后的学习中,同学们会形成越来越多的解决问题的策略。

解决问题的策略教学设计9

  教学目标

  1、让学生在解决问题的过程中体验列举的策略,会用这种策略解决一些相关的实际问题,能通过不遗漏、不重复的列举找到符合要求的所有答案。

  2、培养学生思考数学问题的条理性、有序性,体会解决数学问题方法的多样性、灵活性,发展学生的思维能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,提高学好数学的信心。

  教学准备:

  教师:多媒体课件;飞镖2支;镖盘一只。

  学生:小棒;表格。

  教学过程:

  一、谈话导入:

  同学们,今天是老师第一次到宝应来,老师乘车来的时候发现:宝应的2路公交车是每隔15分钟发一班,请大家想一想:如果从早上6点开始发车,到早上7点,一共发了几班车?

  小结、揭题:

  像这样,把每次发车的时刻一个一个的列出来,这就是解决问题的一种策略。今天,我们就研究“解决问题的策略” 板书课题:“解决问题的策略”

  二、探究策略:

  (一)、教学例1

  1、解决:“可以怎样围?”

  (1)王大叔在围羊圈的时候遇到了一个数学问题,同学们,你们愿意帮帮他吗?(课件出示: 王大叔用18根1米长的栅栏围成一个长方形羊圈)这个长方形的羊圈可以怎样围呢?

  (2)能用小棒摆出来吗?1根小棒代表1米,请大家动手试一试。

  (3)交流:谁来说说,你是怎样围的?

  (4)教师问:有跟他不一样的围法吗?

  2、解决:“有多少不同的围法?”

  同学们说的都不错,那王大叔的羊圈一共有多少种不同的围法呢?能写出来吗?(课件出示表格)

  3、展示学生表格

  (1)展示重复的8种的表格,问:长8宽1,谁来说说:你是怎样想的?你们同意他的答案吗?说说你们的理由。

  (2)再展示有顺序的4种,说:看看这张表格对吗?

  (3)展示没有顺序的表格并比较:

  这张表格呢? 两张表格你们认为哪一张更好一些?为什么?

  教师评价:对,按顺序填表才会显得有条理。

  (4)展示有重复和遗漏的表格:

  老师这里有张表格,大家看看,有什么意见?

  (5)小结:

  切换到电脑:教师小结同时课件演示:刚才我们在填表的时候,把不同的围法一个一个排列出来,从而解决了问题,运用的就是“一一列举” 的策略(板书:“一一列举”)

  (6)集体订正

  现在请同桌互相看看,写对的请举手,针对写错的学生,让错误的学生订正,没按顺序写的请你按顺序写一写。、

  同学们,刚才我们在填表的时候发现有的同学重复了,可能有的同学遗漏了,想一想,在一一列举的时候怎样才能做到不重复、不遗漏呢?

  (7)观察面积和长、宽的关系,发现规律。

  在大家的帮助下,王大叔知道羊圈有4种不同的围法,现在他想围一个面积最大的长方形,你们能帮他算出每个长方形的面积吗?第一个长方形的面积是?第2个呢?第3个?……

  你们认为王大叔会选哪一种?

  比较长方形的长、宽、和面积,你们发现了什么?

  看看长和宽的和,你们有什么发现?

  小结:看来有顺序的一一列举,还能帮助我们发现隐藏的数学规律。

  (二)、教学例二

  (1)王大叔的羊圈围好了,现在呀他要去买羊。当他赶到羊市场的时候,发现坏了,市场里只剩下最后3只羊,而且颜色各不一样。(课件出示图片)1只是黑色、1只是白色、1只是灰色,(课件出示:最少买1只羊,最多买3只羊)如果王大叔最少买1只羊,最多买3只羊学生回答。(课件出示:一共有多少种不同的买羊方案?)一共有多少种不同的买羊方案?

  (2)最少买1只羊,最多买3只羊,知道这句话什么意思吗?

  (3)你准备用什么策略解决这个问题?列举时你打算先考虑买几只羊的情况?

  教师引导:买1只羊可以怎样买呢?买2只羊可以怎样买呢?买3只羊呢?能把所有的不同方案都写出来吗?

  (4)展示学生作业,教师给予评价。

  过渡:刚才同学们一一列举的过程还可以用表格来表示:(出示表格)教师演示并讲解。

  (5)小结:通过列表格我们能很快看出是否有重复、有遗漏,这是一种科学有效的整理方法。

  三、练习拓展

  刚才同学们表现很出色,现在让我们轻松一下,做个游戏,好不好?

  (1)出示飞镖问:这是什么?有没有玩过?今天我们就玩投飞镖的游戏。(出示镖靶)问:10什么意思?投中红色部分就是10环。投中蓝色部分呢?黄色部分呢?你们想投吗?谁先来?

  出示:游戏的规则是投中2次。(教师板书)

  第一次投中,问:有没有投中?多少环?同学们猜一猜:第2次可能投中几环?我们看看,他究竟投中几环。(再投)

  看看,一共得了多少环?

  还有谁想投?

  (2)现在,如果再请一位同学投,投中2次,可能会得多少环?能把所有的答案列举出来吗?请同学们用加法算式在纸上写出来。

  展示学生作业问:你是按什么顺序列举的?

  (3)教师:现在如果游戏规则是:只投两次(板书)

  先说说,和投中2次有什么区别?投不中就是多少环?只投两次,除了刚才出现的情况以外,还有可能得到多少环?

  (4)老师发现,我们宝应实小五( 1 )班的同学今天的表现真不错,大家知道宝应是个好地方,有很多特产,你们能向大家介绍介绍吗?

  老师觉得这4种不错(课件出示:藕粉 荷叶茶 莲藕汁 大闸蟹)看看,是什么?

  如果今天来的客人老师请你推荐其中的一种或两种,有多少种不同的推荐方法?

  交流:同学们,谁来说说,你是怎么推荐的?

  我相信我们会场上的客人老师一定会根据同学们的推荐,去选择自己满意的特产。

  四、小结:

  同学们,通过今天的学习,你有什么收获?在用列举的策略解决问题时你觉得要注意些什么?

  五、作业:

  练习十一1-3

解决问题的策略教学设计10

  第三单元解决问题的策略

  课题:解决问题的策略——从问题想起第1课时总第课时

  教学目标:

  1.使学生初步学会根据题中的条件和问题,选择分析问题的思路,分析题目表示的数量关系,进而培养学生学会分析问题的能力。

  2.使学生养成认真审题,自觉检验的良好习惯,发展学生连贯、有序、有层次的思维能力。

  教学重点:如何从问题开始想,根据问题分析数量关系。

  教学难点:根据问题分析数量关系。

  教学准备:课件

  教学过程:

  一、情境引入

  谈话:同学们,你们有去过商场购物吗?

  出示商场购物情境图,提问:如果你有100元,这些商品你想买什么?还剩多少元?

  让学生观察画面,提出问题。

  学生自由发言,教师适时启发引导。

  二、交流共享

  1.教学例1。

  (1)出示教材第27页例1情境图。

  谈话:小明和爸爸今天也到商场购物,它们带300元去运动服饰商店购物。他们可能买什么?

  利用课件把画面集中放大到运动服饰和运动鞋的场景中,让学生认真观察画面。

  提问:小明和爸爸买一套运动服和一双运动鞋,可能花多少元?

  学生计算,并说出多种可能,教师相应板书。

  明确:买一套运动服和一双运动鞋因为选择不同,有多种选法。购买不同价格的运动服和运动鞋,剩下的钱是不同的。

  (2)出示问题:小明和爸爸带300元,买一套运动服和一双运动鞋,最多剩下多少元?

  先让学生同桌互相讨论:最多剩下多少元?再指名汇报。

  师小结:购买的商品价格最低,剩下的钱就最多。

  提问:你能根据问题说出数量之间的关系,确定先算什么吗?

  学生独立思考后,把自己的想法在组内交流。

  学生汇报交流:

  ①剩下的钱等于带来的钱减去用去的钱,可以先算用去多少元。

  ②求最多剩下多少元,可以先算购买价格最低的运动服和运动鞋一共要用多少元。

  引导:先想想每一步可以怎样算,再列式解答。

  学生列式,指名回答,教师板书。

  ①一共用去多少元?130+85=215(元)

  ②剩下多少元?300-215=85(元)

  (3)想一想:如果买3顶帽子,付出100元,最少找回多少元?

  提问:你能根据问题说出数量之间的关系,确定先算什么吗?

  学生汇报交流。

  引导:先想想每一步可以怎样算,再列式解答。

  ①最多用去多少元?24×3=72(元)

  ②最少找回多少元?100-72=28(元)

  2.思考:回顾解决问题的过程,你有什么体会?

  学生自由发言,师小结:我们要在读题后要弄清题目里已知条件和问题分别是什么,可以从问题开始想,根据问题分析数量关系,确定先算什么。要根据题中的条件和问题,选择分析问题的思路。

  三、反馈完善

  1.完成教材第28页“想想做做”第1题。

  根据问题说出数量关系式,并说说缺少什么条件。

  (1)出示问题(1),引导分析:从“桃树比梨树多多少棵”想到的数量关系是什么?

  追问:有了这样的数量关系,要求这个问题,还缺少什么条件?

  (2)学生独立分析问题(2),先根据问题写出数量关系,再说说缺少什么条件。

  教师强调:在解答两步计算的实际问题时,关键是分析题中的数量关系,确定先算什么,再算什么。

  2.完成教材第28页“想想做做”第2题。

  让学生观察表格,并说明题意,明确计算的问题后,独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生得到启发。

  提示:要求足球组的人数,可以先算篮球组和田径组的人数之和,再将总人数减去篮球组和田径组的人数之和,即可求得足球组的人数。

  3.完成教材第29页“想想做做”第3题。

  让学生独立完成,完成后在小组内交流,并在交流中互相启发,加深理解。汇报解决问题的思路时,让学生说说每道题的数量关系。

  师提示:这两题都要先算四个茶杯的总价。

  四、反思总结

  通过本课的学习,你有什么收获?还有哪些疑问?

  第三单元解决问题的策略

  课题:解决问题的策略——画线段图第2课时总第课时

  教学目标:

  1.经历探究和交流解决问题的过程,感受解决问题的策略,学会通过画线段图分析数量关系,掌握解决与倍有关的两步计算的实际问题及相应的变式问题。

  2.感受数学与日常生活的密切联系,进一步增强学生对学习数学的兴趣和信心,初步形成独立思考的习惯和探究问题的意识。

  教学重点:用线段图辅助解决两步计算的实际问题。

  学难点:分析数量关系。

  教学准备:课件

  教学过程:

  一、谈话引入

  谈话:同学们,咱们身上穿的上衣和裤子是谁买的?你有自己去买过吗?今天,我们就去商场看看。

  二、交流共享

  1.教学例2。

  课件出示教材第29页例2的教学情境图,引导学生认真观察。

  (1)理解题意。

  让学生观察情境图,说说从中获得了哪些信息。

  (2)画线段图。

  提出问题:上衣的价钱是裤子的3倍,买一套衣服要用多少元?

  追问:你能理解买一套衣服的意思吗?

  引导:怎样解决这一问题呢?今天我们还请来了一位数学小助手,它的名字叫线段图。我们可以借助线段图来分析题目中的数量关系。

  ①先画一条线段表示出裤子的价钱。(在黑板上画出表示裤子价钱的线段)48元

【解决问题的策略教学设计】相关文章:

《解决问题的策略——画图》教学反思12-25

解决问题的策略列举教学反思范文12-23

解决问题的策略说课稿11-16

《解决问题的策略从条件想起》教学反思范文12-23

《用转化的策略解决问题》优秀说课稿模板12-27

《解决问题的策略—假设》六年级数学教学反思范文12-25

策略单元《搭石》的教学设计(精选5篇)12-18

《混合运算解决问题》教学反思范文05-14

策略单元《搭石》教学设计范文(精选6篇)12-21

分数除法解决问题说课设计与反思11-11