《一元一次方程—数学活动》教学设计

时间:2024-03-19 10:20:32 志升 教学设计 我要投稿
  • 相关推荐

《一元一次方程—数学活动》教学设计(精选12篇)

  作为一名老师,就不得不需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计要怎么写呢?下面是小编帮大家整理的《一元一次方程—数学活动》教学设计,欢迎阅读与收藏。

《一元一次方程—数学活动》教学设计(精选12篇)

  《一元一次方程—数学活动》教学设计 1

  教学设计思想:

  本节知识是探究如何用一元一次方程解决实际问题。在前面我们结合实际问题,讨论了如何分析数量关系、利用相等关系列方程以及如何解方程,在此基础上我们才可以进一步探究用一元一次方程解决实际问题。在课堂中教师出示例题,启发学生思考,师生共同探讨,学生找等量关系,列出方程,教师出示巩固性练习,学生解答,达到巩固所学知识的目的。

  教学目标:

  1.知识与技能

  利用相等关系建立数学模型列方程;

  掌握一元一次方程的解法。

  2.过程与方法

  会用方程解决简单的实际问题,认识到建立方程模型的重要性;

  在建立方程解决实际问题时,我们体会到设未知数的意义。

  3.情感、态度与价值观

  体会数学建模与实际的相互密切联系,加强数学建模思想。

  教学重点:

  解决相关问题时,利用相等关系列方程。

  教学难点:

  解决相关问题时,利用相等关系列方程。

  重难点突破

  关键是弄清问题背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系。

  教学方法:

  采用直观分析法、引导发现法及尝试指导法充分发挥学生的'主体作用,使学生在轻松愉快的气氛中掌握知识。

  课时安排

  1课时。

  教具准备

  投影仪。

  教学过程:

  创设情境

  师:通过前几节课的学习,同学们回忆一下,列方程解应用题的第一步是什么?

  生:分析题意,设未知数。

  师:很好。我们以前学的应用题大多是求一个未知量,因而设一个未知数我们今天要学的内容需要求两个未知量,这又如何解决呢?通过今天的学习,这些问题将得到很好的答案。

  [教法说法]:此节内容与前边内容联系不大,所以开门见山直接提出问题,同时也引起学生的注意和好奇,使学生带着问题进入今天的学习,激发了学生的求知欲。

  师:[板书] 一元一次方程的应用

  《一元一次方程—数学活动》教学设计 2

  教学目标

  知识与能力

  1.通过对典型实际问题的分析,体验从算术方法到代数方法是一种进步。

  2.在根据问题寻找相等关系、根据相等关系列出方程的过程中,培养获取信息、分析问题、处理问题的能力。

  3.在方程的概念“含有未知数的`等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的`思想。

  教学目标

  过程与方法

  1.能结合实际问题情境发现并提出数学问题。

  2.通过学习进一步体会方程是刻画现实世界的有效数学模型,增强从实际问题出发建立数学模型的能力。

  情感态度与价值观目标

  1.勤于思考,乐于探究,敢于发表自己的观点;

  2.以积极的态度与同伴合作,从解决实际问题中体验数学价值。

  教学重难点

  重点

  会用一元一次方程解决实际问题.

  难点

  将实际问题转化为数学问题,通过列方程解决问题.

  《一元一次方程—数学活动》教学设计 3

  教学目标

  1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

  2.培养学生观察能力,提高他们分析问题和解决问题的能力;

  3.使学生初步养成正确思考问题的良好习惯。

  教学重点和难点

  一元一次方程解简单的应用题的方法和步骤。

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们来看下面这个例题。

  例1某数的3倍减2等于某数与4的和,求某数。

  (首先,用算术方法解,由学生回答,教师板书)

  解法1:(4+2)÷(3-1)=3.

  答:某数为3.

  (其次,用代数方法来解,教师引导,学生口述完成)

  解法2:设某数为x,则有3x-2=x+4。

  解之,得x=3.

  答:某数为3.

  纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的`目的之一。

  我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

  本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

  二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

  例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?

  师生共同分析:

  1.本题中给出的已知量和未知量各是什么?

  2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

  3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

  上述分析过程可列表如下:

  解:设原来有xx千克面粉,那么运出了15%千克,由题意,得

  x-15%x=42500,所以x=50000.

  答:原来有50000千克面粉.

  此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

  (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

  教师应指出:

  (1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

  (2)例2的解方程过程较为简捷,同学应注意模仿。

  依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

  (1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

  (2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

  (3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

  (4)求出所列方程的解;

  (5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义

  例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

  (仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)

  解:设第一小组有x个学生,依题意,得

  3x+9=5x-(5-4),解这个方程:2x=10,所以x=5.

  其苹果数为3×5+9=24.=

  答:第一小组有5名同学,共摘苹果24个。

  学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。

  (设第一小组共摘了x个苹果,则依题意,得)

  三、课堂练习

  1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

  2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元,求1978年末的储蓄存款。

  3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。

  四、师生共同小结

  首先,让学生回答如下问题:

  1.本节课学习了哪些内容?

  2.列一元一次方程解应用题的方法和步骤是什么?

  3.在运用上述方法和步骤时应注意什么?

  依据学生的回答情况,教师总结如下:

  (1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

  (2)以上步骤同学应在理解的基础上记忆。

  五、作业

  1.买3千克苹果,付出10元,找回3角4分,问每千克苹果多少钱?

  2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

  3.某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台,这家工厂前年10月生产电视机多少台?

  4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉,求每个小箱子里装有洗衣粉多少千克?

  5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元,求得到一等奖与二等奖的人数

  《一元一次方程—数学活动》教学设计 4

  教学目标

  ①理解一次函数与一元一次方程的关系,会根据一次函数的图象解决一元一次方程的求解问题。

  ②学习用函数的观点看待方程的方法,初步感受用全面的观点处理局部问题的思想。

  ③经历方程与函数关系问题的探究过程,学习用联系的观点看待数学问题的辩证思想。

  教学重点与难点

  重点:一次函数与一元一次方程的关系的理解。

  难点:一次函数与一元一次方程的关系的理解。

  教学设计

  导语

  前面我们学习了一次函数。实际上,一次函数是两个变量之间符合一定关系的一种互相对应,互相依存。它与我们七年级学过的一元一次方程,一元一次不等式,二元一次方程组有着必然的联系。这节课开始,我们就学着用函数的观点去看待方程(组)与不等式,并充分利用函数图象的直观性,形象地看待方程(组)不等式的求解问题。这是我们学习数学的一种很好的思想方法。

  注:点明学习本节内容的必要性:

  (1)函数与方程、方程组、不等式有着必然的联系;

  (2)用函数的观点看待方程、方程组、不等式是我们学数学应该掌握的思想方法。给学生一个本节内容的大致框架。

  引入新课

  我们先来看下面的两个问题有什么关系:

  (1)解方程2x+20=0。

  (2)当自变量为何值时,函数y=2x+20的值为零?

  问题:

  ①对于2x+20=0和y=2x+20,从形式上看,有什么相同和不同的地方?

  ②从问题本质上看,(1)和(2)有什么关系?

  ③作出直线y=2x+20(建议课前作出,以免影响本节课主题),看看(1)与(2)是怎么样的一种关系?

  注:用具体问题作对比,帮助学生理解。

  在学生议论的基础上,教师结合教科书38页揭示:(1)与(2)实际上是同一个问题。

  探讨归纳

  从前面的讨论我们可以看到:一个一元一次方程的求解问题,可以与解某个相应的一次函数问题相一致。你认为在一般情况下,怎样的解一元一次方程问题与怎样的一次函数问题是同一的?

  学生小组讨论(鼓励学生用自己的语言说明为什么同一?图象上怎么看?函数方程形式上怎么看?)

  师生共同归纳(教科书39页)(略)

  让学生在探究过程中理解两个问题的同一性。

  练习巩固

  1.以下的一元一次方程问题与一次函数问题是同一个问题

  序号

  一元一次方程问题

  一次函数问题

  1解方程3x—2=0当x为何值时,y=3x—2的值为O?

  2解方程8x+3=0

  3当x为何值时,y=—7x+2的值为O?

  解:(略)

  注:第4题为开放题,鼓励学生有自己的想法与见解。如“解方程3x+5=8”与“当x为何值时,函数y=3x+5的值为8”是同一个问题等等

  2。根据下列图象,你能说出哪些一元一次方程的解?并直接写出相应方程的解?

  解:5x=0的解是x=0;x+2=0的解是x=—2;—3x+6=0的'解是x=2;

  由图象可得函数关系式是y=x—1,从而得出x—1=0的解是x=1。

  注:此处练习为补充。可以帮助学生在积累了一些理性认识的基础上,增加更多的形象

  了解。

  综合应用

  教科书P.139例1(略)

  对于解法2,还可以拓展成:对于函数y=2x+5,当y=17时,求x的值。鼓励学生进一步思考。

  注:例1可看成是一次函数与一元一次方程关系的一个直接应用。

  归纳提高

  框图化小结:

  从数的角度看:

  求ax+b=0(a≠O)的解x为何值时y=ax+b的值为0

  从形的角度看:

  求ax+b=0(a≠0)的解确定直线y=ax+b与x轴的横坐标

  从数和形两方面总结,帮助学生建立数形结合的观念。

  布置作业

  教科书P.145习题11。3第1、2题。

  《一元一次方程—数学活动》教学设计 5

  一、教学目标

  知识与技能:能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题。

  熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换。

  过程与方法:

  1.经历画“线段图”找等量关系,列出方程解决问题的过程,进一步体验画“线段图”也是解决实际问题的有效途径。

  2.体会“方程”是解决实际问题的有效模型,并进一步发展学生的文字语言、符号语言、图形语言的转换能力。

  情感态度与价值观:感受我们身边的数学,体会家人对我们的爱,要热爱家人,热爱生活

  二、教学重点、难点

  重点:能列出一元一次方程解决实际问题难点:利用线段图找到题中的等量关系

  三、教学过程:

  (一)精彩一练

  1.问答题

  (1)、小明家离学校有1000米,他骑车的速度是25米/分,那么小明从家到学校需___小时。

  (2)、甲、乙两地相距1600千米,一列火车从甲地出发去乙地,经过16小时,距离乙地还有240千米。这列火车每小时行驶多少千米?

  2.抢答题

  (1)、用一元一次方程解决问题的基本步骤:____________

  (2)、行程问题主要研究、、三个量的关系。

  路程=__________,速度=_____,时间=______。

  (3)若小明每秒跑4米,那么他10秒跑___米。

  (二)创设情趣、明确目标

  以动画的形式演绎一位同学早晨忘带作业,他刚出门不久,父母就发现他忘带作业,于是赶快加速赶往学校给他送作业,最终在去学校的路上追上了他.

  从学生熟悉的生活经历出发,选择学生身边的、感兴趣的“能否追上小明”这一事件,激发学生的好奇心,揭示生活中蕴含着我们数学的一个常见问题追及问题,从而引出课题及例题。

  (三)自主学习

  例1:小明早晨要在7:20以前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发.5分钟后,小明的爸爸发现他忘了带历史作业,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他.

  (1)爸爸追上小明用了多长时间?

  (2)追上小明时,距离学校还有多远?

  独立思考,完成学案上的问题:

  1、根据题目已知条件,画出线段图:

  2、找出等量关系:

  小明走过的路程=爸爸走过的路程.3、板书规范写出解题过程:

  解:

  (1)设爸爸追上小明用了x分钟,根据题意,得80×5+80x=180x解,得x=4.

  答:爸爸追上小明用了4分钟.

  (2)180×4=720(米)

  1000-720=280(米)

  答:追上小明时,距离学校还有280米.

  (学生独立完成,找到等量关系并列出方程,教师巡视学生并给予检查和指导。请书写规范的学生到前面板演,并讲解其解题思路,其他同学对照黑板谈谈自己的不足之处)

  分析出发时间不同的追及问题,能画出线段图,进行图形语言、符号语言与文字语言之间的相互转化,理解题中的等量关系,培养学生思维的灵活性,进一步列出方程,解决问题,既能娴熟使用“线段图”又能利用方程的思想解决问题

  例:甲、乙两站间的路程为450千米,一列快车从甲站开出,每小时行驶85千米,一列慢车从乙站开出,每小时行驶65千米.设两车同时开出,同向而行,则快车几小时后追上慢车?

  (学生小组合作完成本题目,按照例题的`方法步骤,通过画线段图,分析已知量,找等量关系,列方程解答。教师巡视学生并给予检查和指导。)

  (四)展示生成

  1、通过个别学生分析已知条件,引导大家正确画出线段图:

  2、找出等量关系:快车所用时间=慢车所用时间;

  快车行驶路程=慢车行驶路程+相距路程.

  3.解题过程:

  解:设快车x小时追上慢车,据题意得85x=450+65x.

  解,得x=22.5.

  答:快车22.5小时追上慢车.

  (请书写规范的学生到前面板演,并讲解其解题思路,其他同学有不同看法可相互补充。)点播导学

  本节课主要研究行程问题中的追及问题,(1)同地不同时,总路程相等;

  (2)同时不同地,时间相等,总路程相等。两类题都是根据总路程相等列方程。可以通过画线段图,理解题中的等量关系,进一步列出方程,解决问题.

  育红学校七年级学生步行到郊外旅行,1班的学生组成前队,步行的速度为4km/h,2班的学生组成后队,速度为6km/h,前队出发1h后,后队出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h。

  请根据以上的事实提出问题并尝试回答。

  (分小组讨论,提出不同的可能的问题,并尝试解答,比较哪组几块又准确,想出的方法又多,小组派代表讲给大家听!)

  问1:后队追上前队用了多长时?

  问2:后队追上前队时联络员行了多少路?

  问3:联络员第一次追上前队时用了多长时间?

  问4:当后队追上前队时,他们已经行进了多少路程?

  问5:联络员在前队出发多少时间后第一次追上前队?

  (五)达标测评

  练习1:小兵每秒跑6米,小明每秒跑7米,小兵先跑4秒,小明几秒钟追上小兵?练习2:甲、乙两人相距280,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,那么甲出发几秒与乙相遇?总结提高

  引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.1.会借线段图分析行程问题.2.各种行程问题中的规律及等量关系.同向追及问题:

  ①同时不同地甲路程+路程差=乙路程;甲时间=乙时间

  ②同地不同时甲时间+时间差=乙时间;甲路程=乙路程

  (六)预习布置、强调任务

  复习本单元所学内容,总结一些常见的应用题题型作业:P151习题5.9第2题

  《一元一次方程—数学活动》教学设计 6

  【教学背景】:

  本课是针对人民教育出版社出版的《七年级数学上册》第三章一元一次方程中3。4实际问题与一元一次方程(行程问题应用题归类解析——追及问题)设计的内容。

  【教学目标】:

  (一)知识与技能:

  1、使学生进一步掌握列一元一次方程解应用题的方法和步骤;

  2、熟练掌握追及问题中的等量关系。

  (二)过程与方法

  培养学生观察能力,提高他们分析问题和解决实际问题的能力。

  (三)情感态度价值观:

  培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值。体会观察、分析、归纳对数学知识中获取数学信息的重要作用,进一步掌握列一元一次方程解应用题的方法和步骤,能在独立思考和小组交流中获益。

  【教学重难点】:

  1、重点:找等量关系列一元一次方程,解决追及问题。

  2、难点:将实际问题转化为数学模型,并找出等量关系。

  【教学方法】:

  探究式

  【教学过程】:

  一、创设问题情景,引入新课:

  1、行程问题中有哪些基本量?它们间有什么关系?

  2、行程问题有哪些基本类型?

  二、知识应用,拓展创新:

  行程问题应用题是中小学数学应用题中很重要的一类,学生难以理解,不容易掌握。行程问题的题型千变万化,导致许多学生感到束手无策,难以适从。其实认真分析,就会发现行程问题应用题主要有三种基本类型:追及问题、相遇问题和航行问题,而且三个基本量之间的基本关系“路程=速度×时间”保持不变。

  三、例题讲解

  例1(同时不同地)甲乙两人相距100米,甲在前每秒跑3米,乙在后每秒跑5米。两人同时出发,同向而行,几秒后乙能追上甲?

  分析:在这个直线型追及问题中,两人速度不同,跑的路程也不同,后面的人要追上前面的人,就要比前面的人多跑100米,而两人跑步所用的时间是相同的。所以有等量关系:乙走的路程—甲走的.路程=100

  解:设x秒后乙能追上甲

  根据题意得5x—3x=100

  解得x=50

  答:50秒后乙能追上甲。

  小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)

  中的同时不同地问题,以后遇到此类题,该如何解决。

  例2(同地不同时)两匹马赛跑,黄色马的速度是5m/s,棕色马的速度是6m/s。如果让黄色马先跑1s,棕色马再开始跑,几秒后可以追上黄色马?

  分析:这个问题中,由于黄色马先跑1s(此时棕色马未出发),经过1s后棕色马再开始出发和黄色马同向而行,后来棕色马追上黄色马了。因此两马所跑路程是相同的,但由于黄色马先跑了1秒,所以就产生了路程差,那么这个问题就和前面例1一样了。也可以这样想:棕色马的路程=黄色马的路程+相隔距离。

  解:设x秒后,棕色马追上黄色马,根据题意,得6x=5x+5解得x=5答:5秒后,棕色马可以追上黄色马。

  小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)

  中的同地不同时问题。

  归纳小结:列方程解应用题的一般步骤:

  审—通过审题明确已知量、未知量,找出等量关系;

  设—设出合理的未知数(直接或间接);

  列—依据找到的等量关系,列出方程;

  解—求出方程的解;

  验—检验求出的值是否为方程的解,并检验是否符合实际问题;

  答—注意单位名称。

  练一练:(环形跑道问题)甲乙两人在一条长400米的环形跑道上跑步,甲的速度是每分钟跑360米,乙的速度是每分钟跑240米。两人同时同地同向跑,几秒后两人第一次相遇?

  分析:本题属于环形跑道上的追及问题,两人同时同地同向而行,第一次相遇时,速度快者比速度慢者恰好多跑一圈,即等量关系为:甲走的路程—乙走的路程=400

  解答由学生完成。

  本节知识归纳:

  1、追及问题的特点是同向而行,在直线运动中两者路程之差等于两者间的距离;

  2、而在圆周运动中,若同时同地同向出发,则二者路程之差等于跑道的周长。

  3 、用示意图辅助分析数量间的关系便于我们列方程。

  四、作业布置:(见补充题)

  【课后反思】:

  通过本节课的学习,使学生进一步掌握列一元一次方程解应用题的方法和步骤,并能熟练寻找追及问题中的等量关系,列出方程,解决追及问题。

  《一元一次方程—数学活动》教学设计 7

  一、学生起点分析:

  通过前几节解方程的学习,学生已经掌握了解方程的基本方法.在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到一下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到等量关系但不能列出方程.

  二、教学任务分析:

  本课以“等积变形”为例引入课题,通过学生自主探究、协作交流,教师点拨相结合的方式,引导学生动手操作的方法分析问题,体会用图形语言分析复杂问题的优点,从而抓住等量关系“锻压前的体积=锻压后的体积”展开教学活动,让学生经历图形变换的应用等活动,展现运用方程解决实际问题的一般过程.因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解的合理性.

  三、教学目标:

  知识与技能:

  1、借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接与间接设未知数的解题思路,从而建立方程,解决实际问题.

  2、通过解决实际问题,使学生进一步明确必须检验方程的解是否符合题意.

  过程与方法:通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力.

  情感态度与价值观:通过对“我变胖了”中的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.

  四、教学过程设计:

  环节一 创设情景,引入新课

  内容:同学们自己预习的基础上,用已经备好的橡皮泥,自制“瘦长”与“矮胖”的圆柱,观察分析个中现象.

  考虑几个问题:

  1、 手里的橡皮泥在手压前和手压后有何变化?

  2、在你操作的过程中,圆柱由“瘦”变“胖”,圆柱的底面直径变了没有?圆柱的高呢?

  3、在这个变化过程中,是否有不变的量?是什么没变?

  目的:让学生在玩中体会等体积变化的现象中蕴涵的不变量.同时分析出不变量与变量间的'等量关系.

  学生能够认识到: 手里的橡皮泥在手压前和手压后形状发生了变化,变胖了,变矮了.即高度和底面半径发生了改变.手压前后体积不变,重量不变.

  环节二:运用情景,解决问题

  内容: 例1、将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?

  目的:将上述环节中体会到的形之间的变与不变的关系、量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题.

  实际效果:学生解答过程布列方程很顺利,有的学生还使用了下面的表格来帮助分析.

  锻压前 锻压后

  底面半径 5cm 10cm

  高 36cm xcm

  体积 π×25×36 π×100?x

  由实验操作环节知“锻压前的体积=锻压后的体积”,从而得出方程.

  解:设锻压后的圆柱的高为xcm,由题意得

  π×25×36=π×100?x.

  解之得 x=9.

  此时有学生将π的值取3.14,代入方程,教师应在此时给予指导,不要早说,现在恰到好处!

  (1) 此类题目中的π值由等式的基本性质就已约去,无须带具体值;

  (2) 若是题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度.

  过程感悟:本节内容通过一幅几何图形展示题目中的一些数量关系,而实际操作的过程有同学将圆柱体变成了长方体,需要教师把握教育机会,引导学生作出相关的解释.

  分析: 锻压前 锻压后

  底面半径 5cm 长acm, 宽bcm

  高 36cm xcm

  体积 π×25×36 abx

  环节三:操作实践,发现规律

  内容:学生用预先准备好的40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内六个同学的计算结果,你发现了什么?

  目的:我们知道, 感知到的东西往往没有自己亲手经历操作后的感受来得实在.所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现.这样能培养学生观察、分析,归纳、总结等数学学习中不备数学思想与数学方法,也同时让学生感悟最复杂的问题中的道理,就在我们玩的过程,就在我们的生活中.

  实际效果:

  长(cm) 宽(cm) 面积(cm2)

  长方形1 15 5 75

  长方形2 13.6 6.4 86.4

  长方形3 12.8 7.3 93.44

  长方形4 11.6 8.4 97.44

  长方形5 11 9 99

  长方形6 10 10 100

  由学生的实际操作得到的近似值已反映出来一个很好的规律.

  学生:由操作的过程,同学们作出的长方形形状有“胖”有“瘦”, 反映到表中数据为, 当长方形的周长一定,它的长逐渐变短,宽随之逐渐变长,面积在逐渐变大.当长与宽一样长时面积最大.

  过程感悟:不要把学生逼太紧,不要怕完不成进度,这个过程进行完后,学生对课本设置相关内容就剩下规范解题过程了.学生的理解远比直接先讲教材的例题效果要好的多.

  环节四:练一练,体验数学模型

  内容:课本例题

  目的:体验“数学化”过程,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性.

  例2、 一根长为10米的铁丝围成一个长方形.若该长方形的长比宽多1.4米.

  (1)此时长方形的长和宽各为多少米?

  (2)若该长方形的长比宽多0.8米,此时长方形的长和宽各为多少米?它围成的长方形的面积与(1)相比,有什么变化?

  (3)若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少?它围成的长方形的面积与(2)相比,有什么变化?

  实际效果:学生掌握很好.课本已有完整的解题过程,留做课后作业.

  环节五:课堂小结

  1.通过对“我变胖了”的了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”是解决此类问题的关键.其中也蕴涵了许多变与不变的辨证的思想.

  2.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.

  3.学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题.

  环节六:布置作业

  《一元一次方程—数学活动》教学设计 8

  一、教学目标

  【知识与技能】

  1、理解一元一次方程,以及一元一次方程解的概念。

  2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

  3、掌握检验某个数值是不是方程解的方法。

  【过程与方法】

  在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

  【情感态度和价值观】

  让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

  二、教学重点

  建立一元一次方程的概念,寻找相等关系,列出方程。

  三、教学难点:根据具体问题中的相等关系,列出方程。

  四、教学准备:多媒体教室,配套课件。

  五、教学过程:

  1。游戏导入,设置悬念

  师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是20xx年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。

  生1:24,师:2,3,9,10生2:84师:17,18,24,25

  师:同学们想学会这个魔术吗?生:想!

  师:通过这节课的学习,同学们一定能学会。

  2。突出主题,突出主体

  (1)师:看大屏幕,独立思考下列问题,根据条件列出式子。

  A。 x的2倍与3的差是5

  B。长方形的的长为a,宽比长少5,周长为36,则=36

  C。 A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1。5倍,经过t小时相遇,则=180

  生:(1)2x—3=5(2)2(a+a—5)=36(3)30t+1。5(30t)=180

  师:这些式子小学学习过,它们是()?生:方程。

  师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)

  2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:

  (1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?

  (2)什么叫一元一次方程?

  (3)什么是的解?你找到验证的方法吗?

  师:在阅读P/80例题1时老师做出友情提示:

  (1)选择一个未知数x

  (2)对于这三个问题,分别考虑:

  用含x的未知数分别表示正方形的边长;

  用含x的未知数表示这台计算机的检修时间;

  用含x的未知数分别表示男、女生人数。

  (3)找一个问题中的相等关系列出方程,学生讨论出上述答案后

  师:大屏幕显示上述问题的答案

  三、体现新时代教师是学生学习的合作者

  在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。

  师:(强调)(1)方程两边表示的是同一个数;

  (2)左右两边表示的.方法不同。

  【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】

  四、给学生一个展示自己精彩的舞台

  师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?

  设任意框出的四个数字的第一个为x,则:

  生1:x+(x+1)+(x+7)+(x+8)=24;

  生2:x+(x+1)+(x+7)+(x+8)=84

  师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。

  五、基础巩固与知识延伸

  (1)基础练习见同步练习册

  (2)拓展练习如下;

  1、下列四个式子中,是一元一次方程的是()

  A。1+2+3+4>8B。2x3C。x=1

  D。|10。5x|=0。5yE、

  2、已知关于x的方程ax+b=c的解是x=1,则=

  3、下面有四张卡片,请你至少抽出三张卡片编写两道一元一次方程,并和你的同学交流一下,看看你和谁不谋而合!

  六、小结作业

  《一元一次方程—数学活动》教学设计 9

  教学目标

  1.熟悉利用等式的性质解一元一次方程的基本过程.

  2.通过具体的例子,归纳移项法则

  3.掌握解一元一次方程的基本方法,能熟练求解一元一次方程(数字系数),能判别解的合理性.

  教学重点

  重点是移项法则

  教学难点

  重点是移项法则

  教学流程

  1.提出问题:解方程:5x-2=8

  2.自主探索、合作交流:

  先由学生独立思考求解,再小组合作交流,师生共同评价分析.

  方法1:

  解:方程两边都加上2,得5x-2+2=8+2

  也就是5x=8+2

  合并同类项,得5x=10

  所以,x=2

  3.理性归纳、得出结论

  (让学生通过观察、归纳,独立发现移项法则.)

  比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于

  5x-2=8 5x=8+2

  即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项.

  教学建议:关于移项法则,不应只强调记忆,更应强调理解.学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性).

  方法2;

  解:移项,得5x=8+2

  合并同类项,得5x=10

  方程两边都除以5,得x=2

  4.运用反思、拓展创新

  [例1]解下列方程:(1) 2x+6=1 (2) 3x+3=2x+7

  教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的'错误,然后组织学生进行讨论交流.

  [例2]解方程:

  教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励.

  ②在移项时,学生常会犯一些错误,如移项忘记变号等.这时,教士不要急于求成,而要引导学生反思自己的解题过程.必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误.

  5.小结回顾:学生谈本节课的收获与体会.师强调:移项法则.

  6.布置作业: (略)

  《一元一次方程—数学活动》教学设计 10

  一、活动内容:

  课本第110页111页 活动1和活动3

  二、活动目标:

  1、知识与技能:

  运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。

  2、过程与方法:

  (1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。

  (2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。

  3、情感态度与价值观:

  通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。

  三、重难点与关键

  1、重点:经历探索具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。

  2、难点:以上重点也是难点

  3、关键:明确问题中的已知量与未知量间的.关系,寻找等量关系。

  四、教具准备:

  投影仪,每人一根质地均匀的直尺,一些相同的棋了和一个支架。

  五、教学过程:

  (一)、活动1

  一种商品售价为2.2元件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品n件,讨论下面问题:

  这个人买了n件商品需要多少元?

  教师活动:

  (1)把学生每四人分成一组,进行合作学习,并参入学生中一起探究。

  (2)教师对学生在发表解法时存在的问题加以指正。 学生活动:

  (1)分组后对活动一的问题展开讨论,探究解决问题的方法。

  (2)学生派代表上黑板板演,并发表解法。

  解: 2.2n n100

  2.2100+2(n-100) n100

  问题转换:

  一种商品售价为2.2元/件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品共花了n元,讨论下面的问题:

  (1)这个人买这种商品多少件?

  (2)如果这个人买这种商品的件数恰是0.48n,那么n的值是多少?

  教师活动:同上 学生活动:同上

  解:(1) n220

  100+ n220

  (2) =0.48n n=0

  100+ =0.48n n=500

  (二)、活动2:

  本活动课前布置学生做好活动前的准备工作:

  1、准备一根质地均匀的直尺,一些相同的棋子和一个支架。

  2、分组:(4人一组)

  开始做下面的实验:

  (1)把直尺的中点放在支点上,使直尺左右平衡。

  (2)在直尺两端各放一枚棋子,这时直尺还是保持平衡吗?

  (3)在直尺的一端再加一枚棋子,移动支点的位置,使两边平衡,然后记下支点到两端距离a 和b,(不妨设较长的一边为a)

  (4)在有两枚棋子的一端面加一枚棋子移动支点的位置,使两边平衡,再记下支点到两端的距离a和b。

  (5)在棋子多的一端继续加棋子,并重复以上操作。根据统计记录你能发现什么规律?

  以上实验过程可以由学生填写在预先设计的记录表上

  实验次数 棋子数 ab值 a与b的关系

  右 左 a b

  第1次 1 1

  第2次 1 2

  第3次 1 3

  第4次 1 4

  第n次 1 n

  根据记录下的a、b值,探索a 与b的关系,由于目测可能有点误差。

  根据实验得出a、b之间关系,猜想当第n次实验的a 和b的关系如何?a=nb(学生实验得出学生代表发言)

  如果直尺一端放一枚棋子,另一端放n枚棋子,直尺的长为L,支点应在直尺的哪个位置?(提示:用一元一次方程解)

  此问题由学生合作解决并派代表板演并讲解,教师加以指正。

  解:设支点离n枚棋子的距离为 x得:

  x+nx=L x= 答:略

  (三)、小结,由学生谈本节课的收获。

  (四)、作业

  1、课后了解实际生活中的类似活动问题,并举出几个例子。

  2、课本,第110页活动2。

  《一元一次方程—数学活动》教学设计 11

  教学目标

  1、了解方程的概念和一元一次方程的概念;

  2、知道什么是解方程,会检验某个值是不是方程的解;

  3、培养学生根据问题寻找等量关系、根据等量关系列出方程的能力。

  教学重点

  1、一元一次方程的概念及方程的解;

  2、能验证一个数是否是一个方程的解。

  教学难点

  寻找问题中的等量关系,列出方程。

  教学过程

  一、情景诱导

  同学们:世界上最大的动物是蓝鲸,一头蓝鲸重124t,比一头大象体重的25倍少1t,你能计算出这头大象的.体重吗?

  如果设大象的体重为x t,蓝鲸的体重应如何表示呢?怎样解决这个问题呢?(学生思考并回答:25x-1=124,)我们把这个式子给它起个名字,叫一元一次方程,这就是我们今天要学习的一元一次方程(板书课题),那——什么叫做一元一次方程——呢?,请同学们带着这些问题,阅读课本114页-115页练习前的内容,对照课本找出自学提纲里问题的答案。

  要求:先完成得请你帮帮没有完成的同学,不会做的同学请教会做的同学。

  二、自学指导

  学生自学课本,并完成自学提纲。老师可以先进行板书准备,再到学生中进行巡视指导,掌握学生的学习状况,为展示归纳做准备。

  附:自学提纲: 1、什么是方程?请举出1—2个例子。未知数通常用什么表示?

  2、什么是一元一次方程?请举出1—2个例子。

  3、在课本“例1”中,你知道这些方程中等号两边各表示什么意思吗?

  4、什么是方程的解?x=1和x=-1中哪一个是方程x+3=2的解?为什么?

  5、什么是解方程?

  三、展示归纳

  1、请有问题的同学逐个回答自学提纲中的问题,生说师写;

  2、发动学生进行评价、补充、完善;

  3、教师根据展示情况进行必要的讲解和强调。

  四、变式练习

  1、2题口答,要求说理由;其它各题,先让学生独立完成,教师做必要的板书准备后,巡回指导,了解情况,再让学生汇报结果,并请同学评价、完善,然后教师根据需要进行重点强调。

  附:变式练习

  1、下列各式中,哪些是一元一次方程?

  (1) 5x=0; (2) 1+3x ; (3) x2=4+x ; (4) x+y=5 ; (5)3m+2=1-m ; (6)x+2>1

  (7) 《3.1.1一元一次方程》教学设计(修改稿和原稿) =1

  2、请你说出一元一次方程2x=4的解是———,解是x=-2的一元一次方程: 。

  3、已知关于X的方程2X 《3.1.1一元一次方程》教学设计(修改稿和原稿) +3=0为一元一次方程,求k的值。

  4、练习本每本0.8元,小明拿了10元钱买了y本,找回4.4元,列方程是

  5、设某数为x,根据题意列出方程,不必求解:

  (1)某数比它的2倍小3;

  (2)某数与5的差比它的2倍少11;

  (3)把某数增加它的10%后恰为80.

  6、若x=1是方程kx-1=0的解,则k= .

  五、课堂小结

  通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(学生进行自主小结,再由教师概括总结)。

  六、布置作业

  课本83页习题3.1 第1题。

  《一元一次方程—数学活动》教学设计 12

  课题

  一元一次方程与实际问题——配套问题

  课型

  习题课

  教材

  人教版

  对象

  初一学生

  执教者

  教材分析

  作为实际问题中的重要部分,配套问题是学生进入实际问题的关键环节。在对一元一次方程的解法进行了充分学习之后,如何将刚学到的知识投入到学习中是至关重要的过程,这决定了学生的学习质量与思维拓展。尽管在方程解法的学习中学生已经思考并尝试将其投入到实际问题的解决中,但往往这样的投入是在为学习方程解法服务。在这一部分,学生将进一步练习如何将实际问题转化为数学模型,利用方程将其合理解决。

  学情分析

  对于学生而言,尽管已经学习了方程的解法,但是在面对一些实际问题时,很多学生依然不习惯使用方程方法,而是依然使用小学的算数方法,虽然在一些简单的问题中,算数方法更有优势,计算更简便,但是在本节课以及之后的一些实际问题中,使用算数方法将无从下手或非常复杂,因此学习如何使用一元一次方程来解决实际问题成为本阶段的重点。

  教学目标

  1、基本会用一元一次方程解决配套问题;

  2、培养学生运用一元一次方程分析和解决实际问题的能力;

  3、体现一元一次方程与实际生活的密切联系,渗透建模和转化的数学思想。

  教学重点

  用一元一次方程解决配套问题

  教学难点

  分析配套问题数量关系,寻找等量关系列出方程

  教学过程

  教学环节

  教学内容

  预设意图

  创设情景

  提出问题

  复习巩固:解此方程:x-2(x-3)=3x+5(x-1)(3min)

  例1:某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?(12min)

  问题1:思考解决实际问题的步骤应该是什么?

  审题(抓信息)-找关系(等量关系)-列方程(用含未知数的式子)-解决问题

  问题2:在此题目中,每天生产的螺钉数量与每天生产的螺母数量该怎么表示?

  (每天生产的螺钉数量=生产螺钉的工人数量×每人每天可以生产的螺钉数量,同理每天生产的螺母数量=生产螺母的工人数量×每人每天可以生产的螺母数量)

  问题3:根据题目,每天生产的螺钉和螺母如果想刚好配套,它们之间应该满足怎样的数量关系?

  (每1个螺钉需要配2个螺母,则,即2×螺钉数量=1×螺母数量)

  问题4:总结以上关系,思考我们应该设怎样的未知数才更方便于解决这个问题?

  (由问题2和问题3,得:螺钉工人数×每人生产螺钉数×2=螺母工人数×每人生产螺母数,其中每人生产螺钉数与螺母数均已知,则需要找到螺钉工人数与螺母工人数之间的关系,又总人数为22人,则螺母工人数=22-螺钉工人数,设螺钉工人数为x即可)

  问题5:根据以上分析,此方程可以如何列出?

  从解方程开始,复习巩固方程的解法,并引出实际问题的解决方法,在此过程中,将问题逐步拆解,分解为一个个小的问题,再层层递进,得出最后的答案,在此过程中逐步感受配套问题乃至实际问题的'基本思路。

  探究归纳

  变式探究:(仅需列出方程)

  1、若每1个螺钉与3个螺母配成一套,则需要怎么安排生产螺钉和螺母的工人?

  2、若每2个螺钉与3个螺母配成一套,则需要怎样安排生产螺钉和螺母的工人?

  3、若每n个螺钉与m个螺母配成一套,则螺钉数量与螺母数量之间是什么关系?(8min)

  思考:解决配套问题中,我们应该怎样寻找数量关系?

  从已有的知识结构出发,不让学生在思维上出现跳跃,逐层递进,通过刚思考过的例子作为依据,进行相同类型题目的变式联系,将探究作为切入点,再对一般的情况进行归纳总结,从具体的数字到一般的情况,逐步推进,体会将未知化为已知的数学探究的乐趣。

  跟踪练习

  例2.某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)

  思考:等量关系是什么?如何设未知数并列出方程?(5min)

  解:设用x立方米的木材做桌面,则用(10-x)立方米的木材做桌腿。

  根据题意,得4×50x = 300(10-x),解得x =6,所以10-x = 4,可做方桌为50×6=300(张)。

  答:用6立方米的木材做桌面,4立方米的木材做桌腿,可做300张方桌。

  例3.服装厂要生产一批某种型号的学生服,已知每3米布料可做上衣2件或裤子3条,计划用600米布料生产学生服,应该分别用多少米布料生产上衣或裤子恰好配套?(一件上衣配一条裤子)(5min)

  解:设用x米布料生产上衣,那么用(600-x)米布料生产裤子恰好配套。

  根据题意,得:

  x=600-x,解得:x=360,则600-x=600-360=240(米)。

  答:应该用360米布料生产上衣,用240米布料生产裤子恰好配套。

  在得出一般化的方法后,再利用学到的知识对问题进行解决,这是数学学习的一般办法,也是解决问题的重要手段,在实际问题这一部分的学习中,这样的思考尤为重要。

  课堂小结

  课外作业

  总结:本节课你有哪些收获?(2min)

  1、思路上,对解决实际问题的一般方法有了大致的感受,对于配套问题的等量关系的寻找有了方向,体会了用方程解决实际问题的便利性。

  2、方法上,体会如何利用题目给的信息并分析题目的含义,合理地设未知数来解决实际性的问题。

  当堂检测:(5min)

  完成《课堂小练习》

  作业:

  限时作业一张

  让学通过自己的语言表达学习的收获,在本节课即将结束的时候,让学生自我总结,加深印象,培养学生的自我总结能力,也帮助学生重新回顾重点知识和数学思想。

  板书设计

  一元一次方程与实际问题——配套问题

  例1:

  解:设应安排x名工人生产螺钉,(22-x)名工人生产螺母

  依题意,得

  2000(22-x)=2×1200x

  解方程,得x=10.

  所以22-x=12

  答:应安排10名工人生产螺钉,12名工人生产螺母

  配套问题数量关系:若每n个螺钉与m个螺母配成一套,则m×螺钉数量=n×螺母数量

【《一元一次方程—数学活动》教学设计】相关文章:

数学活动课教学设计01-20

数学教学活动设计方案03-21

中班数学教学活动设计07-07

数学教学教学设计04-15

数学教学设计05-26

《数学》教学设计06-27

数学教学设计06-12

数学教学设计06-29

《一元一次方程》教学设计12-13

《一元一次方程》教学设计02-10