圆的标准方程教学设计

时间:2024-10-22 09:23:13 敏冰 教学设计 我要投稿
  • 相关推荐

圆的标准方程教学设计(精选8篇)

  作为一位杰出的老师,时常要开展教学设计的准备工作,借助教学设计可以促进我们快速成长,使教学工作更加科学化。一份好的教学设计是什么样子的呢?下面是小编为大家收集的圆的标准方程教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

圆的标准方程教学设计(精选8篇)

  圆的标准方程教学设计 1

  一、教材分析

  本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究直线与圆,圆与圆的位置关系,了解空间直角坐标系,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力。

  二、教学目标

  1、 知识目标:使学生掌握圆的标准方程并依据不同条件求得圆的方程。

  2、 能力目标:

  (1)使学生初步熟悉圆的标准方程的用途和用法。

  (2)体会数形结合思想,形成代数方法处理几何问题能力。

  (3)培养学生观察、比较、分析、概括的思维能力。

  三、重点、难点、疑点及解决办法

  1、重点:圆的标准方程的推导过程和圆的标准方程特点的明确。

  2、难点:圆的方程的应用。

  3、解决办法 充分利用课本提供的2个例题,通过例题的解决使学生初步熟悉圆的标准方程的用途和用法。

  四、学法

  在课前必须先做好充分的预习,让学生带着疑问听课,以提高听课效率。采取学生共同探究问题的学习方法。

  五、教法

  先让学生带着问题预习课文,对圆的方程有个初步的认识,在教学过程中,主要采用启发性原则,发挥学生的思维能力、空间想象能力。在教学中,还不时补充练习题,以巩固学生对新知识的理解,并紧紧与考试相结合。

  六、教学步骤

  (一)导入新课 首先让学生回顾上一章的直线的方程是怎么样求出的。

  (二)讲授新课

  1、新知识学习在学生回顾确定直线的要素——两点(或者一点和斜率)确定一条直线的基础上,回顾确定圆的几何要素——圆心位置与半径大小,即圆是这样的一个点的集合在平面直角坐标系中,圆心 可以用坐标 表示出来,半径长 是圆上任意一点与圆心的距离,根据两点间的距离公式,得到圆上任意一点 的坐标 满足的关系式。经过化简,得到圆的标准方程

  2、知识巩固

  学生口答下面问题

  1、求下列各圆的标准方程。

  ① 圆心坐标为(-4,-3)半径长度为6;

  ② 圆心坐标为(2,5)半径长度为3;

  2、求下列各圆的圆心坐标和半径。

  3、知识的延伸根据“曲线与方程”的意义可知,坐标满足方程的点在曲线上,坐标不满足方程的点不在曲线上,为了使学生体验曲线和方程的思想,加深对圆的标准方程的理解,教科书配置了例1。

  例1要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的`关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何。

  (三)知识的运用

  例2给出不在同一直线上的三点,可以画出一个三角形,三角形有唯一的外接圆,因此可以求出他的标准方程。由于圆的标准方程含有三个参数,因此必须具备三个独立条件才能确定一个圆。引导学生找出求三个参数的方法,让学生初步体验用“待定系数法”求曲线方程这一数学方法的使用过程。

  (四)小结一、知识概括

  1、 圆心为 ,半径长度为 的圆的标准方程为

  2、 判断给出一个点,这个点与圆什么关系。

  3、 怎样建立一个坐标系,然后求出圆的标准方程。

  4、思想方法

  (1)建立平面直角坐标系,将曲线用方程来表示,然后用方程来研究曲线的性质,这是解析几何研究平面图形的基本思路,本节课的学习对于研究其他圆锥曲线有示范作用。

  (2)曲线与方程之间对立与统一的关系正是“对立统一”的哲学观点在教学中的体现。

  圆的标准方程教学设计 2

  教学目的:

  掌握圆的标准方程,并能解决与之有关的问题

  教学重点:

  圆的标准方程及有关运用

  教学难点:

  标准方程的灵活运用

  教学过程:

  一、导入新课,探究标准方程

  二、掌握知识,巩固练习

  练习:

  ⒈说出下列圆的方程

  ⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

  ⒉指出下列圆的圆心和半径

  ⑴(x-2)2+(y+3)2=3

  ⑵x2+y2=2

  ⑶x2+y2-6x+4y+12=0

  ⒊判断3x-4y-10=0和x2+y2=4的位置关系

  ⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

  三、引伸提高,讲解例题

  例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的.数学方法)

  练习:

  1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

  2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

  例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

  例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

  圆的标准方程教学设计 3

  (一)教材

  1、教材结构编排:

  本节课位于直线方程之后和圆的一般方程之前,学习直线方程为后边学习圆的方程奠定了基础,而学好圆的标准方程是为了进一步学习圆的一般方程和切线方程打好基础,因此在结构上起承上启下的作用。

  2、教学目标

  知识目标:

  (1)掌握圆的标准方程,并能根据圆的标准方程写出圆心坐标和半径、

  (2)已知圆心和半径会写出圆的标准方程、

  能力目标:

  (1)培养学生数形结合能力、

  (2)培养学生应用数学知识解决实际问题的能力

  情感目标:

  (1)培养学生主动探究知识,合作交流的意识。

  (2)在体验数学美的过程中激发学生学习的兴趣。

  3、教学重点

  (1)圆的标准方程

  (2)已知圆的标准方程会写出圆的圆心和半径

  (3)已知圆心坐标和半径会写出圆的标准方程

  4、教学难点

  (1)圆的标准方程的推导

  (2)圆的标准方程的应用

  (二)教法

  本节课采用讲练结合,启发式教学

  (三)学法

  1、 主动探究学习

  2、 小组合作学习

  (四)教学过程

  1、导入

  通过钟表的图片让学生了解钟表的指针头运行的轨迹是一个圆,第二个钟表是让学生了解圆是一系列的点来构成的,第三个图是抽象出圆是由动点运行的轨迹有此形成圆的定义。

  2、知识衔接

  (1)圆的.定义,圆上的点具备的特征性质

  (2)平面上两点间的距离公式

  通过复习为后边推导圆的标准方程奠定基础,降低难度。

  3、新课学习

  (1)推导圆的标准方程(化解难点)

  怎么推出圆的标准方程,为了降低难度,可以把圆看成一个动点,既然是动点,那他的坐标是变化的,就用(x,y)表示,既然是圆上的点就应具备圆的特征性质即|CM|=r接下来就容易推出圆的标准方程。

  (2)圆的标准方程(突出重点)

  先分析它的结构,圆心的横纵坐标及半径与圆的标准方程之间的关系。为了巩固这个知识安排两个练习,练习一是已知圆心坐标及半径写出圆的标准方程,练习二是已知圆的标准方程写出圆的圆心坐标和半径

  (3)为了加强知识的应用,我加了一道用圆的标准方程解决实际问题的例子。这道题也是有难度的,为了降低难度,我给学生建立坐标系,让学生写出圆的标准方程,分组讨论,最后得出结论。

  (4)小结本节的重点知识

  (5)根据所学为了加强巩固,适当的布置作业

  (五)板书设计

  正中间是题目圆的标准方程,左边是圆的标准方程,及确定圆的条件,右边是例子及演板的地方,这样设计的目的是醒目,大家一看就知道本节课的重要内容。

  圆的标准方程教学设计 4

  教学目标

  (一)知识目标

  1.掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径;

  2.理解并掌握切线方程的探求过程和方法。

  (二)能力目标

  1.进一步培养学生用坐标法研究几何问题的能力;

  2. 通过教学,使学生学习运用观察、类比、联想、猜测、证明等合情推理方法,提高学生运算能力、逻辑思维能力;

  3. 通过运用圆的标准方程解决实际问题的学习,培养学生观察问题、发现问题及分析、解决问题的能力。

  (三)情感目标

  通过运用圆的知识解决实际问题的学习,理解理论来源于实践,充分调动学生学习数学的热情,激发学生自主探究问题的兴趣,同时培养学生勇于探索、坚忍不拔的意志品质。

  教学重、难点

  (一)教学重点

  圆的标准方程的理解、掌握。

  (二)教学难点

  圆的标准方程的应用。

  教学方法

  选用引导?探究式的教学方法。

  教学手段

  借助多媒体进行辅助教学。

  教学过程

  Ⅰ.复习提问、引入课题

  师:前面我们学习了曲线和方程的关系及求曲线方程的方法。请同学们考虑:如何求适合某种条件的点的轨迹?

  生:①建立适当的直角坐标系,设曲线上任一点M的坐标为(x,y);②写出适合某种条件p的点M的集合P={M ?p(M)};③用坐标表示条件,列出方程f(x,y)=0;④化简方程f(x,y)=0为最简形式。⑤证明以化简后方程的解为坐标的点都是曲线上的点(一般省略)。[多媒体演示]

  师:这就是建系、设点、列式、化简四步曲。用这四步曲我们可以求适合某种条件的任何曲线方程,今天我们来看圆这种曲线的方程。[给出标题]

  师:前面我们曾证明过圆心在原点,半径为5的圆的方程:x2+y2=52 即x2+y2=25.

  若半径发生变化,圆的方程又是怎样的?能否写出圆心在原点,半径为r的圆的方程?

  生:x2+y2=r2.

  师:你是怎样得到的?(引导启发)圆上的点满足什么条件?

  生:圆上的任一点到圆心的距离等于半径。即 ,亦即 x2+y2=r2.

  师:x2+y2=r2 表示的圆的位置比较特殊:圆心在原点,半径为r.有时圆心不在原点,若此圆的圆心移至C(a,b)点(如图),方程又是怎样的?

  生:此圆是到点C(a,b)的距离等于半径r的点的集合,

  由两点间的距离公式得

  即:(x-a)2+(y-b)2= r2

  Ⅱ.讲授新课、尝试练习

  师:方程(x-a)2+(y-b)2= r2 叫做圆的标准方程.

  特别:当圆心在原点,半径为r时,圆的标准方程为:x2+y2=r2.

  师:圆的标准方程由哪些量决定?

  生:由圆心坐标(a,b)及半径r决定。

  师:很好!实际上圆心和半径分别决定圆的位置和大小。由此可见,要确定圆的方程,只需确定a、b、r这三个独立变量即可。

  1、 写出下列各圆的标准方程:[多媒体演示]

  ① 圆心在原点,半径是3 :________________________

  ② 圆心在点C(3,4),半径是 :______________________

  ③ 经过点P(5,1),圆心在点C(8,-3):_______________________

  2、 变式题[多媒体演示]

  ① 求以C(1,3)为圆心,并且和直线3x-4y-7=0相切的圆的方程。

  答案:(x-1)2 + (y-3)2 =

  ② 已知圆的方程是 (x-a)2 +y2 = a2 ,写出圆心坐标和半径。

  答案: C(a,0), r=|a|

  Ⅲ.例题分析、巩固应用

  师:下面我们通过例题来看看圆的标准方程的应用.

  [例1] 已知圆的方程是 x2+y2=17,求经过圆上一点P(,)的切线的方程。

  师:你打算怎样求过P点的切线方程?

  生:要求经过一点的直线方程,可利用直线的点斜式来求。

  师: 斜率怎样求?

  生:

  师:已知条件有哪些?能利用吗?不妨结合图形来看看(如图)

  生:切线与过切点的半径垂直,故斜率互为负倒数

  半径OP的斜率 K1=, 所以切线的斜率 K=-=-

  所以所求切线方程:y-= -(x-)

  即:x+y=17 (教师板书)

  师:对照圆的方程x2+y2=17和经过点P(,)的切线方程x+y=17,你能作出怎样的猜想?

  生:

  师:由x2+y2=17怎样写出切线方程x+y=17,与已知点P(,)有何关系?

  (若看不出来,再看一例)

  [例1/] 圆的方程是x2+y2=13,求过此圆上一点(2,3)的切线方程。

  答案:2x+3y=13 即:2x+3y-13=0

  师:发现规律了吗?(学生纷纷举手回答)

  生:分别用切点的横坐标和纵坐标代替圆方程中的一个x和一个y,便得到了切线方程。

  师:若将已知条件中圆半径改为r,点改为圆上任一点(xo,yo),则结论将会发生怎样的变化?大胆地猜一猜!

  生:xox+yoy=r2.

  师:这个猜想对不对?若对,可否给出证明?

  生:

  [例2]已知圆的方程是 x2+y2=r2,求经过圆上一点P(xo,yo)的切线的方程。

  解:如图(上一页),因为切线与过切点的半径垂直,故半径OP的.斜率与切线的斜率互为负倒数

  ∵半径OP的斜率 K1=,∴切线的斜率 K=-=-

  ∴所求切线方程:y-yo= - (x-xo)

  即:xox+yoy=xo2+yo2 亦即:xox+yoy=r2. (教师板书)

  当点P在坐标轴上时,可以验证上面方程同样适用。

  归纳总结:圆的方程可看成 x.x+y.y=r2,将其中一个x、y用切点的坐标xo、yo 替换,可得到切线方程

  [例3]右图为某圆拱桥的一孔圆拱的示意图.该圆拱跨度AB=20M,拱高OP=4M,在建造时每隔4M需用一个支柱支撑,求支柱A2P2的长度。(精确到0.01M)

  引导学生分析,共同完成解答。

  师生分析:①建系; ②设圆的标准方程(待定系数);③求系数(求出圆的标准方程);④利用方程求A2P2的长度。

  解:以AB所在直线为X轴,O为坐标原点,建立如图所示的坐标系。则圆心在Y轴上,设为(0,b),半径为r,那么圆的方程是 x2+(y-b)2=r2.

  ∵P(0,4),B(10,0)都在圆上,于是得到方程组:

  解得:b=-10.5 ,r2=14.52

  ∴圆的方程为 x2+(y+10.5)2=14.52.

  将P2的横坐标x=-2代入圆的标准方程

  且取y>0

  得:y=

  ≈14.36-10.5=3.86 (M)

  答:支柱A2P2的长度约为3.86M。

  Ⅳ.课堂练习、课时小结

  课本P77练习2,3

  师:通过本节学习,要求大家掌握圆的标准方程,理解并掌握切线方程的探求过程和方法,能运用圆的方程解决实际问题.

  Ⅴ.问题延伸、课后作业

  (一)若P(xo,yo)在圆(x-a)2+(y-b)2= r2上时,?求过P点的圆的切线方程。

  课本P81习题7.7 : 1,2,3,4

  (二)预习课本P77~P79

  圆的标准方程教学设计 5

  一、教材分析

  圆是解析几何中一类重要的曲线,是在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质,圆的标准方程正是这一知识运用的延续,为后面学习其他圆锥曲线的方程奠定了基础。本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用。

  二、教学目标

  1、知识与技能:

  (1)会用定义推导圆的标准方程并掌握圆的标准方程的特征.

  (2)会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程.

  (3)会判断点与圆的位置关系.

  2、过程与方法:渗透数形结合思想,加深对数形结合思想的理解和加强待定系数法的运用,注意培养学生观察问题和解决问题的能力.

  3、情感态度和价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣.

  三、教学重点

  掌握圆的标准方程的特征,能根据条件写出圆的标准方程.

  四、教学难点

  根据已知条件,会利用待定系数法和几何法求圆的标准方程.

  五、教学方法

  采用“合作探究”教学法.

  六、教学过程设计

  问题

  师生活动

  设计意图

  我们已经学习了圆的概念和平面直角坐标系,若将圆放到平面直角坐标系内,如何借助坐标描述圆的方程呢?

  回忆前面学习的要点,引入这节课所要学习的内容.

  从圆的定义引出圆的方程。

  具有什么性质的点的轨迹称为圆?

  学生回答

  (平面内到一个定点的距离等于定长的点的集合)

  复习圆的定义,为后面推导圆的方程作铺垫.

  在直角坐标系中,确定圆的条件是什么?

  学生集体回答

  (圆心和半径)

  师生合作,复习旧知识,引出新知识

  已知圆心坐标(a,b),半径为r,如何写出圆的方程?

  师生共同推导出圆的标准方程.

  (设点M

  (x,y)为圆C上任一点,则圆上所有点的集合为:

  P={M||MC|=r}

  则

  即(x-a)2+(y-b)2=r2(xx)

  因此,

  (1)点M的坐标适合方程(xx)

  (2)方程(xx)说明点M与圆心C的距离为r,即点M在圆C上。)

  让学生体会圆的方程的推导过程.

  例1:求圆心和半径

  ⑴圆(x+3)2+y2=5

  ⑵圆(x+1)2+(y-3)2=9

  ⑶圆x2+y2=4

  学生集体回答,并及时根据学生的回答过程中出现的问题进行纠正.

  让学生初步应用圆的标准方程,体会圆的'标准方程带来的信息.

  练习:分别求满足下列各条件的圆的方程:

  (1)圆心是原点,半径是3;

  (2)圆心为C(3,4),半径是;

  (3)经过点P(5,1),圆心是点C(8,-3)

  学生个别回答,并及时纠正学生出现的问题.

  让学生体会到要想求圆的标准方程,关键是求出圆心和半径.

  例2:已知圆的方程为x2+y2=4,判断点A(1,1)、B(3,0)、C()是否在这个圆上.

  学生说出圆的方程,老师引导学生得出判断点是否在圆上的方法:把点的坐标代入圆的方程,看看方程是否成立.

  学会应用圆的方程判断点和圆的位置关系.

  探究:点Mc(x0,y0)在圆(x-a)2+(y-b)2=r2上、内、外的条件是什么?

  引导学生从点到圆心的距离和半径的大小关系来判断点和圆的位置条件:

  (x0-a)2+(y0-b)2=r2点M0在圆上;

  (x0-a)2+(y0-b)2

  (x0-a)2+(y0-b)2>r2点M0在圆外.

  让学生体会数形结合思想在解析几何的应用.

  例3:求经过点A(1,-1)和B(-1,1)

  两点,且圆心C在直线l:

  x+y-2=0上的圆的标准方程.

  学生会用待定系数法求圆的方程.

  引导学生从弦的垂直平分线过圆心(定义法)来求圆的方程:

  (1)先确定圆心的位置

  (弦的垂直平分线的交点);

  (2)求出圆心的坐标;

  (3)求出半径;

  (4)写出圆的方程。

  再一次让学生体会用数形结合的思想来解决数学问题.

  求圆的标准方程:

  (1)待定系数法;

  (2)定义法.

  师生共同总结两种方法的优缺点

  (待定系数法思路清晰,但计算比较繁杂;几何法计算比较简单,比较常用)

  对两种方法进行总结,比较其优缺点的不同.

  练习:

  (1)已知两点P1(4,9),P2(6,3),求以线段P1P2为直径的圆的方程。

  (2)已知△AOB的顶点坐标是A(4,0),B(0,3),C(0,0),求△AOB外接圆的方程.

  学生练习,体会两种方法的优缺点,教师点评.

  让学生更进一步去体会和理解两种方法的不同.

  小结:

  (1)圆的标准方程

  (2)点与圆的位置关系

  (3)求圆的标准方程2钟方法:待定系数法和定义法

  师生共同总结本节课的主要内容.

  总结归纳主要内容.

  作业:练习册相应内容

  巩固本节所学知识

  七、板书设计

  2.1圆的标准方程

  1.圆心圆心是C(a,b),半径是r的圆的标准方程:(x-a)2+(y-b)2=r2

  2.点Mc(x0,y0)和圆(x-a)2+(y-b)2=r2的位置关系:

  (x0-a)2+(y0-b)2=r2点M0在圆上;

  (x0-a)2+(y0-b)2

  (x0-a)2+(y0-b)2>r2点M0在圆外。

  3.求圆的标准方程方法:

  (1)待定系数法;

  (2)定义法;

  例3:

  (待定系数法)

  (定义法)

  八、教学反思

  利用圆的标准方程由浅入深的解决问题,增强学生应用数学的意识。为了培养学生的理性思维,在例题3中用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生创新精神,同时锻炼了学生的思维能力。

  圆的标准方程教学设计 6

  1、教学目标

  (1)知识目标:

  1、在平面直角坐标系中,探索并掌握圆的标准方程;

  2、会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程;

  3、利用圆的方程解决与圆有关的实际问题.

  (2)能力目标:

  1、进一步培养学生用解析法研究几何问题的能力;

  2、使学生加深对数形结合思想和待定系数法的理解;

  3、增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2、教学重点、难点

  (1)教学重点:圆的标准方程的.求法及其应用.

  (2)教学难点:

  ①会根据不同的已知条件,利用待定系数法求圆的标准方程

  ②选择恰当的坐标系解决与圆有关的实际问题.

  3、教学过程

  (一)创设情境(启迪思维)

  问题一:

  已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导]:画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2+y2=16(y≥0)

  将x=2.7代入,得

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:

  1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

  答:x2+y2=r2

  2、如果圆心在,半径为时又如何呢?

  [学生活动]:探究圆的方程。

  [教师预设]:方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为 ①

  把①式两边平方,得(x―a)2+(y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1、写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在,半径为

  (3)经过点,圆心在点

  2、根据圆的方程写出圆心和半径

  (1) (2)

  ii.灵活应用(提升能力)

  问题四:

  1、求以为圆心,并且和直线相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2、求过点,圆心在直线上且与轴相切的圆的方程.

  [教师引导]应用待定系数法寻找圆心和半径.

  3、已知圆的方程为,求过圆上一点的切线方程.

  [学生活动]探究方法

  [教师预设] [多媒体课件演示]

  方法一:待定系数法(利用几何关系求斜率—垂直)

  方法二:待定系数法(利用代数关系求斜率—联立方程)

  方法三:轨迹法(利用勾股定理列关系式)

  方法四:轨迹法(利用向量垂直列关系式)

  4、你能归纳出具有一般性的结论吗?

  已知圆的方程是,经过圆上一点的切线的方程是:

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m)。

  圆的标准方程教学设计 7

  教学目标:

  1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

  2、会用待定系数法求圆的标准方程。

  教学重点:

  圆的标准方程

  教学难点:

  会根据不同的已知条件,利用待定系数法求圆的标准方程。

  教学过程:

  (一)、情境设置:

  在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

  探索研究:

  (二)、探索研究:

  确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

  化简可得:②

  引导学生自己证明为圆的方程,得出结论。

  方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

  (三)、知识应用与解题研究

  例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

  分析探求:可以从计算点到圆心的距离入手。

  探究:点与圆的关系的.判断方法:

  (1)>,点在圆外

  (2)=,点在圆上

  (3)<,点在圆内

  解:

  例2.(课本例2)的三个顶点的坐标是求它的外接圆的方程。

  师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆。从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定三个参数。

  解:

  例3.(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程。

  师生共同分析:如图,确定一个圆只需确定圆心位置与半径大小。圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。

  解:

  总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:

  1、根据题设条件,列出关于的方程组,解方程组得到的值,写出圆的标准方程。

  ②﹑根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程。

  (四)、课堂练习(课本P120练习1,2,3,4)

  归纳小结:

  1、圆的标准方程。

  2、点与圆的位置关系的判断方法。

  3、根据已知条件求圆的标准方程的方法。

  作业布置:课本习题4.1A组第2,3,4题。

  圆的标准方程教学设计 8

  课名

  《圆的标准方程》

  教师

  贾伟

  学科(版本)

  北师大版的数学必修2

  章节

  第二章第2节

  学时

  1学时

  年级

  高一年级

  教材分析

  圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。

  教学目标

  1、知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。

  2、过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。

  3、情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。

  教学重点难点以及措施

  教学重点:圆的标准方程理解及运用

  教学难点:根据不同条件,利用待定系数求圆的`标准方程。

  根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。

  学习者分析

  高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。

  教法设计

  问题情境引入法启发式教学法讲授法

  学法指导

  自主学习法讨论交流法练习巩固法

  教学准备:

  一、教学环节

  二、教学内容

  三、教师活动

  四、学生活动

  五、设计意图

  六、情景引入

  七、回顾复习(2分钟)

  1、观赏生活中有关圆的图片

  2、回顾复习圆的定义,并观看圆的生成flash动画。

  八、提问:

  直线可以用一个方程表示,那么圆可以用一个方程表示吗?

  教师创设情景,引领学生感受圆。

  教师提出问题。引导学生思考,引出本节主旨。

  学生观赏圆的图片和动画,思考如何表示圆的方程。

  生活中的图片展示,调动学生学习的积极性,让学生体会到园在日常生活中的广泛应用

  九、自主学习(5分钟)

  1、介绍动点轨迹方程的求解步骤:

  (1)建系:在图形中建立适当的坐标系;

  (2)设点:用有序实数对(x,y)表示曲线上任意一点M的坐标;

  (3)列式:用坐标表示条件P(M)的方程;

  (4)化简:对P(M)方程化简到最简形式;

  2、学生自主学习圆的方程推导,并完成相应学案内容,

  教师介绍求轨迹方程的步骤后,引导学生自学圆的标准方程

  自主学习课本中圆的标准方程的推导过程,并完成导学案的内容,并当堂展示。

  培养学生自主学习,获取知识的能力

  十、合作探究(10分钟)

  1、根据圆的标准方程说明确定圆的方程的条件有哪些?

  2、点M(x0,y0)与圆(x、a)2+(y、b)2=r2的关系的判断方法:

  (1)点在圆上

  (2)点在圆外

  (3)点在圆内

  教师引导学生分组探讨,从旁巡视指导学生在自学和探讨中遇到的问题,并鼓励学生以小组为单位展示探究成果。

  学生展开合作性的探讨,并陈述自己的研究成果。

  通过合作探究和自我的展示,鼓励学生合作学习的品质

  十一、当堂训练(18分钟)

  1、求下列圆的圆心坐标和半径

  C1:x2+y2=5

  C2:(x、3)2+y2=4

  C3:x2+(y+1)2=a2(a≠0)

  2、以C(4,、6)为圆心,半径等于3的圆的标准方程

  3、设圆(x、a)2+(y、b)2=r2则坐标原点的位置是()

  A、在圆外B、在圆上

  C、在圆内D、与a的取值有关

  4、写出下列各圆的标准方程

  (1)圆心在原点,半径等于5

  (2)经过点P(5,1),圆心在点C(6,、2);

  (3)以A(2,5),B(0,、1)为直径的圆、

  5、下列方程分别表示什么图形

  (1)x2+y2=0

  (2)(x、1)2 =8、(y+2)2

  (3)圆的标准方程

  6、巩固提升:已知圆心为C的圆经过点A(1,1)和B(2,2),且圆心在直线l:x、y+1=0上,求圆C的标准方程并作图

  指导学生就不同条件下给出的圆心和半径关系,求解圆的标准方程这两个要素展开训练。

  学生自主开展训练,并纠正学习中所遇到的问题

  巩固所学知识,并查缺补漏。

  十二、回顾小结

  (1分钟)

  1、你学到了哪些知识?

  2、你掌握了哪些技能?

  3、你体会到了哪些数学思想?

  采用提问的形式帮助学生回顾和分析本节所学。

  学生思考并从知识、技能和思想方法上回顾总结。

  培养学生归纳总结能力

  十三、作业布置(1分钟)

  课本87页习题2、2

  A组的第1道题

  布置训练任务

  标记并完成相应的任务

  检测学生掌握知识情况。

  十四、教学反思

  本节教学主要遵循“回、导、学、展、讲、练、结”的高效课堂教学模式,遵循学生学习的主体地位,鼓励学生自主思考和探讨。

  教学中要积极鼓励学生多思考总结,在判断点与圆的位置关系中,要遵从学生个性化的发展思路,鼓励学生创造性的解决问题。

【圆的标准方程教学设计】相关文章:

圆的标准方程教学反思(精选5篇)09-24

圆的标准方程教学反思(精选3篇)01-27

圆的标准方程教学反思范文(精选3篇)01-27

《圆标准方程》说课稿(精选10篇)12-27

《圆的标准方程》说课稿(精选10篇)11-02

《圆的标准方程》说课稿范文(精选5篇)04-26

圆与方程教案圆与方程课件03-23

数学《椭圆及其标准方程》教学设计(精选8篇)11-24

高中数学说课稿:《圆的标准方程》12-16

抛物线的定义及其标准方程教学设计案例03-09