乘法分配律优秀教学设计

时间:2022-05-31 09:39:06 教学设计 我要投稿

乘法分配律优秀教学设计(精选7篇)

  作为一名老师,通常需要用到教学设计来辅助教学,教学设计是一个系统化规划教学系统的过程。那么写教学设计需要注意哪些问题呢?下面是小编精心整理的乘法分配律优秀教学设计(精选7篇),仅供参考,希望能够帮助到大家。

乘法分配律优秀教学设计(精选7篇)

  乘法分配律优秀教学设计1

  教学内容

  苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。

  教学目标

  1、使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配律可以使一些计算简便。

  2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

  教学过程

  一、创设情境,谈话导入

  谈话:同学们,我们学校有5个同学就要去参加“无锡市少儿书法大赛”了,书法组的张老师准备为他们每人买一套漂亮的服装,我们一起去看看好吗?(课件出示例题情境图)

  二、自主探究,合作交流

  1、交流算法,初步感知。

  提问:从图中你获得了哪些信息?

  再问:买5件上衣和5条裤子,一共要付多少元呢?你能解决这样的问题吗?请同学们在自己的本子上列出算式,再算一算。

  反馈:你是怎样解决这一问题的?为什么这样列式?

  组织学生交流自己的解题方法,再分别说说两个算式的意义。根据学生回答,教师利用课件演示,帮助解释。

  谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

  学生在自己的本子上写,教师板书,让学生读一读。

  谈话:刚才我们算的买5件夹克衫和5条裤子,一共要付多少元?如果张老师不这样选择,还可以怎样选择?(买5件短袖衫和5条裤子)

  提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

  根据学生回答,列出算式:32×5+45×5和(32+45)×5。

  再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

  启发:比较这两个等式,它们有什么相同的地方?

  2、深入体验,丰富感知。

  引导:看表情,相信大家一定或多或少地发现了等式两边算式之间的联系。现在请每个小组拿出信封中写有算式的纸条,想一想在这几组算式中,哪些可以用等号连起来,哪些不能?

  分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?两个算式的计算结果分别是多少?有办法使他们变得相等吗?

  要求:你能写出一些这样的等式吗?先试一试,再算一算你写出的等式两边是不是相等。

  学生举例并组织交流。

  3、揭示规律。

  提问:像这样的等式,写得完吗?

  谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

  反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

  小结:a加b的和乘c,与a乘c的积加b乘c的积的和是相等的。这就是乘法分配律。[板书:(a+b)×c=a×c+b×c]

  三、实践运用,巩固内化

  1、“想想做做”第1题。

  谈话:下面我们利用乘法分配律解决一些简单的问题。

  出示“想想做做”第1题,让学生在书上填一填。

  学生完成后,用课件反馈。

  2、“想想做做”第2题。

  你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。

  回答第2小题时,让学生说一说理由。

  3、“想想做做”第3题。(略)

  四、梳理知识,反思总结

  提问:今天这节课,你有什么收获?有什么感受想对大家说?

  五、布置作业

  “想想做做”第4、5题。

  乘法分配律优秀教学设计2

  教学内容分析:

  乘法分配律是北师大版小学数学四年级上册第三单元P48~P49的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

  教学目标:

  知识与能力:

  1、在探索的过程中,发现乘法分配律,并能用字母表示。

  2、会用乘法分配律进行一些简便计算。

  过程与方法:

  1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

  2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

  情感、态度与价值观:

  1、在这些学习活动中,使学生感受到他们的身边处处有数学。

  2、增加学生之间的了解、同时体会到小伙伴合作的重要。

  3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

  教学过程:

  一、创设情境,激趣导入。

  1、出示:

  125×8=25×9×4=18×25×4=

  125×16=75+25=89×100=

  教师请个别学生口算并说出部分题的口算依据及应用的定律。

  2、再出示:119×56+119×44=

  师;这一题,谁能口算出来?老师可以口算出来,你们相信吗?是不是老师又应用到数学的什么定律呢?你们想不想知道?

  二、引导探究,发现规律。

  1、出示课本插图

  师:你们看,工人叔叔正在工作呢,观察这幅图,你能发现哪些数学信息?

  生:我看到两个工人叔叔在贴瓷砖。

  生:我发现一个叔叔贴这面墙壁,另一个叔叔贴另一面墙壁。

  生:老师,我发现两个叔叔贴的瓷砖一起数的话,一行有10块,一共有9列。

  师:你真细心。大家能根据获得的信息提一个数学问题吗?

  学生提问题,教师出示问题:一共贴了多少块瓷砖?

  2、估计

  师:谁能估计工人叔叔大约贴了多少块瓷砖?

  学生试着估计。

  3、列式解答

  师:同学们的估计是否正确呢?请你们用自己喜欢的方法计算一下瓷砖究竟有多少块。

  学生用自己喜欢的方法计算,教师巡视。

  师:谁来向大家介绍一下自己的算法?

  生:6×9+4×9(板书)

  =54+36

  =90(块)

  师:这边的6×9和4×9分别是算什么?

  生:分别算出正面和侧面贴的块数。

  师:哦,然后两面的块数再相加,就是贴的总块数。你们明白吗?还有不一样的方法吗?

  生:我是这样列的,(6+4)×9(板书)

  =10×9

  =90(块)

  师:你能说说为什么这样列式吗?

  生:两面墙共有9列,一行有6+4块,所以我先算出一行有10块,再用10×9算出共有多少块瓷砖。

  师:你真行,找到了这种方法。现在同学们看一下这两种方法,你发现了什么?

  生:计算方法不一样,结果却是一样的。

  师:所以这两个式子我们可以用一个什么样的数学符号连接起来?

  生:等于号。

  教师板书。

  4、观察算式的特点

  师:观察等号两边的式子,它们有什么特点呢?

  生:等号左边的算式是两个加数的和与一个数相乘的积,等号右边

  的算式是这两个加数分别与一个数相乘,再把所得的积相加。

  生:等号左边算式中的两个加数,就是等号右边算式中两个不同因数;等号左边算式中的一个因数,就是等号右边算式中两个相同的因数。

  师:是这样吗?你们能再举一些类似的例子吗?

  5、举例验证

  让学生根据算式特征,再举一些类似的例子。

  如:(40+4)×25和40×25+4×25

  63×64+63×36和63×(64+36)

  讨论交流:

  (1)交流学生的举例是否符合要求:

  (2)交流不同算式的共同特点;

  (3)还有什么发现?(简便计算)

  师:两个数的和与一个数相乘的积等于每个加数分别与这个数相乘再把所得的积加起来,这叫做乘法分配律。

  6、字母表示。

  师:如果用a、b、c分别表示三个数,你能写出你的发现吗?

  学生先独立完成,然后小组交流。最后教师板书:(a+b)×c=a×c+b×c并带读。

  7、揭示课题。

  三、应用规律,解决问题。

  课文第49页的“试一试”。请同桌讨论探究下面这些题目怎样计算比较简便?

  1、(80+4)×25

  (1)呈现题目。

  (2)指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。

  (3)鼓励学生独自计算。

  2、34×72+34×28

  (1)呈现题目。

  (2)指导观察算式特点,看是否符合要求。

  (3)简便计算过程,并得出结果。

  3、让生观察:36×3

  =30×3+6×3

  =90+18

  =108

  师:你能说说这样计算的道理吗?

  生独自思考,小组讨论,全班交流。

  四、总结。

  师:说说这节课你有什么收获?

  师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。希望同学们要在理解的基础上牢牢记住它。

  乘法分配律优秀教学设计3

  教学目标:

  1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

  2、通过观察、分析、比较,培养学生的分析、推理和概括能力。

  3、发挥学生主体作用,体验探究学习的快乐。

  教学重点:

  指导学生探索乘法的分配律。

  教学难点:

  乘法分配律的应用。

  教学准备:

  课件、口算题、例题、练习题等。

  教学策略:

  本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。

  教学流程:

  一、设疑导入

  师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?

  生:可以使计算简便。

  师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)

  【设计意图:这样开门见山的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。】

  二、探究发现

  1。猜想。

  师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

  师:这道题算得怎么不如刚才的快啊?

  生:它和前面的题目不一样。

  师:好,我们来看一下它与前面的题目有什么不同?

  生:前面的题都是乘号,这道题既有乘号还有加号。

  生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

  师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

  生:(10+4)×25=10×25+4×25。

  师:为什么这样算哪?

  生:我是根据乘法分配律算的。

  师:你是怎么知道的?你知道什么是乘法分配律吗?

  生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。

  师:你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

  2。验证。

  师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

  师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

  小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算?

  师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

  3。结论。

  生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。

  师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的意义。)

  师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?

  (a+b)×c=a×c+b×c

  师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。

  【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的可持续学习奠定了基础。】

  三、练习应用

  (生练习应用定律。)

  师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  四、总结

  师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)

  乘法分配律优秀教学设计4

  教学内容

  苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。

  教学目标

  1.使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。

  2.使学生在发现规律的过程中,发展观察、比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3.使学生能联系实际,主动参与探索、发现和概括规律的学习活动,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和信心。

  教学过程

  一、创设比赛场景,在活动中激趣

  谈话:听说我们四(1)班的同学口算速度快,正确率高,想不想显一显身手?那我们来一个速算比赛怎么样?

  A组B组

  (1)135×6+65×6(1)(135+65)×6

  (2)9×37+9×13(2)9×(37+13)

  在A组同学不服气,说B组容易时,教师激趣:是吗?B组容易?那我们再来一次好吗?

  A组B组

  (1)(10+4)×25(1)10×25+4×25(2)(4+8)×125(2)4×125+8×125

  谈话:为什么这次A组又输了?观察观察,可不要冤枉了老师。你们有什么发现?(学生讨论交流)

  小结:这真是一个了不起的发现。一切数学知识来源于发现问题,而一个伟大的'数学家有所成就在于他发现问题。看看今天我们的同学们发现一个怎样的数学知识。有信心吗?给自己鼓鼓掌!

  谈话:同学们,我们学校有5个同学就要去参加“海安县首届批发王杯少儿才艺大赛”了,声乐兴趣小组的于老师准备为他们每人买一套一样的漂亮服装,我们一起去看看好吗?

  【评析:玩是学生的天性。心理学研究表明:促进人素质、个性发展的最主要途径是实践活动,而“玩”正是儿童所特有的实践活动形式。如何让学生玩出效果来?教师提供了一个“竞赛”的机会,让学生在“竞赛”中发现竞赛的不公平,近而寻找不公平的原因,激发了学生学习的兴趣。在探究原因的过程中,学生潜移默化地感知了同组算式之间的关系。】

  二、创设活动情境,在合作中探究

  1.交流算法,初步感知

  (课件出示例题情境图)

  谈话:从图中你了解到了哪些信息?于老师可以怎样搭配服装?

  (1)学生的选择方法1:买5件夹克衫和5条裤子

  一共要付多少元呢?你能解决这样的问题吗?学生独立列式计算。(教师巡视,安排不同方法解答的学生板演,并了解全班学生采用的什么方法)

  反馈:你是怎样解决这一问题的?为什么这样列式?

  组织学生交流自己的解题方法,再分别说说两个算式的意义。(课件显示)

  谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

  学生在自己的本子上写,教师巡视。

  [教师板书:(65+45)×5=65×5+45×5],让学生读一读。

  (2)学生的选择方法2:买5件短袖衫和5条裤子

  提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

  根据学生回答,列出算式:32×5+45×5和(32+45)×5

  再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

  [教师板书:(32+45)×5=32×5+45×5]

  启发:比较这两个等式,它们有什么相同的地方?

  2.深入体验,丰富感知。

  现在请每个同学拿出信封中的练习纸,想一想在这几组算式中,哪些可以用等号连起来(在□里画=号),哪些不能?当然你可以先计算每组中两个算式的得数,也可以仔细观察。

  在得数相同的两个算式中间的□里画“=”

  (1)(28+16)×7□28×7+16×7

  (2)15×39+45×39□(15+45)×39

  (3)74×(20+1)□74×20+74

  (4)40×50+50×90□40×(50+90)

  (5)(125×50)×8□125×8+50×8

  分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?有办法使他们变得相等吗?(课件显示修改过程)

  谈话:你能写出几组类似这样的式子吗?大家动手写一写。(提醒学生认真算一算你写出的等式两边是不是相等)

  学生举例并组织交流。(比较这些等式是否具有相同的特点)

  3.反思学习,揭示规律

  提问:像这样的等式,写得完吗?像这样等号左边和右边的式子都会相等,这是不是巧合?还是有什么规律存在?

  谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

  如果用a、b、c代表上面等式中的数,这个规律怎样表示?[板书:(a+b)×c=a×c+b×c板书好适当图例解释意思]

  小结:同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)

  (课件显示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。)

  对于乘法分配律,用字母来表示,感觉怎样——简洁、明了,这就是数学的美!

  【评析:深层次的探究,教师不急于点明规律,维持学生的好奇心,通过学生讨论,使学生积极主动地去发现总结规律,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识,让学生体会到成功的快乐。】

  三、巩固内化知识,在实践中运用

  谈话:让我们带着自己发现的数学知识进入今天的“数学乐园”吧!

  1.大显身手

  出示“想想做做”第1题,让学生在书上填一填。

  师:第2题你是怎么想的?

  小结:乘法分配律可以正着用,也可以反着用。[补充板书:a×c+b×c=(a+b)×c]

  2.生活应用

  (“想想做做”第3题)

  小结:说说两种方法的联系。

  3.巧妙运用

  (“想想做做”第4题)(同桌一人做一组,做在练习本上)

  谈话:每组两道算式有什么联系?哪一题计算比较简便?

  现在你知道上课开始时为什么B组同学算得快吗?

  小结:乘法分配律可以使计算简便。

  4.明辨是非

  我校二年级有3个班,每个班有34人。三年级有2个班,每个班有36人。二三年级一共有多少人?

  王小明这样计算:

  (3+2)×(34+36)

  =5×70

  =350(人)

  ①观察一下,你赞同王小明的算法吗?为什么?

  ②要用乘法分配律,要有什么条件?

  5.巧猜字谜

  猜一猜,等号后边是三个什么字?

  人×(1+2+3)=

  6.大胆猜想

  如果把乘法分配律中的加号改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?

  学生小组交流猜想。

  谈话:我们再回到课开始的那条题目上,如果于老师想知道“买5件夹克衫比5件短袖衫贵多少元?”你能帮她吗?试试看!

  教师组织、引导学生总结得出:

  (a-b)×c=a×c-b×c

  小结:大家真了不起!让我们为自己的伟大发现热烈鼓掌吧!

  【评析:例题的第三次变式,为学生的猜想提供了素材,也让本课学生的探究得到延伸,拓展了“乘法分配律”的意义。练习的设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。】

  四、回忆梳理知识,在反思中总结

  今天这节课,你有什么收获?

  五、布置作业:“想想做做”第5题。

  乘法分配律优秀教学设计5

  教学目标:

  1、通过经历探索乘法分配律的活动,发现并理解乘法分配律。

  2、通过观察、分析、比较,培养学生初步的分析、推理、抽象概括能力。

  3、渗透“从特殊到一般”的数学思想和方法。

  教学重点:

  指导探索乘法分配律。

  教学难点:

  发现并归纳乘法分配律。

  教具:

  课件

  教学过程:

  一、创设情境,生成问题。

  师:同学们,上节课我们研究了乘法的交换律和结合律,那乘法还有其他的运算律吗?希望今天通过我们的努力,能有新的发现。

  出示问题一、一个长方形的长是72米,宽是28米,这个长方形的周长是多少?

  师:你能用几种方法解答?

  生1:(72+28)×2

  生2:72×2+28×2(板书两个算式)

  师:同学们给出了两种办法,那这个长方形的周长到底是多少呢?选择其中的一个算式计算一下。

  生计算。

  师:请选择第一个算式的同学,说出你的计算结果。

  生:长方形的周长是200米。

  师:谁选择的第二个算式,结果又是多少呢?

  生:我算的结果也是200米。

  师:通过大家的计算,这两个数算式的结果相同,我能不能在这两个算式之间写上“=”?

  生:可以

  板书:(72+28)×2=72×2+28×2

  出示问题二:学校要换夏季校服了,上衣每件32元,裤子每件18元,四年级一班共64人,一共需要多少元?

  师:这道题你有能用几种方法解答?结果是多少?

  (生计算,汇报)

  生1:我列的算式是32×64+18×64,结果是6400元。

  师:有没有用不同的方法的?

  生2:我列的算式是:(32+18)×64,结果也是6400元。

  师:两种不同的方法,得出的结果却是相同,那这两个算式看来也是相等的。

  板书:(32+18)×64=32×64+18×32

  师:请同学们观察我们刚才得到的两个等式,你有怎样的感觉?

  生:可能有规律。

  师:真的有规律吗?

  【评析:教师创设了求长方形的周长和学校买校服的情境,提出“你能用几种方法解答?学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地得出两式相等。在以上两个问题的解决中,让学生在经历了两种不同思考方法的计算后,便于学生发现新的知识规律。同时,产生这样一种数学体验,即乘法分配律的知识存在于实际问题的解决中。】

  二、探索交流,归纳规律。

  师:刚才同学们感觉到这两个等式中含有规律,下面把你的想法在小组内交流一下吧。

  师:对于可能存在的规律,仅凭这两个等式就能说明它是成立的吗?

  生:不能。

  师:那该怎么办?

  生:找更多的这样的等式。

  师:既然找到了方法,那就请同学们,再找出一些这样的式子,验证它们的结果是否相等。

  (生举例验证)

  汇报:

  生1:(3+2)×5=3×2+2×5

  师:你计算过了吗?

  生1:算了,两边的结果都是30.

  师:很好,其他同学还有吗?

  生2:(30+50)×5=30×5+50×5

  生3:(24+76)×2=24×2+76×2

  ……

  师:同学们都找到了这样的式子吗?

  生:是。

  师:看来同学们头脑中的那个规律可能真的存在。我们举了这么多的例子,两边的结果都是相等的,可是,万一除了咱们举得这些例子外有一个不能成立?那我们举得这么多例子也就失败了。我们能不能换个角度去看,我们不去计算,就能够判断两个式子的结果是否相同?

  (生思考)

  生:老师,我能。

  师:你说说看。

  生:比如(72+28)×2=72×2+28×2,左边括号里算出是100,就表示100个2,右边是72个2加上28个2,也是100个2,所以两边的结果一定是相等的。

  师:同学们,你听明白了吗?

  生:明白了。

  师:那你能用这个思路说说你举得例子吗?

  生1:我写的是(53+22)×4=53×4+22×4,左边是75个4,右边是53个4加上22个4,也是75个4

  ……

  师:现在我们再来思考,有没有可能像这样的式子两边不相等?

  生:不可能,两边的结果一定相等。

  【评析:学生在已经初步得出规律的基础上,教师并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。】

  师:这么看来,同学们猜测的那个规律是真的存在,你能用自己的方式表示出你认为的规律吗?

  生1:(我+你)×他=我×他+你×他,我和你都是他的好朋友,也就是我是他的朋友,你也是他的朋友。

  生2:(爸爸+妈妈)×我=爸爸×我+妈妈×我。

  生3:(A+B)×C=A×C+B×C

  生4、(a+b)×c=a×b+a×c

  生5、(○+□)×◎=○×◎+□×◎

  师:同学们真了不起,通过努力验证了这个规律,你觉得用那一种表示这个规律更好一些?

  生:第三个用小写字母的那一个。

  师:你为什么觉得这个好?

  生:这样简单好记,而且前面学的交换律和结合律也是用字母表示的。

  师:我也同意你的观点,这就是咱们数学的简洁美的体现。这个规律就是乘法的分配律。读一读这个式子。

  (通过读式子,完善语言表达)

  【评析:教师对于乘法分配律的教学,教师不是把重点放在数学语言的表达上,而是把重点放在让学生在多个算式的计算中去完整地感知,通过观察、比较和归纳,大胆用自己喜欢的方式表示出来……。学生经过这样的探究活动,才能建构对自己有意义的知识,用语言表达乘法分配律也就水到渠成】

  三、巩固应用,内化提高

  1、火眼金睛,判对错。

  56×(19+28)=56×19+28

  64×64+36×64=(64+36)×64

  32×(3×7)=32×7+32×3

  2、思维敏捷,连一连。(把结果相同的两个式子连起来)

  ①(42+25+33)×26 ①20×25+4×25

  ②36×15-26×15 ②(66+34)×66

  ③66×66+66×34 ③42×26+25×26+33×26

  ④38×99+38×1 ④(36-26)×15

  ⑤(20+4)×25 ⑤38×(99+1)

  师:相等的式子我们都找到了,请你选择其中的一组计算出它们的结果。

  生1、我算的是(20+4)×5=20×25+4×25,结果是600.

  师:你是把两边的式子都计算了吗?

  生1:没有,我是算的右边的那个式子。

  师:你为什么没用左边的式子计算呢?

  生1:右边的那个式子计算起来简单。

  师:看来乘法分配律还可以用来简便计算,提高我们的计算速度。

  生2:我算的是38×99+38=38×(99+1),结果是3800,我算的是右边的那个式子,右边的括号里是100,38×100好算。

  师:大家来观察这个式子,这是我们发现的那个乘法分配律吗?

  生1:不是.

  生2:是,就是把它给倒过来用的。

  师:是的,这是乘法分配律的逆应用,也可以用来简化计算。

  生3:我算的是36×15-26×15=(36-26)×15,结果是150,是通过右边的式子计算出来的,那样简便。

  师:看了这个等式,你有什么想说的?

  生:我们刚才做的都是带“+”的,可是这个是“-”。

  师:看来我们的乘法分配律还有新的内涵呢。

  补充板书:(a-b)×c=a×c-b×c

  师:有没有计算(42+25+33)×26=42×26+25×26+33×26这个等式的?

  生4:我算了,结果是2600,算的是左边的那个式子。

  师:看了它,你有没有想说的?

  生:刚才我们做的都是两个数的和与一个数相乘,这个题是三个数的和与一个数相乘。

  师:如果是4个、5个数、更多数的和与一个数相乘,还能用分配律吗?

  生:能。

  3、合理选择,算一算。

  312×12+188×12

  101×87

  (53+47)×23

  【评析:练习题的设计综合性、层次性强,特别是第2题设计的非常巧妙,既对乘法分配律的基本形式进行了练习,又对乘法分配律可以使计算简便和乘法分配律的拓展形式,让学生有了初步感知,把学生引入更广阔的数学探索空间。让学生体验到数学知识内在的魅力,培养了学生的数学学习兴趣。】

  四、拓展延伸,引发思考。

  这节课我们共同来研究了乘法分配律,除法有没有分配律呢?

  板书:(a+b)÷c=a÷c+b÷c ?

  同学们可以课后用我们今天研究乘法分配律的方法进行验证,总结。

  乘法分配律优秀教学设计6

  教学内容:

  教科书书第54的例题以及55页的“想想做做”。

  教学目标:

  1.让学生在解决问题的过程中发现并理解乘法分配律(含用字母表示),初步了解乘法分配律的应用。

  2.让学生参与知识的形成过程,培养学生比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3.让学生感受数学规律的确定性和普遍适用性,获得发展数学规律的愉悦感和成功感,增强学习的兴趣和自信。

  教学重点和难点:

  发现并理解乘法分配律。

  教学准备:

  多媒体课件。

  教学过程:

  一、复习旧知,作好铺垫

  同学们,上学期,我们已经学习了乘法的两个运算定律,那谁来说说它们的名称和字母公式呢?(随学生回答出示小卡片:乘法交换律和乘法结合律。)

  今天这节课,我们要来研究乘法的另外一个运算定律。

  二、联系实际,探究规律

  1.谈话:五一快要来了,商场正在开展服装促销活动呢!一其去看看吧!

  2.课件例题情景图。

  (1)问:仔细观察,从图中你获得了哪些信息?(短袖衫:每件32元;裤子:每条45元;夹克衫:每件65元。买5件夹克衫和5条裤子。)

  (2)问:李阿姨一共要付多少钱呢?谁能口头列出综合算式?

  指名说出算式,教师随学生回答板书:

  (65+45)×5 65×5+45×5

  让回答的两名学生说说自己的想法。(即先算的是什么。)

  第一个算式:先算买一套衣服用多少元。

  第二个算式:先算买5件夹克衫和5条裤子各用多少元。

  (3)猜一猜:这两个算式结果会怎样?(相等)

  (4)计算验证。

  师:真相等吗?让我们动笔来算一算,男生算第一道,女生算第二道,做在自备本上。

  集体交流,指名汇报计算过程。

  (5)师:通过计算,我们发现这两个算式的结果的确是相同的,可以给它们画上等号。我们把这个等式轻声读一读。(学生轻声读读这个等式。)

  3.探索、发现规律。

  (1)师:仔细观察等号左右两边的算式,这两个算式有什么相同的地方和不同的地方?把你的想法与同桌交流一下。

  同桌讨论交流,指名汇报,鼓励学生自由发表意见。

  (学生可能说:等号左边有65、45和5这三个数,右边也有这三个数;都有乘法与加法;等号左边是65加45的和乘5,右边是65乘5的积加45乘5的积。……)

  (2)在学生发言的基础上,教师相机引导学生初步得出:65加45的和与5相乘,等于把65和45分别与5相乘,再把两个积相加。

  (3)师:是不是所有这样的两道算式之间都有这样的联系呢?谁再来举个例子?

  指名举例,计算算式结果,得出等式,教师板书。

  师:会不会是巧合呢?请你在本子上再举些例子验证一下。(学生独立举例验证。)

  学生汇报验证的结果。 教师结合学生回答板书三个等式。

  问:还有许多同学要发言,说明这样的例子还有很多很多,举得完吗?

  师:这么多等式,看来这不是巧合了,而是藏着一定的秘密在里面。你有什么发现呢?再与你的同桌轻声说一说。

  (4)指名2到3人说说发现,教师随机小结:同学们,刚才我们通过观察发现:两个数的和乘第三个数,可以把这两个加数分别和第三个数相乘,再把两个积相加,结果不变。(课件出示)这就是我们今天要学习的乘法分配律。(板书课题)

  (5)刚才几位同学在用语言叙述这个规律时感觉有些困难,你会用比较简洁的方法表示出乘法分配律吗?你可以用文字、图形、字母等表示它。

  展示各种表达方法,集体交流,估计会有学生想到用字母或图形等来表达。

  表扬写对的同学,并指出:刚才的这些表达方法都是可以的。特别是写出(a+b)×c=a×c+b×c的同学,你们和数学家想到一起了。在数学上,我们就用字母a、b、c表示三个数,这个规律可以写成(a+b)×c=a×c+b×c。(板书,顺着读,逆着读)

  师:用字母公式来表示乘法分配律,你又有什么感觉?(简洁、明了)这就是数学的简洁美。

  三、应用规律,巩固练习

  1. 对于今天学的乘法分配律会了吗?真的会了吗?好,那就考考你自己!(出示“想想做做”第2题) 横着看,在得数相同的两个算式后面画“√”。

  学生自己判断。集体交流时指名说说是怎么判断的?

  第3小题汇报时要问:为什么是对的呢?提醒学生注意74×1可直接写成74。

  问:为什么你认为第4题不对呢?说说你的理由。怎样改就对了呢?

  2.掌握得真不错!下面打开书看55页“想想做做”第1题。

  学生独立填写后,指名汇报。

  讨论第2小题时问:两个乘法中相同的乘数是几?应该把相同的乘数放在括号外面,而且这是乘法分配律的逆向运用!

  3.完成“想想做做”第3题。(课件出示长方形菜地:长64米,宽26米)

  问:图上给我们提供了长方形菜地的什么信息?

  你会用两种不同的方法计算它的周长吗?

  (1)学生完成在自备本上,指名板演两种不同的方法。

  (2)集体交流,出示:(64+26)×2 64×2+26×2

  师:刚才大家用两种不同的方法计算了长方形的周长,看这两道算式,问:哪种算法比较简便?它们的结果怎样?符合什么规律?

  师:看来我们早在三年级学习长方形的周长时就已经接触过乘法分配律了。

  4.完成“想想做做”第4题。

  出示题目,观察这两组算式,想想每组中两个算式的结果是否相同?为什么?

  比一比:请你从每组中各选一道喜欢的算式进行计算,比比谁算得又对又快。

  学生计算后,集体交流:你们选的哪两道?为什么喜欢这两道?

  (估计大多数学生会选择(64+36)×8和25×(17+3),因为这两道计算起来比较简便。)

  这两道计算起来比较麻烦的算式如果让你来计算,你有什么好方法吗?(出示2题)

  指名说计算过程,教师用课件展示简算过程。

  小结:看,我们学会了乘法分配律使一些计算麻烦的题目变简单了。明天我们还会更深入地来学习简便计算。

  5. 谈话:开学初,学校为了丰富大家的大课间活动,购买了一批体育器材,看看是什么?(课件出示图片和信息:空竹每个17元,飞盘每个8元,铁环每个15元。)每种玩具都购买了60个,一共要花多少钱?

  学生独立完成在自备本上,投影展示不同的算法。

  观察这个等式,你有什么想告诉大家吗?

  师小结:看来,乘法分配律不仅可以是两个加数的和乘第三个数,还可以推广到3个加数的和去乘,甚至更多的加数呢!

  四、总结回顾

  问:今天这节课,你有什么收获?

  五、课堂作业

  完成“想想做做”第5题。

  乘法分配律优秀教学设计7

  【教学内容】

  《义务教育课程标准实验教科书数学》(青岛版)六年制四年级下册第二单元信息窗2《乘法分配律》。

  【教材简析】

  本信息窗是学生在学习乘法结合律和乘法交换律的基础上进行的,是乘法运算规律的一个完善。本节课充分利用学生熟悉的生活情境,以济青高速公路为素材,通过行驶在高速公路上的两辆汽车提供的信息,引出了对乘法分配律的探索,让学生体验数学与日常生活的密切联系,同时注重知识的内在联系,让学生利用自己已学的知识体验推动新知识的学习,从而发展了学生的迁移能力。

  【教学目标】

  1.结合相遇问题的情境,在解决问题的过程中,亲历观察、猜想、验证、归纳、推理等数学活动,发现并理解乘法分配律。

  2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系,学生对乘法分配律的认识由感性上升到理性。

  3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强合作学习的意识。

  【教学重点】

  让学生亲历探索乘法分配律的过程,在猜想验证等自主探索活动中得出乘法分配律,使学生对分配律的认识由感性上升到理性。

  【教学难点】

  清楚地表述自己发现的规律,理解及应用乘法分配律。

  【教学过程】

  一、创设情境,感知规律

  1.提出问题,列出算式。

  出示情境图

  谈话:瞧,这是济青高速公路!在这里,还藏着许多数学信息,让我们一起来找找吧!请你仔细观察,从图片和文字中你能发现什么数学信息?根据这些信息,你能提出什么数学问题?

  信息预设:大巴的速度是每小时行110千米,中巴的速度是每小时行90千米,两车同时相向而行,大约2小时相遇。

  问题预设:济青高速公路全长约多少千米?(板书)

  谈话:请你试着用两种方法在答题纸上解答。

  生独立解答。

  预设:

  2.结合情境,感知规律。

  提出要求:结合线段图说说算式每一步的含义。

  回答预设:①我先算出1小时两辆客车一共行驶多少千米,然后再求两小时行驶多少千米。也就是济青高速的全长是多少千米。

  ②我先求这辆大客车2小时行驶的路程;小客车2小时行驶的路程。然后把这两部分加起来就是济青高速公路的全长。

  【设计意图:把相遇问题通过学生的理解转化成数学问题,这是思维的抽象,也是数学化的过程,既能激发学生研究的欲望,营造研究的氛围,又使学生探究的问题清晰明了。结合情境理解算的合理性,利用学生的学习和生活经验初步感知乘法分配律的存在。】

  二、研究素材,猜测规律

  教师引导学生观察算式谈发现。

  预设发现:两个算式结果相等。可以用等号连接。

  教师引导学生从算式结构和计算方法的特点观察算式的左边和右边有什么不同。

  预设区别:①左边有3个数,右边有4个数,两个乘法算式中都有相同的因数2。

  ②左边有小括号,应该先算加法,再算乘法;右边先算乘法,再算加法。

  谈话:根据前面运算律的学习,你有什么想法?

  预设回答:这可能又是一个规律。

  【设计意图:抛开情境,观察算式,使学生初步感受到两种方法的结果一样。通过观察算式结构和计算方法的不同,渗透规律特点。使学生建立“猜想是探究获得结论的前提”这样的研究意识。】

  三、讨论交流,验证规律

  1.举例验证规律。

  谈话:这只是我们的一个猜想,你能再举一些这样的例子来进行验证吗?如果有需要,可以用计算器进行举例。

  学生独立计算举例。

  指生代表板演,再指一名学生举例。其余学生同位交流,并用计算器帮助同位验证。

  谈话:请你先和同位交流你举的例子,并用计算器帮同位验证一下他的等式是否成立。

  预设举例:(25+35)×4=25×4+35×4

  (60+50)×2=60×2+50×2

  (65+55)×42=65×42+55×42

  ……

  教师引导学生发现像这样的例子举不完,可以用省略号表示。

  2.观察几组等式的相同点。

  教师引导学生观察这几组等式的左边和右边分别有什么相同点。

  预设回答:

  ①这几组等式的左边都是两个数的和乘一个数。

  ②这几组等式的右边都是把两个数分别与第三个数相乘,再把积相加。

  3.总结规律。

  教师引导学生用自己的话说说这个规律。

  谈话小结:刚刚我们通过猜想、验证得出的结论就是乘法分配律。

  教师出示乘法分配律。

  谈话:请你边读边理解,并把它记在心里,比比谁记得又快又准确。

  生按要求说什么是乘法分配律。

  谈话:我们用这么多的算式和文字来表示它,麻不麻烦?有没有简便的方法?

  预设回答:可以用字母表示。

  教师要求学生在答题纸上试着用字母abc来表示乘法分配律。

  学生试着在答题纸上写字母表达式。

  指生板演(a+b)c=ac+bc。

  谈话:对于乘法分配律用字母来表示,感觉怎么样?

  预设回答:简洁、明了,把复杂的事情简单化,这就是数学的美,一种清晰而简洁的语言!

  教师小结:刚刚我们经历了猜想、验证、得出结论的过程,探究出了乘法分配律,还能用字母把这么多的算式写成一个算式。

  【设计意图:让学生举例说明规律的存在,鼓励学生表达这个规律,从具体的实例中抽象概括出乘法分配律,学生经历观察、描述、操作、思考、推理、概括从“非正规化”到“正规化”的学习过程。】

  四、巩固拓展,应用规律

  1.连一连。

  2.在□里填上合适的数或字母。

  3.火眼金睛辨对错。

【乘法分配律优秀教学设计(精选7篇)】相关文章:

乘法分配律教学设计(15篇)01-02

《乘法分配律》教学反思09-03

乘法分配律说课设计12-01

乘法分配律教学反思5篇03-16

《乘法》教学设计04-01

乘法分配律说课稿范文03-21

乘法分配律说课稿 (15篇)11-07

口算乘法教学设计(精选5篇)05-11

《乘法估算》的教学设计03-31

乘法结合律教学设计02-23