《平行四边形面积》教学设计(通用11篇)
作为一名教职工,时常要开展教学设计的准备工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么应当如何写教学设计呢?以下是小编精心整理的《平行四边形面积》教学设计,仅供参考,大家一起来看看吧。
《平行四边形面积》教学设计 篇1
【教学内容】
义务教育课程标准实验教科书数学五年级上册第五单元多边形的面积。
【教学目标】
1、通过教学使学生理解平行四边形的面积公式,并会运用公式解决实际问题。
2、在参与平行四边形面积公式的推导过程中渗透转化的思想方法,体会转化给学习所带来的方便。
3、通过猜测,操作,实践,归纳等环节,对学生进行多方面思维能力的培养,感受数学的魅力,培养学习数学的兴趣。
【教学重点】
平行四边形面积的推导过程、平行四边形的面积公式。
【教学难点】
平行四边形到长方形的转化过程。
【教学关键】
长方形和平行四边形的对比。
【教学方法】
猜想,动手操作,转化。
【知识基础】
长方形面积公式的推导过程、长方形的面积。
【教具准备】
活动的长方形边框
【辅助手段】
Ppt课件
【教学过程】
一、情境导入,揭示课题
1、同学们:几何图形是小学数学中最有趣的知识,你都知道哪些平面图形呢?(长方形、正方形、平行四边形、三角形、梯形、菱形、图形,课件出示学生说的图形,并依次说)
(课件出示)红星小学门口有两个花坛,请同学们看是什么图形?这两个花坛哪一个大呢?我们需要知道他们的什么?(面积)
我们已经学过长方形面积的计算,谁知道它的面积公式是什么?(长乘宽)公式是怎样推导出来的?(用数方格的方法)今天我们就来研究平行四边形的面积。
(板书课题)
二、探究新知,操作实践
(一)激发思维,寻求探究策略
1、要比较这两个图形的面积,你都有哪些方法呢?(学生同桌讨论1分钟),谁想把自己的方法和大家分享?
方法一:数方格
方法二:将平行四边形转化为长方形
2、学生数方格。(出示课本80页图,提示不满一格的按单元格计算),平行四边形和长方形分别是多少个面积单位?(24个)
测量图形面积我们可以用数方格的方法,那计算学校平行四边形花坛的面积我们还以用数方格的方法吗?数方格的方法不是处处适用,我们已经知道长方形的面积可以用长乘宽来计算,计算平行四边形面积是不是也有其他方法呢?能不能转化为我们已经学过图形的面积?
3、学生动手操作(课件出示提示语:要注意前后的变化,什么变了什么没变,形状变了,大小没变)
请同学们拿出学具,四人一小组研究研究。
学生汇报后,让我们共同来看看怎样把一个平行四边形转化为长方形,教师课件演示两种方法。
方法一:沿着平行四边形的顶点作一条高,剪开,平移,拼成一个长方形。
方法二:如果学生未说出第二种,师说明:实际上还有一种剪拼方法,沿着平行四边形的任意一条高剪开,平移后拼成一个长方形。
无论哪种方法,我们都是把平行四边形转化成长方形。
4、比较归纳,推导公式
我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,
提问:比较这两个图形,你发现了什么?(形状变了,大小没变)
学生汇报:我们把一个平行四边形转化成一个长方形,它的面积与原来平行四边形的面积相等。
这个长方形的长与平行四边形的底相等
这个长方形的宽与平行四边形的高相等
因为:长方形的面积=长×宽
所以:平行四边形的面积=底×高
学生汇报公式,教师板书。同学们在心里默默的记记。
5、用字母表示公式
如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式怎样表示?
S=ah(学生说字母公式,师板书)
(二)解决问题
1、刚才我们动手操作推导出了求平行四边形的一般公式,现在我们看看怎样解决实际中的问题。
用公式验证前面数方格的平等四边形的面积。
平行四边形花坛的底是6m,高是4m,
它的面积是多少?
学生说,师板书
(三)实际应用
一块平行四边形菜地底是100m,高是30m。这块菜地的面积是多少公顷?平均每公顷收小麦7吨,这块地共收小麦多少吨?
学生自己解答。
三、智力闯关
这节课我们学习了平行四边形面积的计算方法,同学们掌握了没有,下面我们就进行智力闯关。
(一)有空就填
1、推导平行四边形的面积公式时,是沿着平行四边形的一条()剪开,然后通过(),将平行四边形转化成一个长方形。
2、将平行四边形转化成长方形后,图形的()没变。长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的()。
3、一个平行四边形的底是4厘米,高是3厘米,这个图形的面积是()。
(二)明辨是非
1、平行四边形的面积等于长方形的面积。()
2、平行四边形的底边越长,它的面积就越大。()
3、沿平行四边形的任意一条高剪开,可以拼成一个长方形,也可以拼成一个正方形。()
3、6cm
5cm
4、5cm
4cm
4、一个平行四边形的面积是24平方厘米,那么这个平行四边形的底是6厘米,高是4厘米。()
(三)鱼目混珠
如图,你能计算出这个平行四边形的面积吗?
四、课堂反思。
1、学生谈收获。
2、师生共同总结。
五、拓展延伸。
用木条做成一个长方形框,长8cm,宽6cm,它的周长和面积各是多少?如果把它拉成一个平行四边形,周长和面积有变化吗?说说你的想法。
《平行四边形面积》教学设计 篇2
【教学内容】:
青岛版实验教材小学数学五年级上册第76页内容。
【教学目标】:
1、用转化的方法探索并掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。
2、经历探索平行四边形面积计算方法的过程,培养初步的观察能力、抽象能力,进一步发展空间观念。
3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的密切联系,培养初步的数学应用意识和解决简单实际问题的能力。
【教学准备】:
学生:方格图、平行四边形纸片、直尺、剪刀、三角尺
教师:课件、投影仪
【教学过程】:
一、谈话引入,提出问题
师:同学们,你们喜欢吃水产品吗?比如:鱼、虾、扇贝。去水产品养殖基地参观过吗?下面我们一起去参观小明家承包的两个养殖池吧!(出示课件)仔细观察图中的信息,你能提出什么数学问题?
(1:虾池的面积是多少? 2:虾池是什么形状的?……)
师:虾池是什么形状的?(平行四边形)
师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)
二、合作探索,解决问题
1、猜想
师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)
师:希不希望通过自己的探究找到这个公式?
师:相信你们一定能行!在探究之前,先请同学们猜想一下:平行四边形的面积计算公式可能是什么?并说说你的理由。
(学生独立思考)。
师:谁来说?
(1、我猜平行四边形的面积计算公式是“底×邻边”。我是根据长方形的面积计算公式猜的。)
师:谁有不同想法?
(2、我猜平行四边形的面积计算公式是“底×高”。我发现沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)
师:现在出现两种猜想,各有各的理由,而真正的计算公式肯定只有1个。我们怎么办?(验证)
师:对!我们要逐个进行验证,看看正确的公式究竟是什么。
为了方便大家探究,老师为每个小组都准备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮助。在动手验证之前,老师有几点小提示,请看屏幕:(课件出示,指名读)
1、小组同学先讨论验证的方法,再动手验证。
2、小组成员要团结合作,合理分工。
3、每组推选1名代表进行汇报,其他组员可以补充
4、使用学具时注意安全,用完后装入信封。
2、验证“底×邻边”
师:先来验证“底×邻边”这个猜想对不对。
比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开始。
(学生合作,教师巡视)
3、交流
师:经过大家的动手操作,相信都有答案了。哪个小组愿意先来交流?
(我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜想公式算出的面积是35平方厘米。所以 “底×邻边” 的猜想是错误的。)
师:听明白他们小组的做法了吗?(找两人分享)感谢你们的介绍。还有不一样的小组吗?(没有)
师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,根据“底×邻边”的猜想公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜想是错误的。虽然这个猜想是错误的,但我们要感谢提出这个猜想的同学,因为你的猜想很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地认识。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用第二个信封的帮助再来验证“底×高”这个猜想对不对。一定要交流好验证方法再动手操作,开始。
4、验证“底×高”
(学生活动,教师参与)
5、交流
师:相信大家又有了新的发现和收获。哪组先来分享你们的研究成果?
(1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜想是正确的。
师评价:他们小组的这种方法怎么样?我发现他们小组很会利用资源。刚才知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?注意听,看看他们采用的究竟是什么方法。)
(2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展示。)
师评价:他们小组通过剪一剪、拼一拼,说明平行四边形的面积=底×高。你们觉得这种方法怎么样?(很好)谁再来说说?
师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。根据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)
师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简单问题了。
师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的)
师:我还有第二个问题:平行四边形的面积为什么不是长×宽,而是底×高呢?
(平行四边形没有“长”和“宽”。)
师:说的真好,我们可不能混淆了。
三.应用公式,巩固训练
师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)
师:如果老师再给你提供这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)
师:谁来解决这个问题?其余同学写在练习本上。(30×5400=162000(尾))
师:听说你们很顺利的获取了平行四边形面积计算的公式,平行四边形家族就派出了几名代表,来挑战大家,有信心迎接挑战吗?
(出示课件:四个挑战)
1、初试锋芒:下面是四个平行四边形,明明认为它们的面积都是12平方厘米。你认为对吗?
为什么?(单位:厘米 图略)
2、乘胜追击:计算下面平行四边形的面积。(课本79页第5题)
3、再接再厉:一个平行四边形的停车位,底是2.5米,高是4米,一个停车位的占地面积是多少?
4、聪明小屋:下图中正方形的周长是24厘米,平行四边形的面积是多少?
(图略)
师:真不错,挑战成功。
四.收获平台,课外延伸
师:不知不觉中就要下课了。想一想,这节课你有哪些收获?
(我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)
师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进行的?
(猜想--验证--结论。这是数学上常用的探究方法,相信你们在以后的学习中会经常使用它。这节课,同学们不仅仅学到了知识,而且掌握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简单的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间互相交流一下。)
《平行四边形面积》教学设计 篇3
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:理解公式并正确计算平行四边形的面积。
教学难点:理解平行四边形面积公式的推导过程。
教学方法:动手操作、小组讨论、启发、演示等教学方法。
教学准备:
1、学具:每组两个平行四边形模型,剪刀,透明方格纸,直尺。
2、课外延伸思考题。
3、平行四边形转化为长方形的课件。
教学过程
一、创设情境,导入新课:
1、同学们,唐僧师徒去西天取经,唐僧想考考猪八戒和沙和尚谁更聪明些,便分派任务让他们去收割稻谷。唐僧说:“有两块地,一块是长方形,长9米,宽4米;另一块地是平行四边形,底是6米,高是6米。你们随便挑一块吧。”猪八戒心想挑一块面积小一点的地,可以做少一点,所以他急忙说:“我挑长方形那块地,可以做少一点”,孙悟空听了笑着说:“老猪你的如意算盘打错了。”,猪八戒怎么都不明白,同学们想知道为什么吗?
2、师:比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?
师:这节课我们就带着这些问题一起来研究《平行四边形的面积计算》(板书课题)
二、合作交流,探究新知
1、数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
2、引导:我们用数方格的方法得到了一个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
学生讨论,鼓励学生大胆发表意见。
3、归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于它的底乘高;是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下,因为我们已经计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?想不想亲自动手来验证、验证,请同学们试一试,小组商量。
学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)
教师用课件演示剪——平移——拼的过程。(多种方法)
4、我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论。可以出示讨论题。
(1)拼出的长方形和原来的平行四边形比,面积变了没有?
(2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
(3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个平行四边形转成为一个长方形,它的面积与原来的平行四边形面积相等。
同学们在验证时真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲。
板书:
平行四边形面积= 底 × 高。
5、根据长方形的面积公式得出平行四边形面积公式并用字母表示。
平行四边形的面积还可以用什么来表示。教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。
板书:S=a×h=ah=ah
6、活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
三、分层运用新知,逐步理解内化
1、(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?
2、那同学们知道孙悟空为什么笑猪八戒吗?谁来说说?(让学生讨论)
3、我们一起来听听孙悟空是怎样说的?(因为长方形面积是长9米乘以宽4米得36平方米;另一块地是平行四边形,底是6米乘以高是6米得36平方米,两块都一样大,猪八戒占不了便宜。)
4、 求下列平行四边形的面积 。
(2)判断对错:
师强调:在求平行四边形的面积时,要注意底和高是互相对应的(课件点击)
(3) 观察下面的平行四边形,形状相同吗?再仔细观察两个平行四边形,它们之间有什么关系?(课件出示等底等高的平行四边形)
生读题。
师:等底等高的平行四边形面积一定相等。
3. 思考题:你有几种方法求下面图形的面积?
四、总结全课,深化认识
通过今天的学习,你一定都有很多收获,谁愿意让大家来分享你收获的果实?
今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学习致用。
《平行四边形面积》教学设计 篇4
教学目标:使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重、难点:探索并掌握平行四边形的面积计算公式及推导过程。
教具学具:课件、平行四边形卡片、剪刀、三角板、直尺等。
教学模式:“我能行”四步教学法。(详见文后注)
教学流程:
课前交流:同学们,你们想了解老师吗?你想知道关于我的什么情况?
预设:老师的年龄是多少?教几年级?
师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?
生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。
师:想得真好,许老师就是(30)岁。
师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。 这节课我们就用这种数学“转化”思想来学习本节课。
一、情境导入,确定目标
师:1.在数学课堂上哪些地方用到了“转化”?
预设:应用题三步转化成两步,再转化成一步;求未知数X,开始给出的式子比较复杂,然后一步一步转化成简单的方程。
看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。
2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?
生:演示方法。
3.师:为什么把它拼成一个长方形呢?
预设:学过长方形面积的计算,而且能够拼成长方形。
这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。
4.刚才的图形“转化”过程,什么变了,什么没变?
5.请同学们看这个平行四边形,它的面积怎样求呢?请看我们本节课的学习目标。
(1)我会用“转化”的数学思想推导平行四边形的面积计算公式。
(2)我会用平行四边形面积公式解决实际问题。
【设计意图】情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。
二、互动展示,生成问题
师:1.你猜一猜平行四边形的面积会与什么有关?
预设:长方形、正方形、底、高、夹角、相邻的边等。
2.平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的面积。
3.请带着问题自学。(课件)
4.四人小组交流一下你是怎样“转化”平行四边形面积的。
【设计意图】通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。
三、启发思路,引导归纳
师:1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗?
2.平行四边形的面积怎么算?
3.板书:平行四边形的面积=底×高
4.你是怎样推导的?说一下你的操作过程。
5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)
6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)
7.这个平行四边形与剪拼的长方形之间有什么关系?
预设:平行四边形的面积与长方形的面积相等(板书)
8.剪拼后的长方形的长,是原平行四边形的什么?宽呢?
9.我们学习过用字母来表示数量关系式,请同学们翻开数学书P81自学用字母怎样表示平行四边形的面积。(板书:S=ah)
【设计意图】在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。
四、练习检测,拓展链接
1.练习检测卡一题。
2.课件:判断、选择题、口答列式。
3.练习检测卡二、三题。
4.谈谈你对这节课的收获,好吗?
拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。
【设计意图】归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。
板书设计:
(注:“我能行四步教学法”是我校开展的优质课教改实验项目之一,这种教学模式注意教学过程的民主化、多元化和学生个性的和谐发展,充分体现师生之间民主平等、亲密合作的教学观和师生观,具体流程为“情境导入,确定目标――互动展示,生成问题――启发思路,引导归纳――练习检测,拓展链接”。)
《平行四边形面积》教学设计 篇5
一、教学目标
(一)知识与技能
让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。
(二)过程与方法
通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。
(三)情感态度和价值观
通过活动,培养学生的探索精神,感受数学与生活的密切联系。
二、教学重难点
教学重点:探索并掌握平行四边形面积计算公式。
教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。
三、教学准备
平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。
四、教学过程
(一)创设情境,激趣导入
1.创设情境。
(1)呈现教材第86页单元主题图。(PPT课件演示)
教师:瞧!校园门口,你在哪些物体上看到了我们学过的平面图形?
(2)学生汇报交流。
(3)回顾:我们生活在一个图形的世界里,这些图形有大有小,平面图形的大小就是它们的面积。我们已经研究过哪些平面图形的面积?怎样计算?
预设学生回答:长方形的面积=长×宽,正方形的面积=边长×边长。
(4)引入新课:这幅图中除了有长方形和正方形,还有平行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入“多边形的面积”的学习。(板书单元课题:多边形的面积)
2.揭示本节课题。
复习引入。(PPT课件演示)
请大家看校园门口的这两个花坛,哪一个大呢?要比较花坛的大小,其实就是比较它们的什么?你会算哪个花坛的面积?怎样计算?那平行四边形的面积怎样计算呢?今天这节课,我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)
【设计意图】通过简单的情境创设,让学生从实际生活(教材主题图)中发现图形,巩固和加深对已学图形特征的认识,引入多边形及面积的概念,从而揭示单元课题;从比较主题图中的两个花坛的情境引入平行四边形面积计算的教学,以小见大,在渗透思考方法中揭示本节课的课题,让学生快速进入学习情境,同时又为后面探究面积公式指引了转化的方向。
(二)主动探索,推导公式
1.用面积单位测量平行四边形的面积。
(1)提问:要知道这个平行四边形的面积,怎么办?(PPT课件演示)
引导学生回顾用面积单位测量图形面积的方法。
(2)操作:现在把它们放在方格纸上,一个方格代表1 m2,不满一格的都按半格计算。平行四边形的面积是多少,你能数出来吗?长方形的面积呢?(教师适时用PPT课件演示)
(3)学生先独立数平行四边形的面积,再互相交流。
预设平行四边形的面积:
方法一:从左往右数,每行6个,有4行,平行四边形的面积是24平方米;
方法二:先数整格有20个,再数半格有8个,相当于4个整格,合起来一共是24平方米。
长方形的面积:长6米,宽4米,面积是6×4=24(平方米)。
(4)教师小结:虽然大家数的方法不一样,但同学们都是在用面积单位进行测量。
(5)填写表格。
①师生共同完成表格:平行四边形的面积是多少?它的底和高分别是多少?长方形呢?(PPT课件演示)
②引导学生观察:观察这个表格,你发现了什么?
③交流回报,小结:有的同学发现了,这个平行四边形的底与长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积与长方形的面积相等。还有的同学发现,这个平行四边形底乘以高正好等于它的面积,由此猜测平行四边形的面积=底×高。
【设计意图】面积计算最基本的方法是单位面积测量法,即用统一的面积单位进行测量,这个方法虽然学生在学习长方形和正方形的面积计算时已经使用过,但因为平行四边形中出现了半格,所以本环节教师可引导学生进行测量;对于长方形的面积,学生已会计算,可直接通过计算得出结果;再通过对比它们的底(长)、高(宽)和面积的数据,沟通这两个图形之间的联系,为后面进一步探寻平行四边形面积的计算方法做准备。
2.操作思考,推导公式。
(1)教师:看来,数方格的确能让我们知道平行四边形的面积。但是,如果有很大一块草坪,数方格方便吗?显然是不方便的。如果不数方格,怎样计算平行四边形的面积呢?
这个平行四边形的面积恰好等于底×高,那是不是所有的平行四边形的面积都等于底×高呢?看来,还需进一步研究哦!(PPT课件演示)
(2)引导学生确定探究方向:我们已经学过某些图形的面积计算方法,能否将平行四边形转化成它们来计算面积呢?请大家借助手中的平行四边形卡纸,先独立思考、动手操作,找到答案后在小组内交流。
(3)操作转化,推导公式。
①操作转化。
a.学生独立思考,动手剪拼平行四边形,将它转化成长方形后组内交流。
b.学生展示汇报。(PPT课件演示)
c.大家发现它们有什么相同之处?为什么要沿着平行四边形的高来剪开?有多少种不同的剪法?为什么?
②观察思考。
a.观察:原来的平行四边形和转化后的长方形,你发现它们之间有哪些等量关系?(PPT课件演示)
b.思考:平行四边形的底和长方形的( )相等,平行四边形的( )和长方形的( )相等,这两个图形的面积( )。(PPT课件演示)
c.学生汇报。(教师板书)
③概括公式。
你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?会用字母表示吗?(PPT课件演示,板书公式)
(4)回顾与小结。
①我们已经知道平行四边形的面积等于底乘高,回顾一下,它是怎样推导出来的?
②教师小结:首先把一个平行四边形沿高剪开后平移拼成一个长方形,再观察原来的平行四边形和拼接后得到的长方形,发现等量关系:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,两个图形的面积也相等。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。像这样把未知的平行四边形的面积转化成已学的长方形的面积来研究的方法,在我们数学学习中经常用到。如果同学们在后面的学习中碰到类似的问题,也可以用它来解决问题。
【设计意图】在尝试单位面积测量法之后,本环节首先让学生感受到数方格的局限性,启发他们将平行四边形转化为已学的图形来计算面积,激发他们探究公式的欲望;在推导公式的过程中,设计了三个层次的活动:第一个层次是操作转化,让学生达成共识——沿高剪开后通过平移将平行四边形转化成长方形;第二个层次是观察思考,让学生通过观察对比后发现转化前后图形之间的等量关系,沟通了两个图形之间的内在联系,为有效推导面积公式提供了有力的支撑;第三个层次是概括公式,水到渠成。这样设计层次清楚,目标明确。最后的小结环节,在引导学生回顾推导公式的过程中培养他们回顾反思的能力,同时又渗透转化思想。
(三)巩固运用,解决问题
1.教学教材第88页例1。
(1)出示例题,呈现问题情境。(PPT课件演示)
(2)理解题意,叙述题目内容。
①用自己的话说一说题目的意思是什么?
②学生根据图文叙述:知道平行四边形花坛的底是6米,高是4米,求花坛的面积是多少平方米。
(3)收集信息,明确问题。
①提问:从题目中你获得了哪些数学信息?要求什么?
②思考:要求花坛的面积,其实就是求什么?
③归纳:要求花坛的面积,其实就是求底是6米、高是4米的平行四边形的面积。
(4)学生独立解答。
(5)学生汇报,教师板书,规范书写。
2.课堂练习。
完成教材第89页练习十九第1题。
(1)学生独立完成。
(2)同桌互相说说自己是怎样做的。
(3)全班集体交流:这个问题你是怎样算的?
【设计意图】例1是直接从情境中选取的实际问题,既可以指导学生如何应用计算公式解决实际问题,又可以具体验证计算公式的正确性(与数方格所得的面积相等);同时还应注意对书写格式的指导,即先用字母表示计算公式,再将数据代入公式求值。
(四)变式练习,内化提高
1.基本练习。
完成教材第89页练习十九第2题。(PPT课件演示)
(1)学生独立完成。
(2)同桌互相说一说自己是怎样算的。
(3)全班集体交流第3题:这个图形的面积你是怎样计算的?(注意选择平行四边形中对应的底和高来计算面积。)
参考答案:12 cm2;18.72 cm2;4.8 cm2。
2.提高练习。
完成教材第89页练习十九第4题。(PPT课件演示)
(1)理解题意:怎样计算出这两个平行四边形的面积?需要知道什么?(先测量出平行四边形中对应的底和高,再利用公式计算。)
(2)学生独立完成。
(3)全班集体交流:两个平行四边形的底和高分别是多少?怎样计算面积?
3.拓展延伸。
等底等高的平行四边形的面积一定相等吗?面积相等的平行四边形一定等底等高吗?(PPT课件演示)
【设计意图】通过基本练习的计算帮助学生进一步理解和掌握公式,提高练习则让学生在计算与解决实际问题的过程中不断加深对公式的理解与运用,最后的拓展延伸旨在让学生在辨析中发散思维。
(五)全课总结,畅谈收获
1.今天这节课学习了什么?怎样学的?
2.今天我们主要推导出了平行四边形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导公式时,我们首先选择的是计算面积的基本方法,就是单位面积测量法,通过数方格知道了平行四边形的面积;再观察表格中的数据,猜测平行四边形的面积等于底乘高;为了验证这一猜想是否正确,又通过剪拼的操作,将未知的平行四边形转化成已知的长方形来研究,最后通过观察对比发现转化前后的平行四边形与长方形之间的等量关系,从而推导出了平行四边形的面积计算公式等于底乘高,从而也验证了猜想的正确性。在这个过程中,大家经历了测量——观察——猜测——转化——验证的过程,最后我们还利用公式解决了生活中的实际问题。
(六)作业练习
1.课堂作业:练习十九第5题。
2.课外作业:练习十九第3题。
《平行四边形面积》教学设计 篇6
1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2、通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3、运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。
探索并掌握平行四边形的面积计算方法。
理解平行四边形面积计算公式的推导过程。
电子白板课件、平行四边形模型、剪刀、初步探究学习卡
一、课前引入、渗透转化。
1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2、播放制作七巧板的视频。
3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
二、创设情境,揭示课题。
1、电子白板导出两个花坛,比一比,哪个大?
2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
三、对手操作,探究方法。
1、利用数方格,初步探究
2、出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”
四、白板演示,验证猜想。
1、探索把一个平行四边形转化成已学习过的图形。
2、观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。
3、平行四边形的面积=底×高
4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
五、巩固练习,加深理解。
1、课件出示例1
2、课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件
六、课堂小结,反思回顾。
回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?
《平行四边形面积》教学设计 篇7
教学内容分析:
平行四边形面积计算的教学是新课程标准五年级上册第79-81页的教学内容,本教学内容是在学生掌握了这些图形的特征及长方形,正方形面积计算的基础上学习的,它和三角形,梯形面积计算联系比较紧密,也是为今后进一步步学习圆面积和立体图形表面积打下基础。
设计的理念:
学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征会做高,为了让学生更好的理解掌握平行四边形面积公式。因此在教学中让学生经历猜想操作验证推理的过程,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想,感受到数学知识的应用价值。
教学目标:
1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作,观察,比较活动,初等认识转化的方法,培养学生的观察,分析,概括,推导能力,发展学生的空间观念。
3.引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。
教学重点:
使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:
通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。并能正确运用平行四边形的面积公式解决相应的实际问题。
教具,学具准备:多媒体,平行四边形硬纸片,一把剪刀。
教学过程:
一、创设情境、导入新课。
多媒体课件出示课文主题图,观察主题图,让学生找一找图中有哪些学过的图形,当学生找到图中学校门前的两个花坛时。
师:观察图中学校门口前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?
生:会计算长方形面积,不会计算平行四边形的面积。
师:可是要比较两个花坛的大小我们必须要知道平行四边形的面积怎样计算呢?今天我们就来研究平行四边形面积的计算。(板书课题:平行四边形的面积)
[设计意图:是让学生在现有知识水平中无法比较两个花坛的大小,来激发学生积极探求知识的奥秘的欲望。]
二、探究平行四边形的面积。
1.用数方格的方法探索计算面积。
师:请同学们大胆猜想一下,你想用什么方法来求平行四边形的面积呢?
生1:我想把平行四边形拉成一个长方形。
生2:我想用数方格子的方法来计算。
……
师:(1)拉动平行四边形的边框,让学生观察得知;用拉的方法不能求出平行四边形的面积。
(2)我们再来验证一下你们刚才提出的数方格子的方法行不行,用多媒体出示教材第80页方格图。我们已经知道可以用数方格子的方法得到一个图形的面积,现在请同学们用这个方法算出这个平行四边形和长方形的面积。
说明要求:一个方格表示1平方厘米,不满一格的都按半格计算。现在同学们一齐来交流一下是是怎样数的,请把数出的结果填在表格中。
同桌合作完成:
4.汇报结果:用投影展示学生填写好的表格,观察表格的数据,你发现了什么?想到了什么?
平行四边形
底
高
面积
长方形
长
宽
面积
通过学生讨论,可以得到平行四边形与长方形的底与长,高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
[设计意图:通过让学生数一数,议一议,先感受一下平行四边形与长方形的面积的联系。培养学生联想、猜测的能力,同时为下一步的探究提供思路。]
2.推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到一平行四边形的面积,但是用数方格这个方法能任意数出一些平行四边形面积吗?为什么?哪些平行四边形的面积不能用这种方法呢?
生:不方便、比较麻烦,不是处处都适用,例如没方格图的平行四边形和生活中一些的平行四边形物体。
师:既然不方便,不能处处适用,我们能否不数方格从中探索出平行四边形面积的规律呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,向学生提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?现在请大家验证一下。
(3)分组合作动手操作,探索图形的转化。
各小组用课前准备的平行四边形和剪刀进行剪和拼。思考一下;能否把平行四边形转化成自己会算面积的图形来计算它的面积。转化成一个什么图形呢?各小组组织学生动手实验、合作交流开展探究活动。各小组代表把拼剪的图形展示在黑板上,并说一说演示的过程和自己的一些想法。
生:我们就把平行四边形变成一个长方形,因为长方形的面积我们已经会计算了。
引导学生:用割补的方法沿着平行四边形任意一条高剪开,平移后都可以得到长方形。
用多媒体演示平移和拼的过程。剪——平移——拼。
[设计意图:通过小组合作,共同完成操作。使每个学生能从感性上认识利用割补把平行四边形通过剪—平移—拼成一个长方形的演示全过程。]
(4)小组讨论,合作交流,探索平行四边形的面积计算公式。
我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论后,根据学生回答情况出示讨论题目给学生。
拼出的长方形和原来的平行四边形相比,面积变了没有?
拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
能否根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
[设计意图:创设探究的空间和时间,采用自主探索,合作交流等学习中,让学生了解平行四边形的面积与长方形的面积之间的关系,掌握了平行四边形面积的计算方法。]
(5)小组交流汇报,归纳叙述出自己的推导过程。
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。那么平行四边形的面积等于什么?
因为:长方形的面积=长×宽,
所以:平行四边形的面积=底×高
如果用S表示平行四边形的面积,用a表示平行四边形形的底,用h表示平行四边形的高,同学们能否尝试用字母表示平行四边形面积计算公式。S=ah
学生思考:要求平行四边形的面积必须要知道什么条件呢?(平行四边形的底和高)
3、平行四边形面积计算公式的应用。
既然我们已经推导出平行四边形面积计算公式,那么我们现在可以运用公式解决一些实际的问题。
(1)、现在课本主题图中学校门口两块花坛的大小这个问题现在可以解决吗?怎样解答呢?
生:先量出平行四边形的底和高再按平行四边形面积计算公式来计算,并说说计算过程,再比较大小。
(2)运用平行四边形面积计算公式让学生自学例1。
师:例1是给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做、并说说解题方法和板书结果。
学生板书例1的结果;s=ah=6×4=24(平方米)
[设计意图:在解决问题过程中能让学生进一步理解和掌握平行四边形面积的计算方法。还能让学生感受到学习数学的价值。]
三、巩固拓展。
1、给下面各题目填空。
(1)一个长方形的长是5厘米,高是3厘米,这个长方形的面积是()平方厘米。
(2)一个平行四边形的底是8米,高是5米,这个平行四边形的面积是()平方米。
(3)一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是()平方分米。
[设计意图:通过反复计算平行四边形的面积,加深学生对面积公式的理解和更熟练地运用平行四边形的面积计算公式解决实际问题。]
2、你能想办法求出下面两个平行四边形的面积吗?
3、同学们自己画一个平行四边形,并标出平行四边形的底和高的数量,同桌交换来求这个平行四边形的面积。
[设计意图:这两题练习设计可让学生想办法找出平行四边形的底和高才能求出面积,这样设计进一步加强了学生作平行四边形的高的方法,同时培养了学生动手操作和应用公式的实践能力。]
四、课堂总结
通过本节课的学习你有什么收获?你知道平行四边形面积公式是怎样推导的吗?要求平行四边形的面积就必须知道什么条件呢?你会运用平行四边形的面积计算公式来解答一些实际问题。
请你们找出生活中用到的平行四边形,并计算出它的面积,在下节课上进行交流好吗?
板书设计:
长方形的面积=长×宽
平行四边形的面积=底×高
用字母表示是:S=a×h=a·h=ah
《平行四边形面积》教学设计 篇8
教学内容:
《义务教育课程标准实验教科书数学》(人教版)五年级上册第80页。
教学目标
1.知识与技能
1)使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2)使学生理解转化的思想,初步学会运用转化法来解决问题。
3)培养学生的合作意识和自主探究解决问题的能力。
2.过程与方法
让学生充分经历平行四边形面积的探究过程和公式的推导过程,培养学生的实际操作能力和抽象概括能力,同时发展学生的空间观念。
3.情感态度与价值观
通过解决“山西省的面积大约有多大”这个问题,向学生渗透爱祖国爱家乡的良好情感,树立起学生的民族自豪感和自信心。
教学重点、难点
教学重点:探究平行四边形的面积计算公式,并会应用公式解决实际问题。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
教学准备:
多媒体课件、平行四边形学具等。
教学过程:
一、设置悬念激发兴趣
师:同学们,你们看,我们中国的版图像一只昂首挺胸的雄鸡,在这九百六十万平方千米的土地上,我们山西省就位于祖国的华北西部。你知道山西省的面积大约有多大吗?
[学情预设:摇头或不知道。]
(出示:中国版图)
师:请大家仔细观察,山西省近似我们学过的什么平面图形?
[学情预设:学生根据观察可能会说:四边形或平行四边形。]
师:你很会观察。要想知道山西省的面积大约有多大,需要我们解决什么问题?
[学情预设:学生可能会说:计算出这个平行四边形的面积,就可以知道山西省的面积有多大了。]
师:对,这节课我们就一起来研究“平行四边形的面积”。
(引出课题并板书:平行四边形的面积)
[设计意图:新课程指出:数学来源于生活。通过从生活情境中引入问题、设疑激趣,激起学生探究的欲望,直接引入研究课题。]
二、动手操作引发欲望
1、回忆平行四边形的底和高。
师:同学们,平行四边形有哪些特征,你们还记得吗?
[学情预设:
生1:平行四边形对边平行、对角相等。
生2:还有底和高。]
师:我们知道平行四边形是两组对边分别平行且相等的图形,如果从这点引出一条高,你知道和这条高相对应的底在哪里吗?
[学情预设:学生根据不同的高,找到所对应的底。]
师:由此,你发现了什么?
生:底要和高相对应。
师:对,这一点值得注意。
[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在探究之前,回忆平行四边形的有关知识,让学生找到此知识的原知识点,激发学生学习的兴趣,从而顺利的进行平行四边形面积计算公式的探究。]
2、第一次探究
师:回忆起平行四边形的底和高,就可以顺利的研究平行四边形的面积了。现在这个平行四边形已经缩小放到大家的学具袋当中了,请大家利用学具袋中的学具,想办法计算出这个平行四边形的面积。
(小组活动,教师巡视)
[学情预设:
生1:直接数。
生2:间接数。
生3:沿边上的高剪开。
生4:沿中间的高剪开。
生5:沿两边的高剪开。……]
师:我看到大家都已经研究出计算这个平行四边形的面积的方法了,请每个小组选一名代表到前面来给大家边说边演示一下。
(小组汇报)
[学情预设:
组1:用直接数方格的方法。]
[问题讨论:师抓住“不满一格的如何计算”这个问题,让小组展开讨论,从而初步渗透转化思想。]
师:哪个小组和他们的方法不一样?
[学情预设:
组2:间接数。
组3:沿边上的高剪开。
组4:沿中间的高剪开。
组5:沿两边的高剪开。……]
师:由此,你又发现了什么?
小结:任何一个平行四边形,只要沿着高剪开就可以拼成长方形。
[设计意图:新课程倡导让学生在自主探索、合作交流、动手实践的基础上充分经历数学活动的过程,获得广泛的数学活动经验。所以我在这一环节就让学生自己经历探究的过程,得出多种方法,体会转化前后的这两种图形之间的联系与区别,为后面公式的推导做好铺垫。]
3、第二次探究
师:同学们,你们是否想过,如果要计算这么大一个平行四边形的面积,或者比他更大的平行四边形的面积,能用这张小小的方格纸数出来吗?
师:请大家再想一想,在我们生活当中有很多物体的形状都是平行四边形的,比如像花坛、麦田、楼梯扶手等,要计算它们的面积,我们还能用数方格的方法吗?还能用这种割下来补过去的方法吗?
生:不能。
师:有没有一种既科学又简便,象计算长方形的面积一样,运用一定的公式来解决的方法呢?
生:有。
[学情预设:学生利用学具验证自己的猜想:平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽]
(板书:长方形的面积=长×宽
平行四边形的面积=底×高)
师:平行四边形的面积公式还可以用字母来表示:请大家打开课本第81页,自学例1上面的两段话。
[学情预设:学生汇报自学成果,教师板书字母公式。]
师:用字母表示平行四边形的面积公式:S=ah
小结:同学们,刚才我们研究得非常好,各种平面图形是有一定的联系,也是可以相互转化的,今天我们把平行四边形转化为已学过的`长方形,从而找到了计算平行四边形面积的方法。
即:平行四边形的面积=底×高
[设计意图:著名教育家布鲁纳指出:掌握基本的数学思想和方法能使数学更易于理解和更便于记忆。平行四边形面积计算方法的教学是进行数学思想方法教学的良好契机。在本环节中,我不只是满足于单纯的平行四边形面积计算方法的学习,更注重引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力。]
三、联系实际解决问题。
师:解决课前遗留问题:山西省的面积大约有多大?
[设计意图:数学来源于生活,又回归于生活。在解决问题的同时,渗透情感教育。]
四、课后延伸渗透转化
师:吉林省近似学过的什么平面图形?
生:三角形
师:会计算它的面积吗?(不会)我建议大家利用转化的思想方法下课后继续研究。
[设计意图:数学教育的价值目标不仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得数学的基本思想方法,并能灵活运用方法解决在以后的学习中遇到的问题,达到举一反三的效果,提高解决实际问题的能力。]
五、板书设计:
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
《平行四边形面积》教学设计 篇9
[课程标准]
探索并掌握平行四边形的面积公式,并能解决简单的实际问题。
[学情分析]
学生在前期的学习中,已经认识了平行四边形,并且会画出平行四边对应底边上的高,还会计算长方形的面积,这些都是本节课学习可以利用的基础。对于平行四边形,学生在日常生活中已经经历过一些感性例子,但不会注意到如何计算平行四边形的面积,学起来有一定难度。经调研发现,学生对数方格的方法、剪拼法有一定的了解,但是让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。
鉴于此,帮助学生理解平行四边形转化成长方形后长方形的长和宽与平行四边形底和高的关系是教学的关键所在。所以,从学生的剪拼、观察交流到借助课件的演示,都在引导学生理解图形间的关系。
[学习目标]
1、通过操作活动,经历推导平行四边形面积计算公式的过程,能用语言叙述出平行四边形面积的推导过程,得出平行四边形的面积公式。(CS)
2、能运用公式计算平行四边形的面积,并能解决一些相关的实际问题。(CS)
[评价任务]
评价任务1:完成活动1,活动2,活动3,活动4,活动5,活动6,活动7,推导出平行四边形的面积公式。
评价任务2:完成活动8和练习1,练习2,练习3,运用平行四边形面积公式解决相关的实际问题。
[资源与建议]
1、本节课是小学数学人教版五年级上册第六单元“多边形的面积”的第一课时,是学生在掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,学好这节课同时又是进一步学习三角形面积、梯形面积、圆的面积的基础。教材引领学生经历“提出问题——猜测——验证——推导——解决问题”这样一个过程,整个安排体现知识的形成过程,渗透转化的思想,为后面学习其它平面图形面积公式的推导建立模型。
2、相关的资源:(1)多媒体课件,主要依托课件进一步演示平行四边形转化成长方形的的过程,找出联系,帮助学生顺利推导出平行四边形的面积公式。(2)平行四边纸和剪刀,主要是让学生通过剪拼把平行四边形转化成长方形,让学生经历平行四边形面积公式的推导过程,渗透“转化”思想。
3、本课时的学习按以下流程进行:情境导入用数方格的方法数出平行四边形的面积把平行四边形转化成长方形推导出平行四边形的面积公式巩固应用。
4、本节课的重点是掌握平行四边的面积计算公式,并能正确运用公式解决问题,通过操作活动和应用检测来突出重点;本节课的难点是平行四边形面积计算公式的推导。主要通过剪拼、交流和课件演示来把平行四边形转化成长方形,找出长方形和平行四边形的关系,从而顺利推导出平行四边形的面积公式。
[教学过程]
一、情境导入
出示两个美丽的花坛:请大家观察一下,这两个花坛哪一个大呢?
师:大家各有各的看法,要比较它们的大小其实上是比较它们的面积,长方形的面积怎么算吗?(长方形的面积=长×宽)那平行四边形的面积你会计算吗?今天我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)
[设计意图:通过观察情境图,明确要比较哪个花坛大,就得知道这两个花坛的面积,从而确定本节课学习内容:怎样计算平行四边形的面积?]
二、探究新知
1、用数方格的方法计算平行四边形的面积。师:我们以前在研究长方形面积时用到了数方格的方法,今天我们也先用数方格的方法。
(1)先看要求(女生读要求):一个方格代表1平方米,不满一格的都按半格计算。
(2)、活动1:打开课本87页,在方格纸上数一数,并把表格填一填。(PO1)
(3)、活动2:小组讨论:仔细观察这些数据,你发现了什么?(PO1)
生:平行四边形的底与长方形长相等,平行四边形的高与长方形宽相等,平行四边形面积底与长方形的面积相等。
生:我发现平行四边形的面积=底×高
师:平行四边形底6高4面积24,平行四边形的面积=底×高,这是不是一个巧合呢?是不是所有的平行四边形的面积都等于底×高,这只是我们的猜测,下面我们来验证一下。
[设计意图:通过让学生观察所填数据,发现长方形的长和宽与平行四边形底和高的关系,为后面推导平行四边形的面积公式做准备。]
2、合作交流探究新知
(1)、活动3:小组讨论:小组商量一下,你们准备用什么方法,把平行四边形转化成我们学过的哪个图形?怎样转化?
(2)、活动4:动手操作
以小组为单位,请大家利用准备好的平行四边形和剪刀动手试一试,通过剪,拼等方法把一个平行四边形转化成长方形,然后把你的操作过程在小组内说一说。(PO1)
(3)、活动5:学生汇报、交流。
师:好多小组已经做好了,哪个同学愿意给大家展示一下,到台前来,
(边演示边说剪拼过程,并贴剪拼图于黑板。)
师:你转化成了什么图形?你是怎样把平行四边形转化成长方形的?
你是沿着平行四边形哪条线剪的?(其中一条高)不沿着高剪行吗?为什么?(这样才可以得到直角)沿着斜的方向剪开,能拼成一格长方形行吗?
哪个小组和他剪的不一样?
师:看来沿着平行四边形任意的一条高剪开,然后平移都能转化成一个长方形。
(4)、大屏幕演示不同的拼法。
(5)、活动6:小组讨论
师:我们运用了转化的方法把平行四边形转化成平行四边形,请大家结合刚才的剪拼过程,回想一下刚才的剪拼过程,观察原来的平行四边形和剪拼出的长方形,思考以下三个问题,围绕这些问题进行讨论:(PO1)
小组讨论:
a、拼成的长方形的面积和原来平行四边形的面积—————。
b、拼成的长方形的长与原来平行四边形的底———————。
c、拼成的长方形的宽与原来平行四边形的高———————。
(6)学生汇报,教师总结板书:
师:我们把一个平行四边形转化成为一个我们学过的长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
教师板书平行四边形的面积=底×高,
(7)活动7:谁能把这个过程完整的说一遍,谁再完整的说一遍。(DO1)
(8)介绍板书字母式。
师:我们经过大胆猜测,操作验证,推导出平行四边形的面积=底×高,如果我们用S表示面积,a表示底,h表示高,那么平行四边形的面积公式就可以表示为S=ah。
观察这个公式,我们可以发现,要求平行四边形的面积必须知道什么条件?(底和高)现在会求平行四边形花坛的面积吗?
[设计意图:学生在操作、交流、归纳中探究出了平行四边形的面积公式,经历了知识形成的过程,加深了对知识的理解,并且凸显了“转化”思想的作用。]
三、实践应用
活动8;学习例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?试一试吧(一人上前做,其余学生在练习本上做),学生回答。(PO2)
[设计意图:在明确平行四边形的面积公式后,让学生会利用公式解决实际问题。]
四、课堂检测
1、练习1:看图计算平行四边形的面积:(单位:厘米)(DO2)
2、练习2:你能算出芸芸家这块菜地的面积吗?(DO2)
3、练习3:有一块平行四边形的玻璃,面积是840平方分米,底是30分米。这块玻璃的高是多少分米?(DO2)
[设计意图:通过不同习题的练习,巩固对平行四边形面积公式的应用。]
五、全课小结。
想一想你这节课学到了什么?
板书设计:平行四边形的面积
长方形的面积=长×宽
↓↓↓
平行四边形的面积=底×高
S=a×h
=ah
=ah
《平行四边形面积》教学设计 篇10
教学内容:
人教版义务教育课程标准实验教科书《数学》五年级上册第80—81页。
教学目标:
①理解并掌握平行四边形的面积计算公式。
②会运用公式正确计算平行四边形的面积。
③培养操作能力和推理能力,养成积极思考的良好学习习惯。
教学重点:
理解并掌握平行四边形的面积计算公式。
教学难点:
平行四边形的面积计算公式的推导。
教具和学具:
电脑、课件、平行四边形、长方形、剪刀、尺。
教学过程:
一、前提测评。
1、(课件出示长方形)这是什么图形?长方形有什么特征?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]
2、(课件出示平行四边形教具)这又是什么图形?平行四边形有什么特征?
3、指出平行四边形对边上的高。
二、认定目标。
1、(出示平行四边形)谈话引入:你想知道这个平行四边形面积有多大吗?[板书课题:平行四边形的面积]
2、看到这个课题,大家想学习哪些知识呢?
三、导学达标。
(一)、用数方格的方法求平行四边形的面积。
(1)以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(电脑显示数方格的方法)
⑵引导学生比较方格图中两个图形的数据之间的关系。设问:根据数据你发现了什么?
(3)谈话:虽然我们用数方格的方法求出这个平行四边形的面积,但如果要求一个很大的平行四边形果园的面积,用这种方法方便吗?(不方便)既然不方便,我们不数方格能不能用公式计算平行四边形的面积呢?
(二)、推导平行四边形的面积计算公式。
⑴、学生实验操作。
谈话:请拿出你的平行四边形, 想办法把平行四边形剪、拼成长方形。
在剪、拼前,大家想一想长方形的特征是怎样的?
a、学生实验操作。
b、问:你是怎样把平行四边形剪、拼成长方形的?
c、电脑显示剪拼过程。
⑵、讨论拼成的长方形与原平行四边形的关系。
a、谈话:平行四边形可以剪、拼成长方形,它们之间有什么关系呢?
①平行四边形与拼成的长方形的面积有什么关系?
②平行四边形的底、高分别与拼成的长方形的长、宽有什么关系?
③长方形的面积公式怎样表示?
④平行四边形的面积公式怎样表示?
b、谈话:请看屏幕, 根据提纲大家仔细观察平行四边形与拼成的长方形有什么关系。(电脑显示拼成的长方形的长、宽、面积与原平行四边形的底、高、面积的关系。)
c、板书:
长方形的面积=长×宽
‖ ‖ ‖
平行四边形的面积=底×高
d、齐读两遍公式
(三)实际运用。
1、导语:我们理解并掌握了平行四边形的面积计算公式,那么,会运用公式正确计算平行四边形的面积吗?
2、学生运用公式计算方格图中的平行四边形的面积。
⑴、学生计算。[板书:6×3=18(平方厘米)]
⑵、谈话:运用公式和数方格的方法求这个平行四边形的面积,结果一样吗?(一样)哪一种方法方便?(运用公式)因此,以后我们一般运用公式求平行四边形的面积。
3、强调运用公式计算平行四边形面积的条件。
师小结:由此可见,运用公式求平行四边形的面积必须知道哪两个条件?
4、谈话:我们已经知道平行四边形的面积公式,对于一些实际问题大家有信心去解决吗?请看例题。
⑴、出示例题,学生默读一遍:
一块平行四边形菜地,底长32.5米,高23.5米,它的面积是多少?(得数保留整平方米)
⑵、审题:题中已知什么条件?要求什么?求这块菜地的面积够条件吗?
(电脑显示菜地的透视图,并闪动菜地的底和高)计算结果要求怎样?
⑶、学生列式计算,一生板演。
⑷、评讲。
(五)、实际应用训练。
①课本p72.2
②p73.5
四、教师总结:你有什么收获?
五、谈话:刚才你们不是想知道自己做的平行四边形的面积有多大吗?
看谁算得最快?
六、作业:72页
评议记录:
本节课教学过程完整合理,教学方法选用恰当,重难点突破较好,师生互动,生生互动合理,活泼有序,板书设计合理,教态亲切自然,较好地完成了本节课的教学目标。
本节课不足之处是教师在教学过程中,讲话声音略显小了一些,激情不够;偶尔有一句不够准确的数学语言,望教者在今后的教学中加以改进。
《平行四边形面积》教学设计 篇11
教学内容:
人教版实验教科书五年级数学上册第五单元。
教学目标:
1、让学生经历看、数、想、剪、移、拼、说等过程探讨平行四边形的面积公式,并能用字母表示,会用公式计算平行四边形的面积。
2、通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透“转化”和“平移”的思想,体会“等积变形”的方法,并培养学生的分析,综合,抽象概括、语言表达和动手解决实际问题的能力。
3、通过活动,激发学习兴趣,培养探索精神,获得成功体验,感受数学与生活的密切联系。
教学重点:
使学生理解和掌握平行四边形面积公式并会应用。
教学难点:
理解平行四边形面积计算公式的推导过程。
教具、学具准备:
平行四边形纸片、剪刀及电脑课件、三角板。
教学流程
(一)创设情境,设疑引入
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢?
师:这都是你们用眼睛看的不一定准确,我们必须想其他的办法来证明,但不管用什么办法来比较它们的大小,必须知道他们的什么?它们的面积你会算吗?
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
板书课题:平行四边形的面积
(设计意图:本环节在学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,感受数学与生活的密切联系。)
操作探索,获取新知
1.数方格感知平行四边形和长方形之间的关系
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,要求自学完成中间的格子图和表格,最后认真观察这个表格中的数据,看你发现了什么?(电脑出示)
(2)汇报交流自己的发现。
(3)提问:如果我给你一个好大好大的花坛,不用数方格的方法,你能很快地计算出平行四边形的面积吗?
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
(设计意图:本环节主要通过让学生用数方格的方法,初步感知平行四边形与长方形面积之间的联系,同时为下一步的探究提供思路,做好铺垫。)
2、应用“转化”思想,引入割补、平移法.
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成已经会计算面积的图形。(这时教师巡视,了解情况)
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法
(设计意图:通过让学生亲身经历把平行四边形转化成一个长方形的全过程,为下一个环节建立联系,推导公式起到了一个推波助澜的作用。同时告诉学生学会一种解题方法比做十道题都重要,教会学生“会学”。)
3、建立联系,推导公式
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?( = )
b、拼成长方形的长与原来平行四边形的底有什么关系?( = )
c、拼成长方形的宽与原来平行四边形的高有什么关系?( = )
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)
提问:用字母怎么表示呢?自学课本81页。
学生回答s=ah(板书)
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)
(设计意图:本环节主要让学生观察,发现、比较、归纳,从具体到抽象,从感性到理性循序渐进,推导出了平行四边形面积的计算公式,充分尊重了学生的主体地位,突破了难点,解决了关键,发展了学生能力。)
(二)巩固应用,内化新知
a、前面的花坛题
b、课本82页第2题:你能想办法求出下面两个平行四边形的面积吗?
(教师巡视,收集典型的错误,强调书写格式,对应的底和高)。
(设计意图:此练习题量虽然不大,但涵盖了今天所有的知识点,具有一定的弹性,使不同的学生得到了不同的发展,从而进一步内化了新知。)
(四)课堂总结,深化新知
师:同学们,通过今天的学习,你有什么收获呢?
(设计意图:师生共同概括小结,这样会给学生一个系统、完整的印象,不但使本节课有了一个精彩的结尾,而且进一步深化了新知。)
课后反思:
通过认真反思本节课的教学,我从中认真总结了一些成功的经验和失败的教训。
●成功经验
一、注重采用“自主探究、合作交流”的学习方式。
尽可能让学生充分暴露自己的思维过程,进行思维碰撞,发挥小组集体的智慧,进一步出主意、想办法,有效解决问题,体现了数学教育的实质性价值,立足了“基本”,注重了“过程”。
二、注重数学方法和数学思想的渗透。
在本节课中,主要让学生动手操作,亲自感知,利用“割补、平移”法经历了把平行四边形转化成一个长方形的全过程,有效地渗透了“转化”的思想,从而学会了利用旧知识来解决新问题,同时使学生明白学会一种解题方法比做十道题都重要,教会学生“会学”。
三、注重运用现代教学手段辅助课堂教学。
这节课恰当地运用了多媒体课件演示,直观、生动、形象地展现了图形的转化过程及各部分之间的对应关系,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其它教学手段无法比拟的。
●失败教训
一、在教学中个别地方没有给学生留有足够的思考时间。
比如:当追问“为什么要沿着高剪开呢?”这时学生回答不出来,由于担心时间不够,我提示学生想想长方形的特征,如果不急着提示,让学生结合自己转化后的图形多看看、多想想,也许学生自己就能解答。作为教师,学生能自己解决的问题,我们绝不代替。
二、教学中的细节问题注意不够。
例如,发给学生的学具“平行四边形”就忘记在四周描上一个边框,只是在课件上有所显示,,从而不利于教学平行四边形与转化后的长方形之间的联系。特别在讲这些平面图形的周长时,如:教学圆的周长时,如果不描,那只是圆的内部,而不是圆的周长。因此,细节不容忽视。
总之, 教学为我们留有了缺憾,有了缺憾,并不可怕,关键是我们必须认真反思总结,从缺憾中走出来,化缺憾为精彩!
【《平行四边形面积》教学设计】相关文章:
平行四边形的面积教学设计06-13
平行四边形的面积的教学设计06-25
《平行四边形的面积》教学设计04-24
《平行四边形面积》教学设计07-02
平行四边形面积的计算教学设计08-01
《平行四边形的面积》教学设计范文06-18
《平行四边形的面积》教学设计模板07-01
平行四边形的面积的教学设计范文07-04
《平行四边形的面积》优秀教学设计02-12