圆的面积教学设计

时间:2023-12-07 17:30:04 博耿 教学设计 我要投稿

圆的面积教学设计范文(精选19篇)

  作为一名无私奉献的老师,通常会被要求编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。我们应该怎么写教学设计呢?下面是小编精心整理的圆的面积教学设计范文(精选19篇),仅供参考,希望能够帮助到大家。

圆的面积教学设计范文(精选19篇)

  圆的面积教学设计 1

  一、激趣导入

  1、课件出示牧羊图,让学生欣赏,并找一找你认识的平面图形。图画内容:把一只羊用一根2米长的绳子拴在树桩上吃草。

  2、谈话:同学们,羊能够吃草的最大范围是什么形状?羊能够吃到多大面积的草呢?你们想知道吗?今天这堂课我们就一起来学习“圆的面积”这一知识,相信上完这一课,大家一定能够解决这个问题。

  3、看到这个课题,你想知道些什么?

  学习目标:

  (1)了解什么是圆的面积;

  (2)了解与哪些因素有关;

  (3)知道圆面积公式的推导过程,掌握圆面积的计算公式,会计算圆的面积。

  二、实践导学

  (一)认识圆的面积

  1、什么叫圆的面积。

  2、小组讨论

  3、圆的大小主要与哪些因素有关?

  (1)半径;

  (2)直径;

  (3)周长。

  (二)回忆平行四边形面积公式推导过程

  1、指名分别说出平行四边形面积公式推导过程。(然后课件展示)

  2、谈话:我们能不能也象求平行四边形面积公式一样将圆转化成已学过的图形来求面积呢?

  3、小组讨论

  (三)操作探究

  1、转化圆形推导公式

  (1)让学生拿出卡纸(1),观察卡纸(1)上的圆被等分成多少分,圆被转化成什么图形?

  (2)让学生拿出卡纸(2),观察卡纸(2)上的圆被等分成多少分,圆又被转化成什么图形?

  (3)教师课件展示圆被平均分成16等份后转化的图形。

  (4)观察比较,你有什么发现?

  2、引导学生观察比较,推导圆面积计算公式。

  (1)将圆通过剪拼,可以转化成已经学过的`什么图形?

  (2)新的图形与原来的圆有什么联系?

  (3)试推导圆的面积公式。(课件展示)

  长方形的面积=长×宽

  圆的面积=c÷2×r=2πr÷2×r=πr2

  s=πr2

  三、练习巩固

  1、运用公式学习例1、

  学生试做,说根据,总结强调。

  2、完成基本练习(做一做)

  四、拓展提高

  1、解决“小羊吃草”问题

  圆的面积教学设计 2

  教学目的

  1.通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;

  2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  教学重点:圆面积计算

  教学难点:公式以及推导。

  教学过程

  一、复习并引入课题。

  1.口算:2π 9.42÷π 12.56÷π

  2.已知圆的半径是2.5分米,它的周长是多少?

  3.一个长方形的长是6.2米,宽是4米,它的面积是多少?

  4.说出平行四边形的面积公式是怎样推导出来的?

  5.出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?

  课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。

  二、新课讲授

  1.圆的面积的含义。

  问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

  2.圆的面积公式的推导。

  问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)

  问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图)问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)

  教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  强调:如果分的等份越多所拼的图形就越接近长方形。

  问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)

  引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?

  学生独立完成圆面积公式的推导:

  总结:我们用S表示圆的面积,那么圆面积的大小就是:

  再次强调:

  (1)拼成的图形近似于什么图形?

  (2)原来圆的面积与这个长方形的面积是否相等?

  (3)长方形的长相当于圆的哪部分的长?

  (4)长方形的宽是圆的哪部分?

  (5)用S表示圆的面积,那么圆的面积可以写成:S=πr

  2 3.圆面积公式的应用。

  师:我们回头看刚才的问题,圆形花坛的直径是20m,这个花坛占地多少平方米?

  学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?

  (学生独立完成,教师巡视,对有困难的学生给予辅导。)

  教师板演计算过程。

  出示例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是cm,它的面积是多少?

  问题:你能利用内圆好外圆的面积求出环形的面积吗?

  学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表回答问题,在黑板上演示计算方法,集体纠错。)

  三、巩固练习。

  1.根据下面所给的条件,求圆的面积。

  半径2分米。

  直径10厘米。

  (1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

  (2)强调书写格式,运算顺序与单位名称。

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。

  四、课堂小结

  总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!

  另外,我们在前面也学习了如何求圆的周长,需要注意的是:

  (1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。

  (2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;

  (3)计算圆的面积用面积单位,计算圆的周长用长度单位。板书圆的面积

  长方形的面积=长×宽圆的面积=周长的一半×半径S=πr×r S=πr

  教学反思

  圆的面积是学生在学习了圆的基本特征、圆周长的探讨、应用后学习的,因为学生在学习圆的周长公式探讨的时候已经明白了“化曲为直”的数学思想,所以在探讨圆的面积公式时,在这个基础上再渗透“数学的极限思想”,学生在这样的情况下,学习的圆的面积计算,有利于学生知识的迁移,这样,也是学习上的一次飞跃,所以,在教学过程中,我注重了以下几个环节的教学:

  一、从圆的周长到圆的面积体验其中不同

  本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

  二、大胆猜测,激发探究

  在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的`面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。

  三、演示操作,加深理解当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。

  四、引导学生主动参与知识的形成过程。

  五、存在和改进的地方有:

  1、学生在知识技能形成的过程中,有个别学生没有积极思考,不懂得如何灵活运用知识解决一些实际问题;

  2、学生的计算有待加强,在上课过程中发现学生的计算速度比较慢,学生还没有达到要求,特别是当半径等于一个小数时,学生很多就犯错了!如:r=0.3厘米,求圆的面积,有部分学生会把0.3的平方算成是0.9,结果就出错,这在以后的计算练习中引导学生认真计算,培养学生认真审题的良好习惯!

  圆的面积教学设计 3

  一、 教学内容

  人教版数学六年级上册

  二、教材分析

  在平面图形的学习中圆安排在最后一个,是在学习面积的认识及长方形、正方形、平行四边形、三角形、梯形的基础之上安排的。

  本单元安排了圆的认识、圆的周长和圆的面积。《圆的面积》是本单元的一个教学难点,圆是由曲线围成的图形,教材中介绍的把圆通过等分拼成近似的长方形,分的份数越多就越接近长方形,这里体现了极限的思想。另一种思路是在圆内画正内接多边形,使多边形的面积越来越接近圆,这也就是刘徽的割圆术,体现了极限的思想。在这个化圆为方的过程中,加强了转化思想的渗透。与此同时,让学生感受到中国古代的优秀数学成就,增强学生们的民族自豪感。

  三、学情分析

  本课是在学生掌握了面积的含义及长方形等多边形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的。通过课前调查,有20%的同学知道圆的面积公式,但只知道公式却不知道怎么来的,有10%的同学认为知道,但写出的公式不正确。针对以上情况,我把化圆为方定为本课的教学难点,把公式的推导作为重点,学生在自主探究与合作交流发现圆的面积公式。

  四、教学目标

  1、理解圆的面积的意义及公式的推导过程。

  2、在自主探究中体验转化思想和极限思想。

  3、培养学生独立思考、合作交流的学习方式,学习刘徽、祖冲之勇于探索、严谨治学的科学态度,激发学生对中国传统文化的'自豪感。

  五、教学重点

  理解圆的面积公式的推导过程。

  六、教学难点

  化圆为方体会极限思想。

  七、教学准备

  PPT 圆片剪刀

  八、教学流程

  九、教学过程

  (一)创设情境,引出新知

  课件:小马吃到青草的最大面积是多少?要解决这个问题就是求圆的面积。这节课咱们就来研究圆的面积,揭示课题。

  (设计意图:通过本环节帮助学生结合生活实际理解圆的面积的概念,明确本节课的学习任务。)

  (二)回顾复习,总结方法

  1、我们在推导其他图形的面积公式时是怎样研究的呢?复习长方形、平行四边形、三角形、梯形的面积公式推导。

  2、前面的学习对研究圆的面积有什么启发吗?

  小结:你能把前面学习的方法用到圆面积的研究中,这说明你很会学习。

  (设计意图:通过复习找到学生的原有认知,运用正迁移寻找到研究圆面积的方法。)

  (三)尝试转化,推导公式

  1、圆能转化成我们学过的什么图形呢?请你大胆猜测一下。

  2、请你先想一想圆能转化成什么图形,然后再动手剪。

  活动要求:

  (1)圆能转化成我们学过的什么图形?

  (2)圆和转化后的图形有什么联系?

  (3)通过转化后的图型你能推导出圆的面积公式啊?

  提示:先独立思考,然后再和同桌讨论一下。

  预设一:圆内正多边形

  1、圆内只剩正方形

  (1)指名说想法

  (2)对于他的想法你有什么想法吗?

  2、圆内画正方形

  (1)出示:把圆转化成正方形和4个小部分

  你看前面同学把这4个小部分去掉了,你为什么粘在这了呢?

  (2)方法同上,但是在拼成的椭圆形上画正方形。

  请第二个同学说一说。

  (3)圆内正六边形

  指名说想法。

  比较这正四边形和正六边形两种方法,你发现了什么?

  想象一下,如果继续分下去,正十二边形、正二十四边形会怎样呢?

  (4)介绍刘徽的割圆术和祖冲之。

  预设二、沿半经剪

  1、拼成长方形或平行四边形

  (1)展示学生作品

  指名说想法。(分的份数少的)

  比较沿半径分的几种方法:观察一下这几种方法,你有什么想法呢?

  (2)渗透极限思想

  如果继续顺着大家的思路往下分的话,想象一下:16份,32份呢?。

  出示课件:电脑演示由8等分到32等分

  小结:我们这几位同学沿着半径把圆剪开,因为圆的半径有无数条且相等,所以圆分的份数就有若干份,分的越多拼的图形就越接近长方形。

  (3)圆和转化后的图形有什么联系呢,你能独立推导出圆的面积公式。

  预设三、展示其他图形

  指名说想法

  1、转化成梯形、三角形

  2、推到面积公式

  小结:你们的想法独具匠心,思维与众不同。刚才我们努力的把圆转化成其他图形,虽然方法不同,但是殊途同归。咱们同学可真了不起,自己推导出了圆的面积公式。

  (设计意图:本环节为学生提供独立探究的空间,调动多种感官使学生在动手剪、开口说的过程,体会转化的思想。通过比较、课件演示,渗透极限的思想。)

  (四)应用公式,解决问题

  1、当这个圆的半径是1米时,小马吃草的面积是多少?

  2、当这个圆的直径是2米时,小马吃草的面积是多少?

  3、当这个圆的周长是6.28米时,小马吃草的面积是多少?

  十、板书设计:

  圆的面积

  转化图形 建立联系推导公式

  平行四边形的面积=长× 宽

  圆的面积 =周长的一半×半径

  S =∏r× r

  = ∏r2

  圆的面积教学设计 4

  教材分析:

  圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。教材将理解“化曲为直”的转化思想在活动之中。通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。

  学情分析:

  学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用 学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。

  教学目标:

  1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  2、能正确运用圆的面积公式计算圆的`面积,并能运用圆面积知识解决一些简单的实际的问题。

  3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

  教学过程:

  一、回顾旧知,引出新知

  1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。

  2、学生回答后老师让学生上前展示自己的方法

  二、创设情境,提出问题

  1、教师引导观察,说说从中得到那些数学信息?

  2、老师引导,找出与圆的面积有关的数学问题。

  3、学生回答,老师板书(圆的面积)

  三、探究思考,解决问题

  1、让学生估计圆的面积大小

  (1)与同桌说一说你是怎么估的

  (2)汇报,

  (3)老师引导有没有更好的方法

  2、探索圆面积公式

  (1)学生操作

  (2)指名汇报。

  (3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。)

  (4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?

  (5)观察汇报:由长方形的面积公式推导圆形的面积计算公式,并说出你的理由。

  (6)总结:

  1、计算圆的面积要那知道那些条件。

  2、生活中处处有数学,我们要从小养成培养自己热爱数学,善于观察,爱动脑筋的良好习惯。

  实践应用

  《圆的面积》教学反思

  教学反思:通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和学校领导的悉心帮助,总结出以下不足:

  一、复习占用的时间不当。

  复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。

  二、探究没有充分放手。

  在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助,造成了放手不够,造成了引导过度的现象,出现了探究一直是在我的控制下进行的。

  三、没给问题爆发的机会

  在教学中很关注半径的平方的计算,在教学时直接提醒学生这一运算顺序,本以为做得很好,但现在反思,我的做法,失去了让学生经历在错误中反思的珍贵体验,也就是说由于我的“认真”,在计算应用环节孩子们失去了精彩的错误分析与错误反思。这也是我们学生为什么学过的知识遗忘快的根本所在,没有充分理解,怎么能记得好呢?

  圆的面积教学设计 5

  教学目标:

  1、通过操作、观察、引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、培养学生观察分析,推理和概括的能力,发展学生空间理念,并渗透极限,转化的数学思想。

  3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。

  教学重点:

  圆的面积公式的推导及应用公式计算。

  教学难点:

  圆面积公式的推导。

  教学关键:

  转化前后各部分间的对应关系。

  教学过程

  一、导入新课:

  提出问题:

  在一广阔草地上,用绳子拴着一只羊,可移动的绳长是10米,这只羊可活动的范围最大是多少平方米?

  请大家画出羊活动范围的示意图,请两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)

  思考:

  要求羊活动的范围就是求此圆的周长还是面积?谁画的`正确,为什么?什么是圆的面积?(先说,再看书自学。)

  生读,教师板书:圆的面积

  大家会求这只羊的活动范围吗?怎么求?下面我们就探讨这个公式的推导过程,大家想知道吗?

  二、探索新知:

  (一)、先自学课本,小组探讨如下两个问题:(电脑出示)

  1、在推导的过程中你发现圆的什么变了?(板书:形状)

  2、在推导的过程中你发现圆的什么没变?(板书;面积)

  (二)、探讨第一问:

  A:多媒体出示16等份圆。

  1、多媒体演示:把一个圆平均分成16等份,拼成一个近似平行四边形。

  2、学生小组操作。

  3、你会把它变成一个近似长方形吗?学生小组尝试操作。

  4、多媒体演示:把等份的第一等份平均2份,移拼成一个近似长方形。

  5、学生展示操作成果。

  B:多媒体出示8等份圆。

  1、请同学们猜想并且讨论:如果把同样一个圆平均分成8份,象上面这样拼,得到的图形谁更接近长方形?

  2、学生汇报讨论结果。

  3、媒体演示8等份。

  C:多媒体出示32等份

  1、再请同学们猜想一下:如果把同样一个圆平均分成32份,象上面这样拼,得到的图形谁更接近长方形。

  2、眼睛微闭想一想。

  3、媒体演示32等份。

  D:多媒体演示三幅图综合画面。

  1、让学生仔细观察后问:哪一等份更接近长方形?

  2、为什么,等份的份数越多就能拼出越接近的长方形。

  F:如果要想把圆变成长方形你觉得要分成多少份?学生把眼睛闭起想一想

  学生讨论。

  (三)探讨第二问:

  A:1、把圆在剪拼的过程中变成长方形,圆的面积为什么没有变化?

  2、长方形的面积就是谁的面积?(教师板书)

  3、长方形的面积等于圆的面积,我们知道长方形面积等于长乘以宽。那么,圆的面积等于什么?(学生结合自己拼的图思考)

  板书:长方形面积=长×宽

  圆的面积=圆周长的一半×半径

  B:仔细观察多媒体演示问:

  1、长方形的长就是圆的什么?怎么求?用字母怎么表示?(教师板书)

  2、长方形的宽就是圆的什么?怎么求?用字母怎么表示?(教师板书)

  C:推导出圆的面积并且用字母表示。(教师板书)

  D:再出示前面的导入题,问:我们现在知道为什么可以这样计算了吗?

  三课堂练习

  1、同座互增一个画好半径的圆,求其面积。

  问:先要知道什么条件,再怎样求?

  2、求一元硬币的面积。最好先量出硬币的直径还是半径?为什么?

  3、实践题:每人准备一段绳子并求此绳围成最大圆的面积。学生讨论如何

  解决此问题?

  4、根据下面条件,求出各圆的面积。

  C=6.28米r=1分米d=20毫米

  5、一个正方形的面积是100平方厘米,在圆内画一个最大的圆,求圆的面积。

  课堂延伸

  学生讨论:把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的周长与圆的周长相等吗?为什么?

  练习:把一个圆拼成一个近似的长方形,长方形的周长是16.56厘米,求此圆的面积。

  四、课堂小结

  通过今天的学习,同座位互相谈一谈是怎样推导出圆面积计算公式的?知道哪些条件可以求出圆的面积?

  圆的面积教学设计 6

  教学内容:

  义务教育课程标准实验教科书六年级上册P67-68

  教学目标:

  1、让学生经历猜想、操作、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决简单的相关问题。

  2、经历圆的面积公式的推导过程,进一步体会“转化”和“极限”的数学思想,增强空间观念,发展数学思考。

  3、感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  教学重点:掌握圆的面积计算公式,能够正确地计算圆的面积。

  教学难点:理解圆的面积计算公式的推导。

  教学过程:

  一、回忆旧知、揭示课题

  1、谈话引入

  前些日子我们已经研究了圆,今天咱们继续研究圆。

  2、画圆

  首先请同学们拿出你们的圆规在练习本上画一个圆。

  3、比较圆的大小

  请小组内同学互相看一看,你们画的圆一样吗?为什么有的'同学画的圆大一些,有的同学画的圆小一些?看来圆的大小与什么有关?

  4、揭示课题

  我们把圆所占平面的大小叫做圆的面积。(出示课题)

  二、动手操作,探索新知

  1、确定策略,体会转化

  (1)明确研究问题

  师:同学们都认为圆的面积与它的半径有关,那么圆的面积和半径究竟有怎样的关系呢?这就是我们这节课要研究的问题。

  (2)体会转化

  怎么去研究呢?这让我想起了《曹冲称象》的故事。同学们听过曹冲称象的故事吗?谁能用几句话简单地概括一下这个故事?曹冲之所以能称出大象的重量,你觉得关键在于什么?(把大象的重量转化成石头的重量)

  其实在我们的数学学习中我们就常常用到转化的方法。请同学们在大脑中快速搜索一下,以前我们在研究一个新图形的面积时,用到过哪些好的方法?

  预设:

  学生回忆平行四边形、三角形、梯形的面积推导方法。

  当学生说不上来时,老师提醒:比如,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?(割补法)

  三角形和梯形的面积计算公式又是怎么推导出来的呢?(用两个完全一样的三角形或梯形拼成平行四边形)(课件演示推导过程)

  小结:

  你们有没有发现这些方法都有一个共同点?

  (3)确定策略

  那咱们今天研究的圆是否也能转化成我们已经学过的图形呢?

  如果我们也像推导三角形、梯形面积那样用两个完全相同的圆形拼一拼,你认为可能转化成我们学过的图形吗?那怎么办呢?(割补法)怎么剪呢?

  ①引导学生说出沿着直径或半径,把圆进行平均分;

  ②师示范4等份、8等份的剪法和拼法;

  2、明确方法,体验极限

  (1)学生动手操作16等份的拼法;

  (2)比较每一次所拼图形的变化;

  (3)电脑演示32等份、64等份、128等份所拼的图形,让学生体验分成的份数越多,拼成的图形就越接近长方形。

  3、深化思维,推导公式

  (1)请同学们仔细观察转化后的长方形,它与原来的圆有什么联系?(请同学们在小组内互相说一说)

  (2)交流发现,电脑演示圆周长和长,半径和宽的关系。

  (3)多让几个学生交流转化后的长方形和原来圆之间的联系。

  (4)根据长方形的面积公式推导圆的面积计算公式。

  三、运用公式,解决问题

  1、现在要求圆的面积是不是很简单了?知道什么条件就可以求出圆的面积了?

  出示主题图求面积:这个圆形草坪的半径是10m,它的面积是多少平方米?

  2、判断对错:

  (1)直径是2厘米的圆,它的面积是12.56平方厘米。()

  (2)两个圆的周长相等,面积也一定相等。()

  (3)圆的半径越大,圆所占的面积也越大。()

  (4)圆的半径扩大3倍,它的面积扩大6倍。()

  3.知道了半径就可以求出圆的面积,那知道圆的周长能求出圆的面积吗?

  四、总结新知,深化拓展

  1.小结:

  通过刚才的研究同学们推导出了圆的面积计算公式,更重要的是大家运用转化的方法把圆这个新图形转化成了我们已经学过的平行四边形和长方形,以后大家遇到新问题都可以用转化的方法尝试一下。

  2、拓展

  在剪拼长方形的过程中,有同学产生了疑问,能不能把剪下来的小扇形拼成三角形或者是梯形呢?让我们一起来看一下。(课件出示拼的过程)

  那利用拼成的三角形和梯形又能推导出圆的公式吗?有兴趣的同学可以课后去剪一剪、拼一拼、想一想、算一算,相信你一定会有更多的收获。

  圆的面积教学设计 7

  教学内容:

  人教版六年级上册教材第67~68页《圆的面积》例1及练习十六的第1~3题。

  教学目标:

  1、使学生理解圆面积的计算公式与推导过程,并能运用其公式正确、灵活的计算。

  2、在教学活动中,通过操作、合作交流,培养学生迁移、分析、合作和创新的能力,发展学生的空间观念。

  3、使学生掌握转化的数学思想方法,并将所学知识运用于生活实际。教学重、难点:

  重点:

  正确计算圆的面积。

  难点:

  圆面积公式的推导。

  教学准备:

  配置的学具袋里的学具、彩笔、一把剪刀,圆形的'纸片和若干材料纸。教学过程:

  一、创设情境,生成问题。

  1、出示牧羊图,让学生想一想它吃最大的范围应该有多大呢?是什么形状?

  2、现在你想提什么数学问题?

  揭示课题:圆的面积

  二、探索交流,解决问题。

  1、认识圆的面积

  a、什么是圆的面积呢?

  b、出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?

  c、圆的大小主要与哪些因素有关?(半径、直径、周长)

  出示结语:圆所占平面的大小叫做圆的面积

  回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的?(引导转化)

  2、生生互动,推导公式

  圆可转化为哪一个学过的图形呢?小组可以折一折、画一画、剪一剪、拼一拼,试试看!

  1)、小组讨论:设计方案,并汇报。

  a、让学生拿出卡纸(1),观察卡纸(1)上的圆被分成多少等分,圆被转化成什么图形呢?

  b、让学生拿出卡纸(2),观察卡纸(2)上的圆被分成多少等分,圆又被转化成什么图形呢?

  那么,有没有什么办法让它的边变得更直呢?再剪几份,你是说把它分得更多份些,是吗?(可以把它分得更多份些)

  c、请拿出手中的圆片试着折一折,展开来,看看你折成了几等份?如果再折下去可以吗?现在就把你们折的这几种方案。(八等份、十六等份、三十二等份)

  d、观察这三种分法,比较一下,同样大小的圆平均分的份数不同,拼出来的图形有什么变化?

  发现:平均分的份数越多,拼成的图形越接近长方形。

  e、转化成长方形,推导圆的面积公式。

  动手实践:沿着半径把圆切开,巧妙地把圆拼成了近似的长方形,现在我们可以利用长方形的面积公式来推导圆的面积公式。

  小组合作探究,动手摆一摆,边观察、边讨论、边推导,看哪组表现最好。展现以下问题:

  ①长方形的长相当于圆的()?

  ②长方形的宽相当于圆的()?

  ③长方形的面积相当于圆的()?

  ④因为长方形的面积=()

  所以圆的面积=()。

  2)、小组讨论后,并演示公式推导的全过程。

  3)、揭示字母公式() 。

  小结:可见要求圆的面积只要知道什么就行?(半径)

  3、运用公式学习例1。

  学生独立完成,全班交流展示。

  三、巩固应用,内化提高。

  1、课本第69页做一做第1题

  学生独立完成,汇报方法。

  2、完成基本练习(做一做)

  四,回顾整理,反思提升。

  1、这节课我们发现了什么、学会了什么?

  2、希望同学们在今后的学习中更好地运用好转化的方法去学习更多的数学知识。

  圆的面积教学设计 8

  教学内容:

  义务教育课程标准实验教科书第十一册P67-68

  教学目标:

  1、认知目标

  使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。

  2、过程与方法目标

  经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

  3、情感目标

  引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  教学重点:

  掌握圆的面积的计算公式,能够正确地计算圆的面积。 教学难点:理解圆的面积计算公式的推导。

  学具准备:

  相应课件;圆的面积演示教具

  教学过程:

  一、创设情境,导入新课

  出示教材67页的情境图。

  师:同学们,请看上面的这幅图,从图中你发现了什么信息?(学生观察思考)

  生1:我发现图上有5个工人在铺草坪。

  生2:我发现花坛是个圆形。

  师:哦,是个圆形。还有没有?请仔细观察。

  生:我发现一个工人叔叔提出了一个问题。

  师:这个问题是什么?

  生:这个工人叔叔说“这个圆形草坪的占地面积是多少平方米?”

  师:你们能帮他解决这个问题吗?

  师:求圆形草坪的占地面积也就是求圆的什么?

  师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

  [设计意图:从主题图入手,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]

  二、游戏激趣,理解圆面积的概念

  师:同学们,我们先来玩个小小游戏,大家说好不好?游戏规则是这样的:选出一名男同学和一名女同学,给圆涂上颜色,比一比,谁涂得快。(涂完后,师:同学们,你们有什么话要说吗?)

  生:这个游戏不公平?男同学涂的圆大,女同学涂的圆小。

  师:圆所占平面的大小叫做圆的面积

  (板书:圆所占平面的大小叫做圆的面积)

  师:现在大家知道男同学为什么涂得慢了吗?(引导学生说出男同学所涂的圆的面积大)

  [设计意图:通过涂色让学生在充分直观感知圆面积的基础上,理解圆面积的`含义。]

  三、探究合作,推导圆面积公式

  1、渗透“转化”的数学思想和方法。

  师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗? 我们先来回忆一下平行四边形的面积是怎样推导出来?

  生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。

  生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高 。

  师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?

  生:这样就把一个不懂的问题转化成我们可以解决的问题。

  师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。

  师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)

  2、演示揭疑。

  师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个 近似的平行四边形。

  师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。

  师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)

  [设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]

  3、学生合作探究,推导公式。

  (1)讨论探究,出示提示语。

  师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:

  ①转化的过程中它们的 发生了变化,但是它们的 不变?

  ②转化后长方形的长相当于圆的 ,宽相当于圆的 ?

  ③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为所以”类似的关联词语。

  师:你们明白要求了吗?(明白)好,开始吧。

  学生汇报结果,师随机板书。

  同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。

  (2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?

  (3)揭示字母公式。

  师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2

  (4)齐读公式,强调r2=r×r(表示两个r相乘)。

  从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?

  [设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]

  4、公式运用,巩固新知。

  师:现在大家懂得计算圆的面积了吗?我们来试试看。

  四、应用公式,解决生活中的实际问题

  师:接下来我们运用圆的面积计算公式来解决生活中的实际问题。

  师:(出示教材第67页的情境图)这是刚才课前发现的问题。

  师:这道题你们能自己解决吗?(让学生尝试自己解决问题,并指名板演。再让学生说说是怎样想的,然后教师小结:求圆的面积必须知道什么条件?)

  [设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

  五、练习反馈,扩展提高

  1、一个圆形茶几桌面的直径是1m ,它的面积是多少平方厘米?

  2、小刚家门前有一棵树,他很想知道这棵树的横截面的面积是多少,但是他又不想锯掉,你们有什么办法帮他吗?

  六、全课总结

  同学们,这节课我们学习了哪些知识?你有什么收获?

  七、板书设计

  圆的面积

  圆所占平面的大小叫做圆的面积

  长方形面积= 长×宽

  = 半径

  S = πr ×r

  =πr2

  圆的面积教学设计 9

  教学目标:

  1、知识目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、能力目标:培养学生的分析、观察和概括能力,发展学生的空间观念。

  3、德育目标:激发学生参与整个课堂教学活动的学习兴趣,渗透转化的数学思想和极限思想。

  教学重难点:

  圆面积公式的推导。

  教学关键:

  弄清圆与转化后的近似图形之间的关系。

  教具:

  多媒体计算机。

  学具:

  每小组(4人一组)8等份、16等份和32等份的(硬纸)圆形、剪刀、刻度尺、一张圆形纸片。

  教学过程:

  一、复习旧知、设疑导入

  同学们,有一首歌中唱到:结识新朋友,不忘老朋友。新知识就好比我们的新朋友,旧知识就象我们的老朋友,在我们学习新知识之前,先去看看我们的老朋友吧!

  微机显示一个圆,再把圆涂成红色。提问:这是什么图形?如果圆的半径用r表示,周长怎么表示?(2πr)周长的一半怎么表示?(πr)圆所占平面的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?引入课题。

  二、动手操作、探索新知

  1、通过度量,猜想圆面积的大小。

  用边长等于半径的小正方形,直接度量圆面积(如图),观察后得出圆面积比4个小正方形面积(4r2)小,好象又比面积(3r2)大一些。

  初步猜想:圆的面积相当于r2的3倍多一些。

  3个小正方形由此看出,要求圆的精确面积通过度量是无法得出的。

  2、启发学生回想平行四边形、三角形、梯形面积计算公式的推导过程,微机演示。问:你有什么启示吗?(先转化成学过的图形,如长方形、三角形、梯形,再推导)我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢?

  3、学生小组合作。

  (1)学生分别把8等份、16等份和32等份的圆形剪开,拼成两个近似的长方形。(微机显示)提问:

  ①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段。)

  ②圆和近似的长方形有什么关系?(形状变了,但面积相等)

  ③拼成的这三个图形有什么区别?(32等份拼成的图形更接近于长方形)如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(会更接近长方形)也就是说:圆等分的份数越多,拼成的图形越接近于长方形。

  ④近似长方形的长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)

  ⑤你能推导出圆面积计算公式吗?

  (2)把圆16等份分割后可拼插成近似的等腰三角形。三角形的底相当于圆周长的'多少?(1/4),高相当于圆半径的多少(4r),所以S=1/2·2πr/4r=πr2(见图二)。

  (3)把圆16等份分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的多少?(πr),高等于圆半径的多少?(2r),所以S=1/2·πr·2r=πr2(见图三)。

  4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。

  三、看书质疑、自学例3,注意书写格式和运算顺序

  四、运用新知,解决问题

  1、一个圆的半径是5厘米,它的面积是多少平方厘米?

  2、看图计算圆的面积。

  3、街心花坛中花坛的周长是18.84米,花坛的面积是多少平方米?

  4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?

  (1)可测圆的半径,根据S=πr2求出面积。

  (2)可测圆的直径,根据S=π(d/2)2求出面积。

  (3)可测圆的周长,根据S=π·(c/2π)2求出面积。

  五、全课小结

  这节课你自己运用了什么方法,学到了哪些知识?

  六、布置作业

  七、板书设计

  圆的面积

  长方形的面积=长×宽圆的面积=周长的一半×半径

  S=πr×r;S=πr2

  圆的面积教学设计 10

  设计过程:

  一、教材分析

  教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形来计算面积,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。

  二、学情分析

  在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

  基于以上的教材和学情分析,我制定了以下的教学目标:

  三、教学目标

  1、认知目标:

  提供圆面积的计算公式推导课件,让学生经历和体验圆的面积公式推导过程;理解和掌握圆面积的计算公式;会利用公式计算圆的面积,能解决简单的实际问题。

  2、能力目标:

  培养学生的估算意识和初步的估算能力;通过网上教学和学生的自主探究,培养学生应用网络工具获取知识,进行实验,分析问题、解决问题的能力,同时让学生接触并更能理解极限转化等数学思想方法。

  3、情感目标:

  通过网络化学习,激发学生应用网络环境探索新知识,解决新问题的兴趣;增强学生的合作交流意识,培养他们的合作交流能力。

  教学重点:

  正确掌握圆面积的计算公式。

  教学难点:

  圆面积计算公式的推导过程。

  四、教学过程

  (一)创设问题情境,激发学生学习兴趣

  1、感知圆的面积:(课件出示一大一小的圆)

  师:圆的大小是由什么决定的?(板书:由半径决定)

  2、感知圆的面积有大有小:

  (选择两个面积不同的圆)

  师:大家看,这两个圆的面积一样大吗?说明:圆的面积有大有小。

  师:那谁能说说什么叫做圆的面积?

  (揭示:圆所占平面的大小叫做圆的面积。)

  [设计意图:通过想办法表示圆的面积和比较两个圆面积的大小,以及区分圆的周长和面积等途径,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。

  (二)学生合作探索,交流操作经验

  1、初步感悟:

  (1)课件出示:书103例7图。

  师:图中每一小格表示1平方厘米。你知道正方形的面积是多少么?

  原来我们数方格的时候,不满一格算半格,这里有两格特别接近满格,(课件闪烁)我们数的时候安满格计算。

  通过数圆的面积,得到整圆的面积,然后把表格填完整。

  学生填表、计算,汇报

  小结:通过数方格的方法我们得到了圆的面积是它半径平方的3倍多一些,想知道圆的面积到底是多少,看来还需要知道圆的面积的计算公式。

  2、充分发挥学生的主动性,小组合作操作推导圆面积的计算公式。

  师:那么,这节课我们就来共同找出求圆面积的方法。

  3、师:同学们,我们以前都学过哪些平面图形呢?你会计算它们的面积吗?以平行四边形为例,想一想,我们是怎样推导出它的面积计算公式的?(课件演示)

  [设计意图:创设问题情境,启发学生回忆平行四边形面积计算公式的推导过程。并利用电脑课件的演示,达到通过对旧知的回忆,激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。

  师:那我们应该怎样推导圆的面积计算公式呢(板书:圆的面积)

  [设计意图:,引起学生的求知欲望,对由直线图形过度到曲线图形有了初步的感知,同时培养学生的“问题”意识,让学生在生动、愉悦、民主的学习气氛中开始新的学习。为学生开展想象提供了广阔的空间。

  4、师:刚才我们已经复习了以前我们利用平移、割、补等方法推导平行四边形面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?

  你想采用什么方法把圆转化成学过的图形?

  [设计意图:通过研究圆的面积与半径的关系,引导学生寻找用半径求圆面积的方法,并以此为主线展开圆面积计算公式的探究。

  师:请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。

  [注:在要给给学生充分的时间动手操作,让学生在交流合作中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。

  师:请大家把各自的拼图展示给大家(鼓励不同的.拼法),并且给大家介绍一下你们组拼成的是什么图形,是用什么方法剪拼的。(学生可能出现拼成近似平行四边形、近似长方形、近似三角形、近似梯形等方法。)

  [设计意图:放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的,教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,使学生不仅会知法,而且会选法,这对提高学生的动手能力,培养学生良好的思维品质,具有十分积极的作用。

  (三)利用课件演示,呈现经验总结

  [注:由于学生的个体不同,收获也有不同,以往只通过实验操作的方式,学生会在操作中出现很多不确定的因素,如有的完成不了实验,有的误差很大等等,没有充分的说服力,不能帮助学生对圆的面积进行充分理解。直接影响了本堂课的教学效果,而且学生几何知识的形成,感知的知识往往是片面的,零散的,不完整的,所以在学生充分动手操作后,又为学生提供了教学软件来帮助学生理解和观察这一个实验的过程,能更好地培养学生空间想象能力、逻辑推理能力以及创造性思维能力。所以我们借助现代信息技术,帮助学生建立完整的空间观念,帮助学生建构。

  圆的面积教学设计 11

  教学目标

  1.知识与技能

  ⑴使学生能根据具体条件,比较灵活地计算圆的面积。

  ⑵使学生认识圆环,学会求圆环面积的计算方法。

  2.过程与方法

  培养学生主动探究、合作交流、解决问题的方法和能力。

  3.情感态度与价值观

  培养学生应用圆的周长公式和面积公式解决一些与生活相关的实际问题,进一步认识图形和生活的联系,感受平面图形的学习价值。提高数学学习的兴趣和学好数学的自信心。

  教学重点、难点

  求圆环面积的计算方法。

  教学过程

  一、情景启发,明确目标

  1.展示20xx年5月21日日环食视频(附件:日环食视频)。引出课题:圆环面积

  简单介绍圆环的形成。

  2.课件展示:生活中的圆环,感受生活美。

  3.复习:圆的面积怎样计算呢?

  (1)、已知圆的半径为2cm,求圆的面积。

  (2)、已知圆的直径为6cm,求圆的面积。

  4.简单介绍圆环的相关名称及关系:

  5.请找出下面圆环的内圆半径(r)或外圆半径(R):

  二、合作探究,达成目标

  大家动笔算一算。

  光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。它的`面积是多少?

  圆环面积=外圆面-内圆面积

  3.14×62 - 3.14×22 3.14×(62 – 22)

  = 3.14×36 - 3.14×4 = 3.14×(36 – 4)

  = 113.04 – 12.56 = 3.14×32

  = 100.48(cm2)= 100.48(cm2)

  答:它的面积是100.48cm2.

  比较、分享。求环形的面积,你喜欢那种方法?

  S环=πR2-πr2 S环=π(R2-r2)

  三、变式练习,检测目标

  1.填空:

  2.一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其它地方是草坪。草坪的占地面积是多少?

  3.14×(50÷2)2-3.14×(10÷2)2

  =3.14×252-3.14×52

  =3.14×625-3.14×25

  =1962.5-78.5 3.14×[(50÷2)2-(10÷2)2]

  =1884(m2)= 3.14×[252-52]

  = 3.14×[625-25]

  = 3.14×600

  =1884(m2)

  答:草坪的占地面积是1884m2.

  3.某公园内有一座圆形喷水池,它的半径是3m。现在要在喷水池周围铺上1m宽的甬路。甬路的占地面积是多少m2?

  外圆半径:1+3=4(m)

  环形面积:3.14×(4-3)

  =3.14×(16-9)

  =3.14×7

  =21.98(m)

  答:甬路的占地面积是21.98m2.

  4.环形的外圆周长是18.84cm,内圆直径是4cm,求环形的面积

  3.14×[(18.84÷3.14÷2)2-(4÷2)2]

  =3.14×[32-22]

  =3.14×[9—4]

  =3.14×5

  =15.7(cm2)

  答:环形的面积是15.7cm2。

  四、评讲总结,升华目标

  这节课你学习了什么内容?你有哪些收获?让生说说。师用课件再现一次。

  1、什么样的图形是圆环。

  2、怎样计算圆环的面积。

  五、课堂达标:解决问题

  1.土楼是福建、广东等地区的一种建筑形式,被列为“世界物质文化名录”,土楼的外围形状有圆形、方形椭圆形等。圭峰楼和德逊楼是福建省南靖县两座地面是圆环形的土楼,圭峰楼外直径是32m,内直径是12m。土楼的房屋占地面积是多少m2?

  2.天安门广场前面有一个大型喷泉,喷泉的半径为3m。国庆节快要到了,园艺师傅们在喷泉的周围摆放了4m宽的鲜花。(1)鲜花所占面积有多大?(2)如果每平方米摆放鲜花需要50元,那么摆放这些鲜花至少需要多少元

  外圆半径:4+3=7(m)

  环形面积:3.14×(7-3)

  =3.14×(49-9)

  =3.14×40

  =125.6(m)

  答:鲜花所占的面积有125.6m 。

  3.拓展延伸:求下列图形的阴影部分面积。(单位:cm)

  (1)、大半圆的面积

  3.14×[(2+4)÷2]2÷2

  =3.14×9÷2

  =14.13(cm2)

  (3)、小半圆的面积

  3.14×(2÷2)2÷2

  =3.14×1÷2

  =1.57(cm2)

  答:阴影的面积是6.28cm2.

  六、布置作业

  1、右图是一块玉璧,外直径是18cm,内直径是7cm.这块玉璧的面积是多少?

  2、右图中的大圆半径等于小圆的直径,请你求出阴影部分的面积。

  3、计算下图涂色部分的面积。(单位:厘米)

  七、课后反思

  1.本课时的教学从学生熟悉的事例出发,创设情景,使学生基本掌握了本课的知识点,并培养了学生的民主、合作精神。

  2.在整节课中,自己也明白了:教师是主导,学生是主体。充分调动学生的积极性,让学生积极参与;鼓励学生在探索的过程中,用自己喜欢的方法解决简单的实际问题;让学生体验解决问题策略的多样性,培养并发展了学生的观察能力、创新精神。

  圆的面积教学设计 12

  “圆的面积”说课设计教学重难点及教法说明 说课内容是全日制小学数学课本第十二册"圆的面积"。本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。

  圆的面积是本单元的教学重点,也是今后进一步学习圆柱体,圆锥体等知识的基础本节课的教学目的要求是:

  1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。

  2.通过教学培养学生初步的空间观念。

  3.渗透转化数学思想。本节课的教学重点是观察操作总结圆面积公式。难点是理解公式的推导过程。关健是弄清圆与转化后的近似长方形之间的关系。本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。

  本节课分四个环节来设计教学。

  第一个环节:复习导入新课 为了激发学生的学习兴趣,在计算机的屏幕上显示出一个红颜色的圆,请同学看这圆一周的长度叫什么?这个圆所占平面的大小又叫什么?引出课题"圆的面积"。

  第二个环节:新授 教学中,运用转化的方法,将未知转化为已知,不仅可以化繁为简,化难为易,而且可以勾通知识之间的联系。可以帮助学生理解新知识,提高课堂教学效率。鉴于此,新授部分我是这样设计的。

  (一)公式的推导

  1.准备题请同学们回忆平行四边形的面积计算公式是怎样推导出来的。再想想,三角形、梯形又都是转化成哪一种图形推导出它们的面积计算公式的。本课就用这种转化的方法来推导圆面积的计算公式。

  2.推导圆面积公式

  第一层次教授转化的方法。让学生看屏幕上的圆,老师把它平均分成8份,先把上面的4等份和下面的4等份分开,再交叉地拼在一起,看看,拼成了一个什么图形的近似图形?为什么说是近似的平行四边形呢?让学生继续观察,我们将其中左边的一个等份再平均分成2份,将一小份移到右边拼起来,现在拼成的图形近似什么图形?由圆转化成近似的长方形,什么发生了变化,什么没有变?

  第二层次运用转化方法让学生进行操作,再通过演示渗透极限思想。让学生拿出准备好的16等份的圆,利用刚才的方法把它剪开拼成一个近似的长方形。观察一下,拼成的近似的长方形与屏幕上8等份的比较一下,哪个更接近于长方形,为什么?如果我们把一个圆等分成32份,拼成的长方形会怎样呢?(屏幕上演示)这时引导学生思考:我们刚才是把一个圆平均分成8份、16份、32份,如果再继续分下去,分的份数更多,拼成的图形你会发现什么?由此可得:把圆等分的份数越多,拼成的图形就越接近于长方形,尽管形状发生了变化,但面积是不变的,也就是说,拼成的长方形的面积等于圆的面积。

  第三层次推导公式让学生再注意观察屏幕上显示的由圆转化为长方形的过程,思考这个长方形的长和宽各相当圆的哪一部分?那么,能根据长方形的面积公式推导出圆的面积公式吗?归纳得到圆的面积。(公式略)回顾学习过程:将圆平均分成8份,进行拼图,目的是教给学生由圆转化为近似长方形的方法,并初步感知圆的形状变了,但面积并没有变。再让学生亲自动手将圆平均分成16份拼图,使学生进一步感知拼成的图形更接近于长方形。此时,经过学生的.空间想象,他们在大脑中已经形成了由圆转化成长方形的图像,这时在计算机上再显示将圆等分32份后拼成的近似于长方形的图像,会使学生在视觉上得到证实,他们的思维结果是正确的:将圆平均分成的份数越多,拼成的图形越接近长方形,但面积始终是不变的。运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进学生良好思维品质的形成,达到了预想的教学目的。

  3.小结

  让学生回忆一下圆的面积公式是怎样推导出来的?要求圆的面积,需要知道什么条件?这样使学生的思维能力得到进一步的提高。

  4.阶段性练习

  a.看标有半径的圆,求面积。

  b.已知半径求面积。(练习时交待运算顺序。)

  (二)学习例1要求学生运用公式正确计算,注意书写格式和运算顺序。

  第三个环节:巩固练习 对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。第一层次的练习是以文字题的形式给出直径求圆的面积。第二层次的练习给出半径和直径求圆的周长和面积。第三层次的练习是在两个圆(一个标有圆心,一个没标圆心)中量出所需条件求圆的面积。然后,对全课进行总结,质疑问难。

  第四个环节:布置作业。 (书中题)本节课可采用由计算机设计的三维动画,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。

  圆的面积教学设计 13

  一、教材内容:

  本节课内容是求圆的面积

  二、教学目标:

  知识目标:

  ⑴引导学生通过观察了解圆的面积公式的推导过程

  ⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题

  能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

  情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

  三、教学重点难点:

  重点:圆的面积公式的推导过程以及圆的面积公式的应用。

  难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的.周长的一半的理解。

  四、教学流程

  1、复习迁移,做好铺垫

  师问:

  (1)长方形面积公式

  (2)平行四边形面积公式

  师:平行四边形面积公式的求法是借住谁来推导出来的?

  2、创设情景,引入课题

  用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?

  问题:

  (1)小牛能够吃草的最大面积是一个什么图形?

  (2)如何求圆的面积呢?

  3、师生互动,探索新知

  (1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?

  (2)让学生动手操作:

  教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。

  (3)让学生转化的过程进行展示。(略)(多组学生展示)

  (4)用多媒体进行验证。

  让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。

  师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

  (5)引导归纳:

  思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

  思考2:长方形的长、宽与圆有什么关系呢?

  再次多媒体展示动画。

  师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,

  即:圆的面积=长方形的面积=长×宽=πr×r

  得到:s圆=πr×r

  师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。

  4、实际应用,强化新知

  (1)利用公式解决实际问题:求小牛吃草的最大面积是多少?

  师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。

  (2)出示例题:

  例题1:已知一个圆的直径为24分米,求这个圆的面积?

  a、让学生独立练习,b、指名板演,c、师生评议。

  例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3.14)

  a、学生独立练习,b、指名板演,c、师生订正。

  师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。

  5、巩固练习,深化新知

  1、判断题

  (1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()

  (2)半径为2厘米的圆的周长与面积相等。()

  2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

  3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少

  6、课内总结,梳理新知

  师:(1)本节所学的主要公式是什么?

  (2)如果求圆的面积,必须知道什么量?

  (3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

  7、布置作业

  圆的面积教学设计 14

  目标预设:

  1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想

  教学过程:

  一、引导估计,初步感知。

  1、出示圆形电脑硬盘。引导学生思考:要求这个硬盘的面积就是要求什么?圆面积的大小与什么有关?

  2、估计圆面积大小与半径的关系。

  师先画一个正方形,再以正方形的边长为半径画一个圆,估计圆的面积大约是正方形面积的多少倍,在这里正方形边长是r,用字母表示正方形的面积是多少?圆的面积与它的半径有什么关系?

  二、动手操作,共同探索。

  1、引发转化,形成方案

  (1)我们如何推导三角形,平行四边形,梯形的面积公式的?

  (2)准备如何去推导圆的面积?

  2、动手操作,共同探究

  (1)把一个圆平均分成了8份,每一份的图形是什么形状?能把这些近似的三角形拼成一个学过的图形吗?

  (2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。

  (3)比较:与刚才老师拼成的图形有何不同?

  (4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?

  如果一直这样分下去,拼成的图形会怎么样?

  3、引导比较,推导公式。

  圆与拼成的长方形之间有何联系?

  引导学生从长方形的面积,长宽三个角度去思考。

  根据学生回答,相机板书。

  长方形的面积=长×宽

  ↓↓↓

  圆的面积=∏rr

  =∏r2

  追问:课始我们的估算正确吗?

  求圆的面积一般需要知道什么条件?

  三、应用公式,解决问题

  1、基本训练,练练应用公式,求圆的面积。

  2、解决问题

  (1)出示例9,引导学生理解题意。

  要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?

  (2)学生计算

  (3)交流,突出5平方的计算

  四、巩固练习

  1、练习十九1求课始出示的光盘的面积

  2、在一块长方形的草地上,一只羊被3米长的绳子拴在草地正中央的'桩上(接头不计)这只羊最多能吃到多大面积的草?

  五、这节课你有什么收获?你认为重点的

  地方有哪些?

  引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)

  六、课堂作业

  补充习题51页2、3、4题

  拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。

  圆的面积是多少平方厘米?

  反思:

  1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。

  2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想

  3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。

  圆的面积教学设计 15

  一、教学内容

  北京市义务教育课程改革实验数学教材第11册

  二、教学目标:

  1.知识与技能:使学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括的能力以及逻辑推理能力。

  2.过程与方法:引导学生学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;渗透极限、转化、化曲为直等数学思想方法。

  3.情感态度价值观:培养学生认真观察、深入思考,积极合作的良好品质。

  三、教学重点通过合作探究活动,推导出圆面积公式。

  四、教学难点:理解转化后的图形各部分与圆各部分的关系。

  五、教具学具准备:圆形纸片多媒体

  六、教学过程:

  (一)情境导入

  出示:圆桌照片

  师:通过前几节课的学习,我们对圆已经有了一些认识,在我们的生活中圆也有着广泛的应用,请看老师家里就有这样一个圆桌,看到这个圆桌你能提出哪些与圆有关的数学问题?

  生:圆桌一圈的长度是多少?圆桌桌面的面积是多少?

  师:圆桌一圈的长度就是圆的周长,怎样求圆的周长?

  怎样计算圆桌桌面的面积呢?这节课我们就一起来研究这个问题。

  设计意图:根据“问题驱动式”教学模式的第一环节:创设情境,质疑激趣。教师创设了“看到这个圆桌你能提出哪些与圆有关的数学问题?”的情境引发学生提出问题,根据学生所提问题,明确本节课的学习任务

  (二)合作探究

  1、复习转化方法:

  师:想一想,我们都学过了哪些平面图形的面积公式?(长方形、正方形、平行四边形、梯形、三角形)

  师:我们以平行四边形为例,你还记得平行四边形面积公式的推导过程吗?(指名说、师投影演示)

  师:在推导过程中,我们是根据以前学过图形的面积公式推导出新图形面积公式,这种方法对我们今天的学习有没有帮助呢?

  师:如果有的话,你打算把圆转化成什么图形呢?到底行不行呢?下面我们小组合作探究,请看活动要求:

  1.圆转化成了什么图形?

  2.转化后图形的各部分与圆的各部分有什么关系?

  3.根据转化后图形面积公式试着推导出圆的面积公式。

  2、小组合作探究,师巡视,指导。

  设计意图:根据“问题驱动式”教学模式的第二环节:问题驱动,自主探究。教师让学生带着3个问题进行自主探究的活动

  3、汇报展示

  预设:

  学生方法1:将圆等分成(8份、16份、)拼成一个近似的平行四边形,平行四边形的底相当于圆周长的一半,上面的底就是圆周长的另一半。平行四边形的高相当于圆的半径。圆周长的一半乘半径就是圆面积的公式:∏r2。

  学生方法2:将圆等分成若干份,拼成一个梯形或三角形。

  学生方法3:用圆的一部分推出面积公式。(一个近似三角形的面积×份数)

  板书:学生汇报的思路,即转化后图形各部分与圆各部分的关系,让学生的理解更清晰。

  设计意图:根据“问题驱动式”教学模式的第三环节:碰撞交流,研讨辩论。教师让学生在汇报过程中注意倾听同伴的发言,如果有问题,让学生再重复一遍,让学生发现同学在汇报中存在的问题,互相提问、质疑、解决问题。

  4、课件演示,体验极限、化曲为直等数学思想

  5、资料介绍,感受数学文化,

  师:现在我们已经知道了圆面积的计算公式,根据老师给你的数学信息,现在你能算一算这个圆桌面的面积了吗?(出示圆桌的.照片,并给出圆桌的半径是40厘米)

  生:一人板书,其他学生本上练习。集体订正。

  6、知识性小结

  师:如果我们想计算圆的面积,必须知道什么条件?

  生:半径。

  师:还可以知道什么,也能求出圆的面积?

  生:圆的直径或圆的周长?

  师:怎么求?

  设计意图:根据“问题驱动式”教学模式的第四环节:总结提升,纳入认知。

  教师根据本节课所学内容提出了第一个问题“如果我们想计算圆的面积,必须知道什么条件?”根据学生的回答,教师又适时地提出了第二个问题“还可以知道什么,也能求出圆的面积?”通过两个问题的提出,让学生不仅明确知道半径可以求圆的面积,知道圆的直径、周长也可以求圆的面积,进一步丰富学生计算圆面积的方法,提升学生的认知。

  (三)解决问题:

  1、口算下面各圆的面积。

  2填写下表。

  半径直径周长面积

  2厘米

  6厘米

  6.28厘米

  3.某公园里有一个边长是10米的正方形嬉水池,正中间有一个人工喷泉,设计要求喷出的水不能落到水池以外。这个喷泉的喷水面积最大是多少平方米?

  (四)、全课总结

  板书设计:圆的面积

  转化平行四边形面积=底×高

  联系圆的面积=×r=×r

  =πr×r=πr2

  公式S=πr2

  圆的面积教学设计 16

  一、激趣导入

  1、课件出示牧羊图,让学生欣赏,并找一找你认识的平面图形。图画内容:把一只羊用一根2米长的绳子拴在树桩上吃草。

  2、谈话:同学们,羊能够吃草的最大范围是什么形状?羊能够吃到多大面积的草呢?你们想知道吗?今天这堂课我们就一起来学习“圆的面积”这一知识,相信上完这一课,大家一定能够解决这个问题。

  3、看到这个课题,你想知道些什么?

  学习目标:

  (1)了解什么是圆的'面积;

  (2)了解与哪些因素有关;

  (3)知道圆面积公式的推导过程,掌握圆面积的计算公式,会计算圆的面积。

  二、实践导学

  (一)认识圆的面积

  1、什么叫圆的面积。

  2、小组讨论

  3、圆的大小主要与哪些因素有关?

  (1)半径;

  (2)直径;

  (3)周长。

  (二)回忆平行四边形面积公式推导过程

  1、指名分别说出平行四边形面积公式推导过程。(然后课件展示)

  2、谈话:我们能不能也象求平行四边形面积公式一样将圆转化成已学过的图形来求面积呢?

  3、小组讨论

  (三)操作探究

  1、转化圆形推导公式

  (1)让学生拿出卡纸(1),观察卡纸(1)上的圆被等分成多少分,圆被转化成什么图形?

  (2)让学生拿出卡纸(2),观察卡纸(2)上的圆被等分成多少分,圆又被转化成什么图形?

  (3)教师课件展示圆被平均分成16等份后转化的图形。

  (4)观察比较,你有什么发现?

  2、引导学生观察比较,推导圆面积计算公式。

  (1)将圆通过剪拼,可以转化成已经学过的什么图形?

  (2)新的图形与原来的圆有什么联系?

  (3)试推导圆的面积公式。(课件展示)

  长方形的面积=长×宽

  圆的面积=c÷2×r=2πr÷2×r=πr2

  s=πr2

  三、练习巩固

  1、运用公式学习例1、

  学生试做,说根据,总结强调。

  2、完成基本练习(做一做)

  四、拓展提高

  1、解决“小羊吃草”问题

  圆的面积教学设计 17

  学情分析:

  《圆的面积》是人教版小学数学六年级上册的内容,而苏教版则安排为五年级下册的内容,对于高学段的学生来说,在学习本课时之前,已经积累了大量关于圆的表象认识。在学习圆的面积之前,学生已经掌握其他平面图形的计算方法。这节课的目的就是让学生从平行四边形、长方形的面积计算方法和圆的面积的关系,总结出圆面积计算方法。此时这个阶段的小学生的认知特点是复杂的。竞争意识增强,敬佩优秀同学;接触自然、了解社会;加强预习,学会总结。认知也有所发展,在注意力方面,学生的有意注意逐步发展并占主导地位,注意的集中性、稳定性、注意的广度、注意的分配、转移等方面都较低年级学生有不同程度的发展。在记忆方面,有意记忆逐步发展并占主导地位,抽象记忆有所发展,但具体形象记忆的作用仍非常明显。在思维方面,学生逐步学会分出概念中本质与非本质,主要与次要的内容,学会掌握初步的科学定义,学会独立进行逻辑论证,但他们的思维活动仍然具有很大成分的具体形象色彩。在想象方面,学生想象的有意性迅速增长并逐渐符合客观现实,同时创造性成分日益增多。初入六年级的小学生是小学学习的最高、最后阶段。随着对小学教育的不断适应,这一时期的学生无论是在生理,还是心理上都比初入学时的儿童稳定,并在此基础上不断发展。刚入六年级的小学生的心理健康教育和学习目标归纳起来为:增强学习技能训练,培养良好的智力品质;引导学生树立学习苦乐观,激发学习的兴趣、求知欲望和勤奋学习的精神;培养正确的竞争意识;鼓励参与社会实践活动,提高做事情的坚持性;建立进取的人生态度,促进自我意识发展。

  教学目标:

  1.了解圆的面积的含义,经历圆面积计算公式的推导过程转换思想】,掌握圆面积的计算公式

  2.理解圆的面积的意义,掌握圆面积的计算公式,沟通圆与其他图形之间的联系,培养观察,操作,分析,概括的能力以及逻辑思维能力。

  3.培养认真观察,深入思考的良好思维品质,锻炼自己面对困难勇于克服,锲而不舍的精神

  教学重难点:

  1能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单的实际的问题

  2圆面积的计算以及公式的'推导

  案例描述:

  一、带入情境,引出问题

  1出示课本中的草坪喷水插图,并提出问题,你能从中发现什么数学知识

  2并进一步提出这个圆的面积是指这个图形的哪个部分

  3最后开题~~~今天这节课我们就来学习圆的面积

  二、引入数学历史,增强学生浓厚的学习兴趣

  圆形,是一个看来简单,实际上是十分奇妙的形状。古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。

  约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。

  三、引入旧课,导入新课

  引入小学生们,前面我们学习过了正方形,长方形,甚至梯形面积等平面图形的面积的计算方法,那我们是不是可以通过动手把圆先切割再拼接成一个我们学过的图形。那么圆的面积不就是我们之前学过的图形的面积嘛。那我们准备工具看一下怎么样才能将圆拼接成一个我们所了解的图形。

  1课件展示:请看大屏幕,分成16份的圆,把它们可以拼接近似成平行四边形,分成32等份,也可以拼成近似为平行四边形,而64等份呢,竟然可以近似为长方形,那你可以发现什么?分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形

  2思考提问并总结圆面积计算公式的语言描述长方形的长相当于圆周长的一半,而长方形的宽相当于圆的半径

  3提出圆面积的计算公式的问题,提问总结s=πr2

  4利用公式,导入数学历史的有关文化,丰富学生的学习过程!

  会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。

  任意一个圆的周长与它直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。它是一个无限不循环小数,π=3.1415926535……但在实际运用中一般只取它的近似值,即π≈3.14.如果用C表示圆的周长:C=πd或C=2πr.《周髀算经》上说"周三径一",把圆周率看成3,但是这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。魏晋时期的刘徽于公元263年给《九章算术》作注时,发现"周三径一"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。如今有了电子计算机,圆周率已经算到了小数点后五万亿位小数了。

  四熟记公式,并投入实践应用之中

  1口答,根据半径计算出圆的面积

  R=1,R=2,R=3

  2练一练

  r=8,s=;c=31,4,s=

  r=4,s=;d=16,s=

  3那现在请大家回到本节课开始的时候,用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田

  4第18页第2题

  让学生独立解答,集体修正的时候要求学生说出每一步计算过程和依据

  5第18页第2题

  让学生理解题意之后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是一米的圆,让学生看看,并试着站一站

  6课下思考

  用一根长3米的绳子,把一只羊拴在树杆上,羊的活动范围是多少?

  五学生自我评价

  【小结】通过本节课的学习,你有什么收获和感悟?

  本节课,让我们通过计算,分析结果,总结圆面积的计算公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

  六作业随堂练习课后作业

  圆的面积教学设计 18

  教学目标:

  1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

  3.渗透转化的数学思想和极限思想

  教学重点:

  利用圆面积计算公式正确计算圆的面积。

  教学难点:

  圆面积计算公式的推导。

  教具准备:

  等分圆教具。

  学具准备:

  分成十六等分的圆形纸片。

  教学过程:

  一.谈话导入新课

  同学们,现在展现在你们面前的是聚宝小学教学楼前面的一块空地,我们学校计划在这块空地上,铺一个圆形的草坪。它有多大呢?要求有多大?实际上就是求圆的面积,这节课就让我们一起来研究圆的面积。

  二.游戏激趣,理解圆的面积的概念。

  师:同学们,我们先来玩个小小的游戏好不好?选出一名男生和一名女生来进行游戏,游戏的规则是两名同学给圆涂上颜色,比一比,谁涂的`快。师:你们有什么话想说吗?

  生:男生涂的圆大,女生涂的圆小。师:你们所说的大小就是圆的面积。板书:圆所占平面的大小就叫做圆的面积。

  师:现在大家知道男生为什么涂得慢呢?

  生:男同学涂的面积大。

  三.探究合作,推导圆的面积公式

  1.渗透转化的数学思想师:既然大家知道了什么是圆的面积。那圆的面积怎样计算呢?公式又是什么?你们想知道吗?你还记得平行四边形的面积。是怎样推导出来的吗?

  生:沿着平行四边形的一条高,切割成两部分,把两部分拼成长方形,哦,请看是这样吗?课件演示生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

  师:同学们对原来的知识掌握的非常扎实,表述的非常准确。刚才我们用割补法把一个图形先割后拼,就转化成别的图形。这样就把一个不懂的问题转化成我们可以解决的问题。这也是在学习数学的过程中一种很好的方法,猜一猜,今天我们学习的圆可以转化成我们学过的哪些图形?

  2.演示揭疑.把一个圆沿着直径来切,变成两个半圆,在把每个半圆平均分成四份。就把整个圆平均分成八份,每份是一个近似的三角形。这些近似的三角形可以拼成一个近似的平行四边形。如果老师把一个圆平均分成16份,你又会拼成一个近似的什么图形?让我们一起看一看,仔细观察如果老师把一个圆平均分成32份。它就会更接近哪个图形?(长方形)大家想象一下,如果老师再继续分下去,分的份数越多每一份儿就会越小,拼成的图形就会越接近什么图形?长方形。那这个近似的长方形和圆之间会存在着什么样的关系?请看老师给出的三个问题。齐读问题明确要求。

  3.合作探究,推导公式小组同学拿出课前准备的学具拼一拼,讨论完成学习卡上的内容。你们明白要求了吗?现在开始吧!学生进行汇报师:板书因为长方形的面积=长×宽所以圆的面积=圆周长的一半×半径。

  四.巩固新知,实践运用

  1.俗话说学关键是用好,做游戏时,你们说男生涂的圆大,女生涂的圆小,现在来算一算用数据证明你们的说法是对的。

  2.现在你来帮助老师算一算我们学校要铺的草坪面积是多少?又需要多少钱?

  五.总结

  1、这节课你们有什么收获?

  2、大家的收获真不少你们不但学会了求园的面积,而且用转化的方法推导出圆的面积计算公式,这是你们的一个了不起。另外,你们利用所学的知识解决生活中的问题,这是同学们的第二个了不起。

  圆的面积教学设计 19

  教学目标:

  1. 知识与技能:认识圆的面积,通过操作,引导学生探索推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2. 过程与方法:在探究圆面积计算公式的过程中,通过大胆猜想、动手操作等活动,激发学生参与整个课堂教学活动的学习兴趣, 培养学生的合作意识和探究精神;通过学生讨论交流,培养学生的分析、观察和概括能力,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。

  3. 情感态度与价值观:通过应用,让学生体会数学的应用价值,体验数学与生活的密切联系,渗透转化的数学思想和极限思想

  教学重点:推导圆面积计算公式,运用圆面积计算公式解决实际问题。

  教学难点:理解圆的面积公式的推导过程。

  教学准备:课件、圆形白纸、剪刀。

  教学过程

  一、创设情景,引入新课

  1、出示主题情景图:

  ①从图中你获得哪些数学信息?

  ②提问:“这个圆形草坪的占地面积是多少平方米?” “占地面积”指什么?

  2、说一说:什么叫圆的面积?

  3、揭示课题:今天我们就来研究圆的面积。(板书课题:圆的面积)

  设计意图:出示情境图,把教学内容与生活有机结合起来,使学生从具体问题情境中抽象出数学问题,提高学生学习的积极性。

  二、合作交流,探索新知

  1、回顾旧知:

  回顾以前学过的平面图形面积公式是如何推导出来的?

  指出:转化的方法是我们学习数学新知识的一种很好而且很有用的思想和方法。转化的目的是为了——将没学过的图形转化成已学过的图形。

  设计意图:通过知识回顾,激发学生学习的.求知欲,强化数学学习的生活化。

  2、思考:那么能不能把圆也转化成已学过的图形来计算它的面积呢?

  3、合作探究:

  (1)猜想

  (2)动手操作,验证猜想。

  (3)汇报交流,展示成果(分层展示学生研究成果)。

  设计意图:通过活动,调动学生动手、动脑等多种感知觉参与活动,调动学生积极性、自觉性,培养学生观察,比较和判断思维的能力,培养学生合作交流的意识,应用知识间的转化和联系,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。

  4、借助络画板制作的动态课件展示圆面积的推导过程。

  展示不同的等份数拼成不同的平行四边形,感受极限的思想

  设计意图:通过对圆切拼的动画演示,观察不同等份数拼成的不同图形,发现规律,让学生感受极限思想

  5、推导圆面积公式。

  ①比较转化后的图形与圆,你发现了什么?

  ②全班交流,根据学生叙述板书:

  长方形面积= 长 × 宽

  圆的面积 =圆周长的一半 × 半径

  =Лr × r

  =Лr

  6、小结:圆的面积计算公式: S =Лr

  设计意图:通过转化和对比,让学生参与获取知识的过程,在开放的学习氛围中积极主动地投入到观察、讨论的学习交流,从而把发现知识的过程交给学生,动静结合的呈现方式有利于学生的理解,有利于突破教学难点,对学生空间观念的形成起到了十分重要的作业,有利于发展学生的空间想象能力。

  7、知识应用、内化提高

  (1)、 求下列圆的面积。(只列式不计算)r=3cm

  (2)、出示例1:例1:圆形花坛的直径是20m,它的面积是多少平方米?

  (1) 认真读题,理解题意。

  (2) 你认为怎样解决这个问题?

  (3) 学生尝试独立计算。

  (4) 汇报解答过程及结果,集体评价

  设计意图:让学生运用新知识解决生活中的实际问题,体验成功的喜悦。

  四.联系生活、拓展延伸

  1、公园草地上一个自动旋转喷灌装置的射程是10米,它能浇灌的面积是多少?

  2、把一个周长为18.84cm的长方形改围成一个圆,围成圆的面积是多少?

  3、求下列圆的周长和面积。

  r=2cm

  4、求半圆的面积。

  r=4cm

  设计意图:拓展延伸,让学生体会到生活中处处有数学,真正体会数学的实用性。

  5、回顾整理,全课总结

  今天我们学到了哪些新知识?你有哪些收获?

  设计意图:引导学生回顾学习过程,培养反思习惯,重视学生数学思想、方法的培养。

【圆的面积教学设计】相关文章:

圆的面积教学设计11-15

《圆的面积》教学设计02-07

圆的面积教学设计03-30

圆的面积教学设计04-03

《圆的面积》教学设计03-09

《圆的面积》的教学设计04-25

小学《圆的面积》教学设计08-09

圆的面积教学设计教案09-30

小学《圆的面积》教学设计04-19

《圆的面积》教学设计优秀05-19