三角形的边的教学设计(通用13篇)
作为一位兢兢业业的人民教师,总归要编写教学设计,教学设计是一个系统化规划教学系统的过程。那么大家知道规范的教学设计是怎么写的吗?下面是小编精心整理的三角形的边的教学设计,欢迎阅读与收藏。
三角形的边的教学设计 1
教学目标
1、让学生结合实例并根据自己的认识和理解概括出三角形的定义;
2、会用符号、字母表示三角形,并了解按边的相等关系对三角形进行分类;
3、理解三角形任何两边之和大于第三边的性质,并会应用性质解决问题;
4、在探索三角形三边关系的过程中,让学生经历了观察、实验、推理、交流等活动,培养了学生空间观念和推理能力。
5、在教学中让学生体会成功的喜悦。
教学重点
三角形三边的关系;
教学难点
三角形三边的关系的应用。教具小黑板、卷
教学过程
教学环节教师活动学生活动设计意图
一创设
情境:5分
二、探究新知:25分
三、尝试练习,体验成功:12分
四、小结升华:2分
五、布置作业:1分
板书:教师导言:同学们都知道三角形是最基本、最常见的几何图形,从古代埃及的金字塔到现在的飞机到处都有三角形的形象。
一、定义:定义中应注意:
(1)不在同一直线上;(2)三条线段;(3)首尾顺次相接。
接着回忆与三角形有关的概念:顶点、角、边--板书课题7.1.1三角形的`边。
老师讲述三角形的表示方法:
回忆三角形按角分类;
二、三角形按边的相等关系分类:(老师板演)接着介绍与等腰三角形有关的一些概念。之后给出【动脑筋】中的第一问。(在小黑板上。用一条长为18cm的细绳围成一个等腰三角形,(1)如果腰长是底的二倍,那么各边长是多少?).
三、三角形三边关系:
出示【探究题】:任意画一个△ABC,假设一只小虫从点D出发,沿着三角形的边爬到点C,它有几条线路可以选择?哪条线路最短?
教师小结:利用三角形三边关系解决三角形能否组成三角形以及生活中的一些实际问题。
【例】判断下列各组线段中,哪些能组成三角形?不能组成,请说明理由。(1)4cm,9cm,5cm(2cm,8cm,13cm.(3)2cm,6cm,3cm
(4)3cm,4cm,5cm..
【动脑筋】第二问:(2)能围成有一边长为4cm的等腰三角形吗?为什么?
(一)仔细填一填:1、2、3
(二)认真选一选:4、5、6
(三)看谁最聪明!
在第三问中力求给学生充分的思考空间,教师起引导作用。
1、三角形的表示及分类;
2、三角形三边的关系,学会用简单的方法判断三角形的组成情况;
3、在解决等腰三角形边与周长的问题中,1、当条件不明确时,要进行讨论;2、检验三角形能否组成。
一、必做题:69~1、2
二、选做题:练习册。
板书写在小黑板上。让学生结合生活实例并根据自己的认识和理解概括出三角形的定义。
在图形中让学生领会注意要点。
学生口答小试牛刀:
让学生回忆,
让学生尝试,老师补充。
让学生分析解题思路,并口述。
让学生在下面任意画一个三角形,观察从B~C有几条线路可走?再测量验证一下。并尝试运用所学知识说明道理。最后归纳出三角形三边的关系。
三、三角形两边之和大于第三边。(b+c>a;a+b>c;a+c>b)
让学生口答。老师提出问题:在判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条线段之和都大于第三边呢?有没有更简单的方法呢?让学生试着概括出:看较小的两边之和是否大于第三边。
启发并引导学生分析,得出:1、2
学生口述,老师板书。
让学生在5、6题中要注意的地方。
由学生讲述解题思路,老师补充。
学生小结,老师补充。让学生概括定义,老师补充。
自然引入课题。
巩固与三角形有关的一些知识。
第一问在这处理目的为了分散本题的教学难点。
让学生经历了观察、实验、推理、交流等活动,培养了学生空间观念和推理能力。
培养学生的归纳和概括能力。
【动脑筋】第二问给学生充分的思考时间。突出教学重点和教学难点,
体验成功的喜悦。
检验学生对教学重点和教学难点的掌握情况。
培养学生的归纳和概括能力。
体现分层次教学。
三角形的边的教学设计 2
教学目标:
1、知识与技能:
(1)通过创设问题情境、观察比较,初步感知三角形边的关系,体验学数学的乐趣。
(2)运用“三角形任意两边的和大于第三边”的性质,解决生活中的实际问题。
2、过程与方法:
通过实践操作、猜想验证、合作探究,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验“做数学”的成功。
3、情感与态度:
(1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。
(2)学会从全面、周到的角度考虑问题。
教学重点:
理解、掌握“三角形任意两边之和大于第三边”的性质。
教学难点:
引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。
教学准备:
课件、学具袋。
教学过程:
(课前谈话)今天很高兴能认识各位在座的小朋友。我呀,是来自绿影小学的包老师。来之前,我就听说某某学校的小朋友,聪明伶俐,爱动脑筋,是不是这样啊?为了表扬同学们在课堂的表现,老师还特地带来了一些小奖品,瞧,都贴黑板上了。(三张不同颜色的小笑脸)你们喜欢吗?
如果你能答出老师的问题,老师就让你上来任意选一个小奖品。你们想选哪一个?有几种选法?(三种)
如果某个小朋友回答问题特别棒,老师就让你任意选两个。有几种选法?(三种)
教师:真不错,不知不觉中,同学们已经回答出老师的两个问题啦。希望大家再接再厉,在课堂上有更好的表现。
一、动手游戏,提出问题
教师:请同学们拿出你的1号学具袋,看看里面有什么?(三根小棒。)
三根小棒能围成一个三角形吗?
学生先猜。
教师:光猜可不行,知识是科学,咱们来动手围一围。
学生动手围,集体交流:有的能围成,有的不能围成。
教师请能围成和不能围成的同学分别上来展示一下。
同时板贴:能围成三角形不能围成三角形
教师小结:随意的给你三根小棒,有的时候能围成一个三角形,有的时候不能围成一个三角形。看来呀,咱们考虑问题的时候要全面、周到。
提出问题:那么,能围还是不能围,跟三角形的什么有关系呢?
引导学生明白:跟三角形的边有关系。
教师:对,三角形的边有什么样的关系呢?同学们,你们想不想自己动手来探究这个问题呀?
板书课题:三角形边的关系(让学生收拾好一号学具袋)
[设计意图:随意的给学生三根小棒,让学生先猜能否围成一个三角形,再通过动手围,发现有的三根小棒能围成三角形,有的三根小棒不能围成三角形。这不仅激活了学生的旧知,刺激了学生的思维,更激发了学生探索的欲望:能否围成一个三角形跟什么有关系,怎么的三根小棒才能围成三角形呢?]
二、实践操作,探究学习
1、动手操作。
电脑出示:现有两根小棒,一根长3厘米,一根长6厘米,再配一根多长的小棒,就能围成一个三角形?
教师说明操作要求:
(1)从2号学具袋中拿出操作材料(两根小棒、作业纸和实践操作表格);
(2)在作业纸上有不同的线段,请你用两根小棒去围一围,看看是否能围成一个三角形(至少要和三条不同的线段围一围);
(3)将数据和结果填写在表格中,能围成的用√表示,不能围成的用×表示。
学生活动,教师巡视指导。
2、汇报交流。
教师:下面就请同学们来汇报一下你的操作结果。
[设计意图:既然已经知道能否围成一个三角形,与三角形的边有关系,所以教师先给出学生两根6厘米和3厘米的小棒,让学生通过动手操作得到,当第三边是几厘米的时候能围成三角形,直观明了,为后面的探究打好基础。]
3、集体探究。
第一层次:发现不能围成的原因。
(1)教师:同学们通过动手实践,发现1厘米的小棒不能围,确定吗?咱们再来验证一下。
课件演示:当三根小棒分别是1厘米、3厘米和6厘米的时候,围不成三角形。
教师:为什么围不成?你会用一个数学关系式表示出它们的关系吗?
引导学生得出:1+3
(2)教师:下面我们再来验证一下2厘米。课件演示。
教师:你发现了什么?会用一个数学关系式表示出它们的关系吗?
引导学生得出:2+3
(3)教师:3厘米也不能围成,是什么原因呢?课件演示。
提问:它为什么也围不成?你会用一个数学关系式表示出它们的关系吗?
引导学生说出:3+3=6,所以不能围。
(4)提出:1厘米、2厘米和3厘米的小棒都围不成。大家观察这三道算式,谁能用一句话说说什么情况下不能围成三角形阿?
板书(补上小于等于号):两边之和≤第三边不能围成三角形
[设计意图:学生已经有了操作的初步体验,但是不能围成的原因是什么,却还没有发现。这里,通过课件直观、生动的演示和教师及时的启发、点拨,学生便会很快的发现不能围成三角形的原因了。]
第二个层次:猜想,初步得出三角形边的性质。
教师:两边之和小于或者等于第三边,不能围成三角形。同学们猜想一下,什么情况下能围成三角形呢?
学生猜出:两边之和大于第三边。
板贴:两边之和>第三边能围成三角形?
同时,教师在旁边画上“?”
初步验证猜想:
教师:这个猜想对不对呢?这需要进行验证。看看这些能围成三角形的边,是不是具备这样的关系?
教师指着4厘米,问:当第三根小棒是4厘米的时候,谁能来说一说?
同时课件进行演示,得出:4+3>6。课件演示。
教师指着5厘米,问:那5厘米?得出:5+3>6
教师点击:那么下面就依次类推了。课件依次出现算式:6+3>67+3>68+3>69+3>6
[设计意图:由于有了“两边之和≤第三边,不能围成三角形”这个结论作基础,学生会自然而然地想到当“两边之和大于第三边”的时候就能围成三角形。这时教师及时说明,这只是猜想,要经过验证才能判断它是否正确。]
第三个层次:引发矛盾,突破难点。
教师指着表格,质疑:你们有没有发现问题啊?咱们在动手操作的时候得出9厘米不能围,可是9+3>6呀,这符合我们刚刚得出的结论啊?
先让学生说一说,然后进行课件演示。
教师:9和3这组的两边之和是大于6,可是它能围成吗?(不能)(课件演示确实不能围成。)
教师:我们再换一组看看,3和6这组的两边之和第三边9比,什么关系?(相等)
教师:那还要看哪一组?(6和9的和与3比)
引导学生明确:只通过一组来判断能否围成三角形,全面吗?那应该怎么说?
引导学生得出“任意”两字。
[设计意图:9+3>6却围不成三角形,这一下就给学生制造出了矛盾冲突,学生就会立刻思索这三边到底还存在什么样的关系,从而发现只通过一组两边的和来判断能否围成三角形是不全面的,必须要看三组,这样“任意”在这里的引出也就水到渠成了。]
第四个层次:再次验证,明确三角形三边的关系。
教师:下面我们利用这个结论再来验证一下,这些能围成三角形的三边,是不是都具备这样的关系?每个同学选一个你喜欢的在小组内交流。
学生交流,集体汇报。
第一边
长度(cm)第二边
长度(cm)第三边
长度(cm)能否
围成算式
631×1+3
2×2+3
3×3+3=6
4√4+3>63+6>44+6>3
5√5+3>63+6>55+6>3
6√6+3>63+6>66+6>3
7√7+3>63+6>77+6>3
8√8+3>63+6>88+6>3
9×9+3>63+6=99+6>3
10×
……
教师:在同学们的`猜想前面加上“任意”两字,通过再次验证后,发现它就是一条正确的结论。(教师擦掉“?”)咱们来一起读一遍。
[设计意图:加上“任意”两字以后,结论是不是就正确了呢?这时,让学生回过头来,再次验证能围成三角形的三边是不是具备这样的关系,不仅加深了学生对三角形边的关系的理解,也让学生充分经历了“猜想—验证—结论”这一科学的学习过程。]
第五个层次:找出判断不能围成的简捷方法。
教师:在这些不能围成三角形的三边中,它们也应该有几组算式?(3组)
那我们在判断它能不能围成的时候,是不是要把三组算式都找出来啊?
引导学生明确:只要找到一组不符合能围成的条件就可以了。
教师:谁能快速地说出‘10’不能围成的原因?
[设计意图:怎样最快的找到不能围成的原因,在这里也应该让学生明确。方法最优化应随时有效地渗透在教学环节中。]
第六个层次:再次验证“任意”,将结论从特殊扩大到一般;同时发现判断能围成三角形的简单方法。
(1)教师:刚刚咱们是给3厘米和6厘米寻找能围成三角形的第三边,得到这样的结论的。那是不是任意一个三角形的三边都具备这样的关系呢?
教师演示课件,随意拖拉两次,让学生用估算的方法说出三边的关系。
[设计意图:一开始的研究,是从给定的3厘米和6厘米的两边着手的。在这里通过课件的直观演示,将特殊情况推广到一般情况,让学生明白任意一个三角形的三边都有这样的性质。]
(2)提出:在判断能围成三角形的时候有没有更简单的方法?是不是每次都要计算三组啊?
让学生先充分地进行交流。
引导学生发现:因为较小的两边的和都大于最长的边了,那么用最长的边加一条较短的边,就一定大于另一条短边了。所以呢,这要把只要把较小的两条边加起来这一组进行判断,就可以代表三组了。还需要每组都判断吗?
[设计意图:我以为,在全体学生都已经掌握的基础上,肯定会有少数学生发现判断能围成三角形的诀窍。教师的设计应当顾及到这样的学生。所以,在这里可以及时地引导全体学生都掌握简单方法。]
三、深化认知,联系实际,拓展应用
1、轻松小游戏。
教师:同学们的表现真是棒极了,老师为了表扬大家,给你做个小游戏,想不想啊?
出示:有人说自己步子大,一步能跨两米多,你相信吗?为什么?
请两个学生上来跨一步。
先让学生充分的交流。
教师:你能用我们今天学习的知识来解释一下吗?
课件演示:两腿和地面跨出的距离形成了一个三角形。
教师:可是有个人说,我可以。你们知道是谁吗?
出示姚明图片,身高:226厘米;腿长131厘米。
[设计意图:通过游戏的形式解决问题,使学生主动地把本课的知识内容纳入到自己的认知结构,同时熏陶学生逐步达到“会学”数学的境界,并再次向学生渗透看问题要全面的原则。]
2、判断:下面哪组的小棒能围成一个三角形?(单位:厘米)(有图。)
(1)3、4、5(2)3、3、3(3)3、3、5(4)2、6、2
[设计意图:这道基础题的练习,既是对前面所学内容的巩固,同时引导学生利用简单方法快速地进行判断。]
3、儿童乐园要建一个凉亭,亭子上部是三角形木架,现在已经准备了两根三米长的木料,假如你是设计师,第三根木料会准备多长?并说明理由。
[设计意图:“从问题中来,到问题中去”,让学生用学习的知识解决生活中的现实问题,并从美观和讲究实用的角度出发,从而也培养了学生的综合能力。]
四、全课小结,从考虑问题要全面,引出第三边的取值范围
[设计意图:对于小学四年级的学生而言,范围的建立的确是有一定困难的。再次呈现前面的研究表格,这些数据是具体的,教师提出:“3、5厘米行吗?3、2呢?3、1呢?3、01呢?不断地向3逼近,学生自然会想到3、0001也是可以的,那该怎样表述呢?“比3厘米长”已呼之欲出;以此思考,学生不难得出“又必须比9厘米短”。这样层层递进的启发引导,发散拓宽了学生的思维,有机地渗透了无限逼近的数学思想,培养了学生抽象、概括的能力。]
三角形的边的教学设计 3
教学内容:
苏教版课程标准实验教科书数学一年级(下册)第43~45页的例题和“想想做做”。
教学目标:
1、通过把长方形或正方形折、剪、拼等活动,使学生直观认识三角形和平行四边形。
2、使学生能正确辨认三角形和平行四边形,初步知道三角形和平行四边形在生活中的应用。
3、使学生在折、剪、拼的活动中,初步体会图形的变换,进一步积累认识图形的经验,发展空间观念,增强合作意识,提高动手操作的能力。
教学重点:
使学生初步认识三角形和平行四边形。
教、学具准备:
教师,正方形纸、长方形纸若干;剪刀一把;钉子板一块;方格板一块;小猪头像一个;磁性白板和磁珠。
学生,钉子板一块;正方形纸、长方形纸各两张;剪刀一把;水彩笔;课前收集的有关三角形和平行四边形的图形资料。
教学过程:
一、创设情境,设置问题
二、实践操作,获取新知
1、动手折、剪三角形。
⑴让学生拿出一张正方形纸。教师拿正方形纸,让学生判断对不对。
⑵提出要求:把这正方形纸对折一次,变成一模一样的`两个部分。
⑶指名演示。
让不同折法的学生演示自己的折法,并说说分别折出了什么图形。
在师生交流中揭示三角形的名称。
学生动手折一个三角形。
⑷动手剪三角形。
老师示范,学生剪
说一说,有什么发现?
这两个三角形怎么样?
老师送给学生一件礼物,打开,出现四个三角形,老师贴在黑板上。
⑸认识三角形的一些变式图形。
这些都是什么图形?
2、动手拼、摆平行四边形。
⑴要求用两个一样的三角形拼一拼,看看能拼出哪些图形。学生摆。
⑵展示学生的成果。
5个学生展示摆的图形。
学生采访展示的学生,拼成了什么图形:
小鱼、蝴蝶、三角形、正方形、平行四边形。
让学生评价拼的怎样?
根据学生的交流,揭示平行四边形的名称。
⑶认识平行四边形的一些变式图形。
三、穿插活动,巩固认识
1、让学生用肢体来表现三角形和平行四边形。(鼓励同桌或小组共同完成)
学生尝试合作拼成平行四边形,师生合作拼成三角形。
2、展示课前收集的三角形和平行四边形。
房子顶上是三角形;
3.指导看书第43页和44页。
认识红领巾、路牌,认识三角形。
认识栅栏门、起重机、楼梯的截面,认识平行四边形。
用生活中的例子进一步丰富对三角形和平行四边形的认识,并要求选出一个最喜欢的图形用水彩笔涂上颜色。
学生活动。
四、练习
1、在钉子板上围一个三角形和平行四边形,学生独立完成。
同桌交流,全般展示、评点正确和错误的平行四边形。把错误的平行四边形改围正确。
学生再围平行四边形。
2、在方格纸上画一个三角形和一个平行四边形,完成后展示、评点。
3、用一张长方形纸折(剪)成两个一样的三角形。
4、用两个一样的三角形拼成一个平行四边形。
五、全课小节,板书课题。
三角形的边的教学设计 4
教学目标
知识与技能:发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。
过程与方法:。积极参与探究活动,经历发现问题、探究问题及得出结论的过程,提高学生观察、思考、抽象概括和动手操作的能力。能根据三角形三边的关系解释生活中的现象。
情感态度与价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。
教学重点
三角形三边关系的实验与探究。
教学难点
利用三角形三条边之间的关系解决实际问题。
教具准备
三角形、支直尺、不同长度的小纸条若干、分组操作记录表、双面胶、自制课件ppt。
教学过程
一、导入。
1、谈话创设情境:
这节课老师有一个愿望,那就是能够看到同学们:敢想敢说敢问敢辩敢失败,特别是敢失败,因为水稻之父袁隆平曾经说过:失败里包含着成功的因素。你们能帮助老师实现愿望吗?(课件出示)
2、复习旧知:
(1)(欣赏图片)你看到了什么?
(2)那你能说一说,你对三角形都有哪些了解?
(3)三个顶点,三个角,三条边,三角形具有稳定性;
(4)那么到底什么是三角形?(由三条线段围成的图形)分析这句话突出“围成”。
3、质疑:是不是任意的三条线段都能拼成三角形呢?导入新课
二、动手操作、探究新知。
(一)、分组操作:请同学们用你们手上的小纸条来围成一个三角形,你们能完成吗?
操作要求:
1、每6人一组。组长一人、记录员一人、测量员一人、其余的是操作员
2、测量员量出你所选择的纸条的长度;
3、记录员做记录;
4、操作员动手拼三角形,把你拼出来的图形贴在下面;
5、组长汇报结果。
注意:相邻的`两条线段要端点相连。
(二)汇报结果:按顺序组长分组汇报结果(本组选择的纸条的长度、能否拼成三角形)。
展示操作结果:
试验次数三边长度(cm)结果三角形三条边的长度关系
(1)3、5、9否较短的两条边长度之和小于第三边3+5
(2)3、6、9否较短的两条边长度之和等于第三边3+6=9
(3)3、5、7是较短的两条边长度之和大于第三边3+5>7
(4)5、6、7是较短的两条边长度之和小于第三边5+6>7
(5)5,8,13否较短的两条边长度之和等于第三边5+8=13
(6)7,11,12是较短的两条边长度之和大于第三边7+11>12
(7)18,7,5否较短的两条边长度之和小于第三边5+7
(8)11,4,15否较短的两条边长度之和等于第三边4+11=15
(三)引导学生发现特性:(课件演示)
1、两条边的长度之和小于或等于第三条边的长度不能围成三角形
2、较短的两条边的长度之和大于第三条边的长度能围成三角形
3、学生自由讨论、总结:三角形三条边的关系(三角形任意两条边的长度之和大于第三条边的长度)(揭题、板书)
4、读一读,说一说关键字词是什么?你怎样理解(任意和大于)?
三、精彩练习、拓展提升。(课件出示)
在能围成三角形的各组小棒下面画“√”。(单位:厘米)
(5)1cm2cm3cm()(6)4cm2cm3cm()
(7)3cm4cm5cm()(8)3cm3cm5cm()
四、学以致用。
(一)、课件出示:课本82页例3情境图。
1、这是小明同学上学的路线,请大家仔细观察一下,他可以怎样走?
2、为了描述方便,我们把这几条路线分别标上颜色,在这几条路线中哪条最近?为什么?
3、归纳汇报:请同学看一看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?因为这三条路正好形成两个三角形,而中间的这条路相当于三角形的一条边,而在三角形中,其他两边之和一定大于第三边,所以中间的这条路最近。得出结论:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。(板书)
(二)完善表格。
五、课堂总结。
同学们,通过今天的研究你有什么收获吗?
1.发现并理解了:三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题,找出到达一个地方最短的路线。
2.通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养了发现问题的意识及提出问题的能力,积累探索问题的方法和经验。
板书设计:
三角形三边关系
三角形任意两边之和大于第三边。
两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。
三角形的边的教学设计 5
教学目标:
1、结合具体的情境和直观操作活动,让学生探索并发现三角形任意两边和大于第三边。
2、感受动手实验是探索数学规律的途径和方法。
3、培养学生初步的应用数学知识解决实际问题的能力。
教学重点:
在观察、操作、比较、分析中发现三角形边的关系。
教学难点:
应用三角形边的关系解决问题。
教学方法:
观察法、动手操作法、小组讨论法
教学过程:
一、设境导入,猜想质疑
小明和我们一样每天都按时上学,请看小明到学校的线路图(课件示)小明上学共有几条路线?有一天小明起来晚了,你们猜猜他肯定会走哪条路去学校?为什么?
今天我们用数学知识来解决这个问题,请观察路线①和路线②围成的近似一个什么图形?路线②和路线③又近似一个什么图形?走路线②,走过的路程是三角形的一条边,走旁边的路走过的路程实际上是三角形的另外两条边的和。根据大家的判断,走三角形的两条边的和要比第三边大。是不是所有的三角形的三条边都有这样的关系呢?
这节课我们一起来研究一下,板书课题:三角形三条边的关系
二、小组合作,实验探究
实验1:我们都知道三角形是由三条线段首尾相连围成的封闭图形。现在从学具中任意拿出三根小棒,摆一摆,看看你发现了什么?
①学生动手操作。
②交流,展示汇报。(出现了两种情况:一种可以摆出三角形,另一种摆不出三角形。)
实验2:看来,不是任意三条线段都能围成三角形,有的同学用三根小棒摆成了三角形,有的同学没有摆成,这是什么原因?下面我们就对这两种情况做一个深入的探究。
①小组按要求合作,完成实验报告单(教师指导)
②反馈:A、首先我们看看怎样的三条线段能围成三角形?(生展示汇报,师板书)
通过仔细观察发现:任意两条边的和大于第三边。(板书)
质疑:‘任意’是什么意思?能举例说明吗?(生汇报)
③B、下面我们再来看看怎样的三条线段不能围成三角形?(生展示汇报,师板书)
通过对比发现不能围成情况有:
a)两边的和小于第三边;
b)两边的和等于第三边;
检验其他记录的情况,对比发现:两边的和小于或等于第三边就不能围成三角形。(相机板书)
小结:通过我们实验观察,知道了三角形的`两边之和大于第三边。(出示课件)
三、建构模型,联系生活
(出示课件)小明上学示意图,现在你能用三角形的三边关系解释小明为什么走中间这条路吗?(同桌互说后,交流)
四、巩固应用,深化练习
1、做一做:教科书第86页第4题(出示课件)
学生独立完成后,汇报方法。优化出快捷的判断方法:用较小的两条边的和大于第三边就可以做到任意两条边的和大于第三条边。
2、试一试现在有两根分别是3厘米和7厘米的小棒。猜一猜,与它们能组成三角形的第三根小棒的长是多少厘米?(取整厘米数)(出示课件)学生独立思考30秒后,小组讨论。
三角形的边的教学设计 6
一、教学目标
1、探究三角形三边的关系,理解三角形任意两边的和大于第三边;
2、能根据三角形三边的关系解释生活中的现象,提高解决实际问题的能力;
3、积极参与探究活动,获得成功体验,产生学习数学的兴趣。
二、教学重难点
重点:探索三角形三边之间的关系
难点:三角形任意两边的和大于第三边
三、教学过程
Ⅰ、创设情境,引入新课
师:同学们,昨天我们已经认识了三角形,谁能来告诉大家什么是三角形么?
生:由三条线段围成的图形叫做三角形。
师:讲得很好,也就是说三角形是由三条线段所围成的。那么是不是只要有三条线段,我们就一定能围成三角形呢?
生:是(有些答不是)。
师:现在同学们从老师发的5根小棒中选出3根,看看是否能围成三角形?好,开始。(板书:不能围成三角形能围成三角形)
生:摆一摆(上台展示)
师:任取三根小棒,有时能围成三角形,有时却围不成三角形,那么围成与围不成,跟三角形的什么有关系呢?
生:三角形的边。
师:大家回答得很好,三角形的边有什么样的关系呢?这就是我们今天要研究的问题。(板书:三角形边的关系)
Ⅱ、自主探究,提炼规律
师:下面让我们一起来完成这个探究活动,请齐读操作要求,开始!
生:进行实验并完成表格填写(教师进行指导)
组别小棒的长度能否围成三角形两边之和与第三边的大小关系
13583+5○8;3+8○5;5+8○3
245104+5○10;4+10○5;5+10○4
33453+4○5;3+5○4;4+5○3
458105+8○10;5+10○8;8+10○5
师:坐好。大家认为有哪几组是围不成三角形的呢?
生:前两组。
师:让我们一起来看看
生1,你发现的两边之和与第三边的关系是什么?
生1:3+5=8,3+8>5,5+8>3(课件展示:3、5、8,围不成)
师:很棒,我们继续来看第2组
生2,你发现了什么?(教师手指两边之和与第三边的关系)
生2:4+5<10,4+10>5,5+10>4(4,5,10,围不成)
师:为什么这两组的小棒围不成三角形呢?
生:3+5=8,4+5<10(或有两条边的长度的和没有第三条边长)
师:说得很好,也就是说两边之和小于或等于第三边,所以这三根小棒围不成三角形。(板书:两边的和≤第三边)
师:那围成三角形的就是3、4组了,对吧?
生:对。
师:生3,你发现的两边之和与第三边的关系是什么?
生3:3+4>5,3+5>4,4+5>3看第三组的课件演示(3、4、5,围成)
师:这个呢?
生3:能围成,5+8>10,5+10>8,8+10>5
师:回答得非常棒,大家试一试将3、4组与1、2组进行对比,为什么3.4组能围成三角形?
生:它3个都是大于的(有些同学会回答:两边的和比第三条边大)。
师:那也就是说围成三角形是两边的`和大于第三边(板书:两边的和>第三边?)
师:这个有问题么,大家看看屏幕,1、2组也有两边的和大于第三边呀?
生:都大于。
师:对!必须强调每组都是,即是“任意”,我们把它表示为:任意两边的和大于第三边。(板书:擦去?,补任意)
师:我们发现的规律就出现在课本的82页,大家把它画起来。(5秒)齐读。
生:三角形的任意两边之和大于第三边。(板书:三角形的任意两边之和大于第三边)
Ⅲ、巩固应用,变式提升
例判断下列三条线段是否能围成三角形?
(1)6,7,8(2)4,5,9(3)3,6,10
(学生先用三条式子来判断是否能围成三角形,教师再让学生讨论交流好方法)
通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形。
教师指导学生:将两条短的边相加与最长的边相比,如果大于,就能围成三角形。
1、判断以下几组小棒能否围成三角形,能的打“√”,不能的打“×”,并说明理由。
(1)3cm4cm5cm()
(2)3cm3cm3cm()
(3)2cm2cm6cm()
(4)3cm3cm5cm()
注:学生学会将两条短的边相加与最长的边相比,如果大于,就能围成三角形,从而提高做题速度。
2、生活中的数学
3、巩固提升
小明想要给他的小狗做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是5分米。
(1)第三根木条可以是多少分米?(取整数)
(2)第三边的木条的长度是a分米,那么a的取值范围是()
四、回忆新知,归纳总结
师:通过本节课的学习,你收获了什么?
生:三角形任意两边之和大于第三边。(等等)
五、板书设计
三角形边的关系
不能围成三角形能围成三角形
两边之和≤第三边任意两边之和>第三边
三角形任意两边之和大于第三边
三角形的边的教学设计 7
教学内容:
苏教版课程标准实验教科书数学一年级(下册)第43~45页的例题和“想想做做”。
教学目标:
1、通过把长方形或正方形折、剪、拼等活动,使学生直观认识三角形和平行四边形。
2、使学生能正确辨认三角形和平行四边形,初步知道三角形和平行四边形在生活中的应用。
3、使学生在折、剪、拼的活动中,初步体会图形的变换,进一步积累认识图形的经验,发展空间观念,增强合作意识,提高动手操作的能力。
教学重点:
使学生初步认识三角形和平行四边形。
教、学具准备:
教师,正方形纸、长方形纸若干;剪刀一把;钉子板一块;方格板一块;小猪头像一个;磁性白板和磁珠。
学生,钉子板一块;正方形纸、长方形纸各两张;剪刀一把;水彩笔;课前收集的有关三角形和平行四边形的图形资料。
教学过程:
一、创设情境,设置问题
二、实践操作,获取新知
1、动手折、剪三角形。
⑴让学生拿出一张正方形纸。教师拿正方形纸,让学生判断对不对。
⑵提出要求:把这正方形纸对折一次,变成一模一样的两个部分。
⑶指名演示。
让不同折法的学生演示自己的折法,并说说分别折出了什么图形。
在师生交流中揭示三角形的名称。
学生动手折一个三角形。
⑷动手剪三角形。
老师示范,学生剪
说一说,有什么发现?
这两个三角形怎么样?
老师送给学生一件礼物,打开,出现四个三角形,老师贴在黑板上。
⑸认识三角形的一些变式图形。
这些都是什么图形?
2、动手拼、摆平行四边形。
⑴要求用两个一样的三角形拼一拼,看看能拼出哪些图形。学生摆。
⑵展示学生的成果。
5个学生展示摆的图形。
学生采访展示的学生,拼成了什么图形:
小鱼、蝴蝶、三角形、正方形、平行四边形。
让学生评价拼的怎样?
根据学生的交流,揭示平行四边形的名称。
⑶认识平行四边形的一些变式图形。
三、穿插活动,巩固认识
1、让学生用肢体来表现三角形和平行四边形。(鼓励同桌或小组共同完成)
学生尝试合作拼成平行四边形,师生合作拼成三角形。
2、展示课前收集的`三角形和平行四边形。
房子顶上是三角形;
3、指导看书第43页和44页。
认识红领巾、路牌,认识三角形。
认识栅栏门、起重机、楼梯的截面,认识平行四边形。
用生活中的例子进一步丰富对三角形和平行四边形的认识,并要求选出一个最喜欢的图形用水彩笔涂上颜色。
学生活动。
四、练习
1、在钉子板上围一个三角形和平行四边形,学生独立完成。
同桌交流,全般展示、评点正确和错误的平行四边形。把错误的平行四边形改围正确。
学生再围平行四边形。
2、在方格纸上画一个三角形和一个平行四边形,完成后展示、评点。
3、用一张长方形纸折(剪)成两个一样的三角形。
4、用两个一样的三角形拼成一个平行四边形。
五、全课小节,板书课题。
三角形的边的教学设计 8
设计说明
1.三角形3条边的关系是在学生已经掌握了三角形的概念、三角形具有稳定性的基础上学习的。本节课主要学习三角形3条边的关系及应用三角形3条边的关系解决一些实际问题。通过本节课的学习,可以为学生空间观念的发展、数学活动经验的积累提供机会,也可以为学生推理意识的建立和对推理过程的理解打下基础,还可以为学生应用自己的方式有条理地表达推理过程作铺垫。
2.教学中,根据小学生喜欢玩的天性,首先设计让学生拼摆三角形的动手操作活动,使学生一开始就进入到学习状态。在教师的引导下,当学生发现三角形3条边的关系后,出示教材上的情境图,让学生学会应用所学知识解决实际问题,训练学生灵活应用知识的能力,使学生在解决问题的过程中理解并掌握本节课的重点。
3.在教学过程中,由行动生问题,由问题生假设,由假设生验证,由验证生新价值,让学生在实践中自主学习、主动探究,从而提高学生的学习能力和创造能力。
课前准备
教师准备 多媒体课件
学生准备 长度不同的小棒
教学过程
⊙情境导入
1.请同学们回忆一下,什么样的图形是三角形?[由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形]如果用一根小棒代表一条线段,围成一个三角形需要几根小棒?任意给你3根小棒,你能围成一个三角形吗?
2.同学们的意见不统一,究竟谁说得对呢?我们亲自用小棒摆摆看,请大家打开学具袋,从中任意取出一些小棒试试看。可以换小棒多试几组,注意小棒要首尾顺次相连。
设计意图:通过“3根小棒能不能围成一个三角形”这一问题,引发学生的认知冲突,激发学生探究三角形三边关系的'学习兴趣。
⊙探究新知
1.拼摆尝试。
师:任意取3根小棒,看能不能摆成三角形。(学生任意取3根小棒试着摆一摆,多摆几次,记录下来)
师:你发现了什么?(3根小棒有的能摆成三角形,有的不能摆成三角形)
师:在什么情况下3根小棒能摆成三角形?在什么情况下3根小棒不能摆成三角形?让我们用手中的学具通过小组合作来寻找答案。
2.合作实践。(出示课堂活动卡)
3.小组汇报。
预设
小组1:通过用小棒摆三角形,借助测量数据、分析数据,我们发现只有当三角形的其中两边的和大于第三边的时候才能摆成三角形。
小组2:我们小组发现,当三角形的任意两边的和小于或等于第三边的时候就不能摆成三角形。
(教师板书:三角形任意两边的和大于第三边)
4.我们在判断3条线段能否围成一个三角形时,是不是一定要写出3个算式才能判断呢?
讨论后得到以下结论:利用“两短边的和大于长边”就能判断3条线段能否围成一个三角形。
5.教学教材62页例3。
通过刚才的学习,同学们不仅掌握了判断3条线段能否围成一个三角形的方法,还找出了最佳的判断方法。请同学们观察小明上学的示意图,如果小明想走最短的路上学,你认为他会选择走哪条路?(他会选择走中间这条路)你是怎样判断的?
预设
生1:因为中间这条路是直的,其他的路是弯的,所以走中间这条路最近。
生2:如果小明走通过邮局到学校的这条路上学,小明家、邮局、学校则构成一个三角形,由三角形的3条边的关系可知,小明家到邮局,邮局到学校这两条边的和一定大于第三边,即中间这条路,所以走中间这条路最近。
教师小结:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。
设计意图:通过拼摆三角形的活动,使学生发现三角形的3条边的关系,并能以此为依据,解决生活中的实际问题,体现了数学在生活中的应用价值。
三角形的边的教学设计 9
[教学目标]
1、通过画一画、量一量、算一算等实验活动,探索并发现三角形任意两边之和大于第三边。
2、在实验过程中培养学生自主探索、合作交流的能力。
3、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
[教学重、难点]
1、探索并发现三角形任意两边之和大于第三边。
2、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
[教学准备]
学生、老师准备几个形状不同的三角形、直尺。
[教学过程]
一、创设情境,引出问题。
出示情境图,问:笑笑从家到学校哪条路最近?你是怎样想的?生:走a路线最近。因为……
师:在生活中人们都愿意走近路。在这幅图中,笑笑家、邮局、学校所在的位置,正好组成一个三角形,从图中和我们的生活经验中同学们都认为a路线最近,路线b加上路线c一定比路线a远。那么,是不是三角形任意两边长度的和一定比第三边大呢?
二、自主探索、合作交流。
1.小组活动:用小棒摆三角形,下面哪组能摆成?哪组摆不成?与同伴交流。
2.想一想,怎样的3根小棒能摆成一个三角形。与同伴说一说。
3.算一算,比一比,能摆成三角形的3根小棒的长度之间有什么关系?
引导学生得出结论。
三角形任意两边之和大于第三边。
三、运用知识解决问题。
练一练:
第1题:判断每一竖行三条线段能否摆成三角形。
第3题:组织学生用小棒摆一摆,并填入表中。
第4题:如果三角形的两条边的长分别是5厘米和8厘米,那么第三条边可能是多长?有多个答案,第三边只要大于3厘米小于13厘米即可。鼓励学生尽可能多的得到答案。
[板书设计]
三角形三条边的关系
三角形任意两边之和大于第三遍
三角形任意两边之差小于第三遍
《三角形三边的关系》教学反思
本节课教学目标的定位
本节课教学目标定为:
知识技能目标
(1)、经历搭三角形的过程,通过自主探索,合作交流发现“三角形任意两边之和大于第三边”。
(2)、懂得判断三条线段能否构成一个三角形的方法,并能用于解决有关的问题。
情感目标:让学生树立几何知识源于客观实际,用于实际的观念,激发学生学习兴趣,培养学生的探索精神。部分学生都能凭着自己的生活经验初步了解“三角形两边之和大于第三边”这个性质,在实际教学中老师能很好的利用学生现有的生活经验与知识水平突破教学重点,但没能很好的利用现有的课堂教学资源突破教学难点。
教后反思
(1)教学理念:现代教育的特征是充分展现人的主体性,追求人的全面发展。因此从小养成一种“展示自我”的习惯以及培养学生探索知识规律的意识是非常必要的。在课堂教学中尽量体现教师是知识的组织者、参与者和引导者;充分体现以学生为主体的课堂教学,让学生真正在知识的王国里探索。《三角形三边的关系》为学生创设合作、自主探究学习的机会。
(2)本课时中几个环节的设计意图与实施情况:
第一是让学生在问题情境中动手操作,从而产生认知上的冲突“一组小棒能拼成三角形,另一组小棒却不能拼成三角形,这是为什么?”并激起了探究的欲望,产生了对所要学的内容产生了浓厚的兴趣,使学生学习情绪达到最佳境界。
第二是充分体现以学生为主体和教师为主导的作用。布鲁纳说过:“知识的获得是一个主动过程,学习者不应该是信息的被动接受者,而应该是获取过程的`参与者。”在小组合作学习中让学生通过用小棒拼三角形,直观地探究三角形三边的关系,填写实验报告单等动手、动脑的活动,再经过交流,发现问题,探究规律,得出结论--三角形任意两条边之和大于第三条边,基本上在整个知识规律的得出过程中没有教师的讲解,教师只是起一个组织、引导的作用,这样做既让学生经历了数学新知的形成过程,并获得了成功的喜悦。
第三是练习设计即注重基础与实际运用,面向全体学生,又安排了一些对原有所突破,拓展、发散和提升的题目,兼顾学生的个性发展。如把所得知识放到生活情境“找捷径”中加以验证,再在层层练习中不断加以提升、拓展……使知识的获得不断圆满、丰富,使学生在获取知识的同时并学会思考。
(3)教学中的疏忽及教后思考
上完课后发现,学生已有的基础是教师始料不及的,致使原先的教学设计在堂上有所改变,课上虽能根据突发情况灵活调整教学策略,但驾驭能力还要提高。备课时也要多方面考虑周全,方能以不变应万变。在教学过程中教师对师生、生生间的交流方式和教学语言的精炼程度,以及对教学资源的整合等方面的能力是今后教学中的努力方向。
三角形的边的教学设计 10
教学内容分析
教育不只是一种简单的“告诉”。学生拥有自己的独立思考水平和认知系统。当他们遇到一个新的待解决的问题情境时,他们会自觉而主动地从自己已有的知识架构和认知经验中摸索、收集、调动处理问题的方法和策略。三角形边的关系这一内容是新教材新增加的内容,并安排在第二学段。通过这一内容的学习,使学生在已经建立三角形概念的基础上,进一步深化理解三角形的组成特征,加深学生对三角形的认识,同时,也为以后学习三角形与四边形及其他多边形的联系与区别打下基础。
根据新课标的精神,要改变学生学习的方式,让学生经历“数学化”、“做数学”等过程,并注重与生活实际紧密联系,学有价值的数学。根据这一教学内容在教材中所处的地位与作用,以及新课标的要求,我认为设计这节课的理念是:活动参与、自主建构,联系生活、应用数学。
教学目标
知识目标
知道和理解“三角形任意两边的和大于第三边”,能用它解释一些生活现象,解决一些简单的生活问题。
能力目标
通过动手操作、小组验证,体验探索三角形边的关系的过程,培养猜测意识和自主探索、合作交流的能力。
情感目标
经历探究、发现、验证“三角形任意两边的和大于第三边”的过程,体验合作学习和数学学习的快乐。
教学重点
三角形三边关系的实验与探究
教学难点
三角形三边关系的探究过程。
教学关键
使学生理解三角形边的关系
教学准备
课件、三根小棒、三边关系试验报告单每组四根小棒
教学方法
自主探究小组讨论
课程类型
学科课程
教学过程
活动的组织与实施(含教师活动和学生活动)
设计意图
时间分配
一、复习旧知,导入新课
我手上拿的是什么?(三角板)它是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。
复习旧的知识,使新旧知识之间有很好的连接
2分钟
二、动手操作,发现问题
师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?
生:三角形。
师:谁愿意上来围一围?围的时候要注意小棒首尾相连。
师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)
三、猜想验证,发现规律
师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?
生:换一根小棒
师:怎样换?同学们说的都是你们的猜想(课件演示猜想1)
1、学法指导师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)操作要求:(1)、2人一组合作完成四种拼法(2)、围三角形时要注意首尾相连。(3)、完成后,填写好活动记录表准备交流
2、动手操作,寻找规律(师巡视,并指导)
3、交流汇报,探究规律。
师:哪个小组愿意来汇报。小组上台展示,
3厘米、8厘米、10厘米能
3厘米、5厘米、10厘米不能3厘米、5厘米、8厘米不能5厘米、8厘米、10厘米能师:其它组有不同意见吗?
师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?
三根小棒要围成三角形,必须满足什么条件?
通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?
生:
师:其他同学赞同吗?谁再来说一说。
师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈 8)你很会观察。
(课件演示)师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?
生:3+5=8重合了不能
师:是这样吗?(课件演示)请看大屏幕。
师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。
师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。
师:那么怎样才能围成三角形呢?
生:两条边加起来要大于第三边就行了。
师(板书):两边之和大于第三边
师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10看起来是这样的。
3)师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?
生:有一种不符合就不行了
师:看来只是其中的两条边之和大于第3条边是不完整的
生1:加“任何”、“任意”
生2:其他两边之和都大于第三条边。
生3:无论哪两条边之和都要大于第三边。
4、归纳小结
师:看来只是其中的两条边之和大于第3条边是不完整的,
师:这句话概括说就是:任意两边之和大于第三边(板书:任意)师:是这样吗?再挑选一组能围成三角形的三条边,来验证:生:3+4>5、3+5>4、4+5>3,师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)
四、运用结论,加深理解
师:我们已经知道三角形的三边关系,下面让我们来判断几道题目
1、快速判断。
3cm、5cm、() 4cm
7cm、4cm、() 2cm
6cm、3cm、() 1cm
2cm、3cm、() 3cm
师:为什么围不成?你是怎么判断的?
2、出示P82例3图
这是小明上学的路线图,同学们仔细看一看,他可以怎样走?
3、这几条路中,哪条最近?这是为什么呢?
老师在生活中还看到了这么一种现象:(课件演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?师:今天你有什么收获?
其实数学就在我们身边,只要你平时多观察、多动脑,你一定能成为数学的.好朋友。
开发学生的动手能力和观察能力,在实践中发现问题并尝试找出问题的原因反复试验,加深同学的理解,猜想验证,发现其内在规律增强小组合作意识以及动手操作能力锻炼同学发言及表达能力
通过小组讨论,发现问题,尝试找出原因,激发学生自主学习的精神在教学过程中不断引导,自主发现问题,加深对知识的理解和巩固运用练习,巩固学习的知识,加深印象
3分钟5分钟7分钟3分钟5分钟10分钟5分钟
板书设计
三角形边的关系两边之和大于第三边
教学反思
本节课巩固应用部分的三个环节,是从学生的学习认知规律出发,遵循从易到难的原则,分巩固性练习、应用性练习、拓展性练习三个层次。并与学生身边的生活例子相结合,既能体现数学教学生活化的新理念,又能有效地激发学生的学习兴趣,拓展学生的思维,提高学生的数学学习能力。
以上教学设计,以学生的学习心理为基础,通过简单的动手操作,创设有效的“数学问题情境”,激发学生强烈的探究欲望。通过引导学生大胆的猜想,积极的验证和合理的归纳,使学生学到新知识的同时,经历数学知识的形成过程,这样的教学将会有效地激活了学生的数学思维,使学生在知识、能力,以及情感态度等方面都将得到较好的发展。又通过摆图形,寻找数据间的关系;又通过数据的整理和分析,确定图形的存在性和图形具有的性质,使数形紧密结合,渗透了数形结合的思想方法;同时对不同类型三角形都具有的共性归纳总结,渗透了数学的归纳思想。教学中始终以这一核心的思想为教学灵魂,时时渗透,处处体现。
三角形的边的教学设计 11
教学目标:
(一)知识与技能:
1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.能识别不同形状的三角形。
2理解三角形三边的不等关系.
(二)过程与方法:经历度量三角形边长的实践活动,懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.
(三)情感态度与价值观:帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.。
教学重点难点:
重点:
1、对三角形有关概念的了解,能用符号语言表示三角形。
2、能从图中识别三角形
3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系
难点:
1.在具体的图形中不重复,且不遗漏地识别所有三角形.
2.用三角形三边的不等关系判定三条线段可否组成三角形.
教学过程
一、设置情景、巧妙引入:
1、教师叙述:三角形是一种最常见的几何图形之一.(把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑等,到微小的分子结构,处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中.
2、在课前布置学生搜集身边含有三角形的图片,上课时展示,
学生活动:
(1)交流在日常生活中所看到的三角形.
(2)选派学生代表说明三角形存在于我们的生活之中.哪些地方可以看到三角形?
活动目的:这样设计的目的是通过展示学生搜集的图片,让学生经历几何模型的抽象过程,体会到三角形是最简单,最基本的几何图形,在生活中随处可见。激发学生学习三角形的兴趣和热情,同时引出课题。
二、操作交流探究新知
活动
1、让学生自己画一个三角形。
(1)、与同伴交流你所画的三角形。
(2)、提问:观察所画的三角形有什么共同特点?
活动目的:是引导学生观察所画图形,在学生讨论交流的基础上,教师提炼出三角形是由三条线段,而且是不在同一直线上的,首尾顺次相接所组成的,引出三角形定义。
活动二:为了让学生体会到用符号表示三角形的必要性,认识三角形的基本要素及其表示方法,先用课件展示由生活中的图片抽象出的几何模型,然后设计了以下问题串:
问题1:找出图中的三角形,与同伴进行交流。
问题2:我们是如何表示线段和角的?
问题3:你认为如何表示三角形?
活动目的:通过问题1的设置让学生感受到交流的不方便,从而体会到用符号表示三角形的必要性。问题2和3让学生在已有知识的基础上,通过回顾线段和角都可以用顶点的大写字母表示,不难想到三角形也可以利用顶点的大写字母来表示,教师加以规范,同时给出三角形的边、角、顶点三个基本要素的表示方法,从而帮助学生进一步认识三角形。
活动三:根据刚刚学过的知识,设置下面的练习:
1、老师画出几个图形.(略)
教师提问:上述对三角形的描述中你认为有几个部分要引起重视.
学生交流,老师:
a.不在一直线上的三条线段.
b.首尾顺次相接.
2、用符号表示你刚刚找到的三角形,图中共有多少个三角形?
请一名学生上黑板写出所找到的三角形。练习2中的三角形比较多,在找三角形的过程中可能有多种方法,可以让学生通过交流,找到比较好用的方法。
活动目的:本练习回扣了刚刚学过的三角形的定义,表示方法和基本要素。让学生切实的'体会到能用刚学过的知识轻易的解决原来不好解决的问题,使学生比较熟练的表示三角形。让学生通过观察、交流得出结论,鼓励学生从不同的角度解决问题,培养学生的创新。
三、联系实际、积极探索
问题1、
画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?
同学们在画图计算的过程中,展示议论,并指定回答以上问题:
强调:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.
a.从B→C
b.从B→A→C
(2)从B沿边BC到C的路线长为BC的长.
从B沿边BA到A,从A沿边C到C的路线长为BA+AC.
经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.
问题2、
1.在一个三角形中,任意两边之和与第三边有什么关系?
2.从理论上讲,该结论的依据是什么?
强调:通过动手实验同学们可以得到结论:
三角形的任意两边之和大于第三边;
依据:“两点之间线段最短”。
活动目的:对三个情景的观察和讨论,引起学生讨论三角形三边之间的关系,学生可能通过拼接、测量或应用理论依据“两点之间,线段最短”来说明,对于学生的回答,只要合理都要予以肯定和鼓励。问题2的设置让学生能从实际情景中抽象概括得出如下结论,发展学生的推理能力和有条理的表达能力。书上只有一个情景,而我设计了三个情景,就是为了凸显“任意”二字的含义。
四、课堂演练巩固新知
1、判断平面图形中有几个三角形?课本P4练习1.
2.有三根木棒长分别为3cm、6cm和2cm,用这木棒能否围成一个三角形?
强调:(1)三条线段能否构成一个三角形,关键在判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.
(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和8cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.
错导:∵3cm+6cm>2cm
∴用3cm、6cm、2cm的木棒可以构成一个三角形.
错因:三角形的三边之间的关系为任意两边之和大于第三边,这里3+6>2,没错,可2+3不大于6,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.
活动目的:通过对本节课两个重要结论的应用,引导学生找出实际应用中的简便方法,发展学生综合运用的能力,让学生对这两个结论的理解更加深刻。
五:变式训练,熟练技能
练习1、小明要做一个三角形的铁架子,下面几组铁条中,哪组铁条能够焊成一个三脚架?
(1)6cm,8cm,10cm(2)5cm,5cm,11cm
(3)9cm,9cm,9cm(4)7cm,7cm,12cm
练习2、小明有两根小木棒分别长5cm和7cm,要构成一个三角形,你能给出第三根木棒的长度范围吗?
练习3、小明要做一个三角形的铁架子,有5cm、6cm、11cm、14cm四根可供选择的铁条,他有几种选择?
练习4、(1)已知等腰三角形的两边长为4厘米和6厘米,那么第三边是多少厘米?
(2)已知等腰三角形的两边长为4厘米和10厘米,那么第三边是多少厘米?它的周长是多少厘米?
活动目的:前两个基本练习通过学生口答完成。这两道练习对应着例题,巩固了对三角形三边关系的应用。练习3是一道开放式的题目,有多种答案,可以让学生在充分讨论交流的基础上,说出答案。对于练习4,先引导学生分析题目,第1小题学生可能会说出两条线段都可以作腰,构成等腰三角形;但第2小题学生可能就没考虑到以4cm作腰不能构成三角形,教师要及时加以引导,从而培养学生思维的严密性。然后让学生动笔练习并请一名学生进行板书,最后老师讲评。这组练习的设置,从易到难,以帮助学生从会学到会用,达到从知识到能力的迁移。
六:反思、感受
:(今天我们学了哪些内容?(让学生)
1.三角形的有关概念(边、角、顶点)
2.会用符号表示一个三角形.
3.通过实践了解三角形的三边不等关系.
活动目的:
在学生充分思考和交流的基础上,教师引导学生一起回顾本节课所学的知识.培养学生归纳、梳理知识的能力。
七:布置作业,巩固提高
习题11.11、2、6、7。
活动目的:
(1)检验学生学习效果。
(2)学生巩固落实课堂所学的知识.
(3)作业的设置既有知识方面的,又有能力方面的,从而更好的激发学生学习数学的兴趣。
三角形的边的教学设计 12
教学目标:
1.通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。
2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。
3.在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。
教学重点:理解、掌握“三角形任意两边之和大于第三边”的性质。
教学难点:引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。教学准备:、不同长度纸条若干张、实验表格。
教学过程:
一、 创设情境
1、出示情境图。
师:通过刚才摆三角形,你发现了什么?
(引导学生提出这样的问题:为什么我们用的三张纸条中有两条长的和大于第三条长却没有摆成三角形呢?)
师:通过刚才是实验,我们可以发现三角形三条边在长短上有某种关系,但究竟怎样的三张纸条才能摆成一个三角形?让我们再来做一个实验。
2、 动手实验2:进一步探究怎样的三张纸条才可以摆成三角形。
师:每组同学任意选择下面三组中的任意一组纸条做进一步实验,并完成相应的实验记录。(1)4c 5c 9c (2) 3c 6c 10c (3) 6c 7c 8c
学生汇报展示:能或不能摆成三角形任意两边的和是否大于第三边( 1 )不 能4+5=9 4+9>5 5+9>4发现:两边之和有时大于第三边,有时等于第三边,不能摆成三角形( 2 )不 能6+10>3 3+10>6 3+6<10发现:两边之和有时大于第三边,有时小于第三边,不能摆成三角形( 3 )能6+7>8 6+8>7 7+8>6发现:任意两边之和大于第三边,能摆成三角形师:对于三角形的三边关系,怎样表达更严密?体会任意两边的含义。
三、 拓展应用:
1、 说一说老师为什么走中间的这条路最近?
2、 判断:哪一组中的3根小棒可以摆成一个三角形?(单位:厘米)
(1)3,6,9 (2)4,4,10
(学生通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形,教师再让学生讨论交流好方法)
3、解决问题:
师:小明想要给他的小狗做一个房子,房顶的框架是三角形的.,其中一根木条是3分米,另一根是5分米。
(1)第三根木条可以是多少分米?(取整数)
(2)第三边的木条的长度是a分米,那么a的取值范围是( ) 四、 回顾反思: 同学们,今天学到了什么知识?你最大的收获是什么?还有哪些不懂的地方吗? 教学目标: 1.理解三角形高的概念。知道三角形有三条高。 2.学会画三角形的高。 3.了解直角三角形、钝角三角形三条高的画法及特征。 教学重点: 理解三角形高的概念。 教学难点: 了解三角形三条高的画法。 教学资源: 三角板、学生的学习单。 教学活动: 同学们好,这节课我们研究三角形的高。 一、复习旧知,导入新课。 1.在前面的学习中,我们已经知道了三角形有三条边、三个顶点、三个角。(课件演示)。这节课我们继续研究三角形高的有关知识。 2.揭示课题(板书课题:三角形的高) 二、操作演示,观察发现。 1.(课件边演示边说)如果我们从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。 2.老师在黑板上示范三角形高的画法: 3.你觉得三角形会有几条高呢?为什么?(三角形有三个顶点,从三角形的每一个顶点都能向它的'对边作一条垂线,所以有三条高)请同学们画出这个三角形的三条高。一名同学上黑板上演示画高。 4.认真观察三角形的高,你有什么发现?(一个三角形可以画出三条高,三角形的底和高是相互依存的。锐角三角形的三条高在三角形内相交于一点。) 三、实践应用,拓展延伸。 1.我们再来看直角三角形,你会以BC边为底,画出这个三角形的高吗?。(学生在学习单上画)。你有什么发现?(老师课件边演示边说:以直角三角形一条直角边BC为底,作高时,要从A点向它的对边BC作一条垂线,发现高与另一条直角边AB重合;如果以直角边AB为底,作高时,要从C点向它的对边作垂线,发现高与另一直角边BC重合,也就是直角三角形两条直角边,如果一条是底,那么另一条直角边就是它的高。以斜边AC为底,作高时,要从顶点B向它的对边AC作垂直线,发现高在三角形内。直角三角形也有三条高,其中一条在三角形内,另外两条高与两直角边重合。) 2.我们再来看钝角三角形,从钝角三角形的B点向它的对边作高,高在三角形内;从A点向它的对边作高,需要把对边BC延长,高在三角形外;从C点向它的对边作高,需要把对边AB延长,高也在三角形外。钝角三角形也有三条高,其中一条高在三角形内,另外两条高在三角形外。 四、反思总结,自我建构。 这节课你有什么收获?(学生因答可以是两个方面)一是从高的画法说;二是从发现说。通过研究,我们发现任何三角形都有三条高,其中锐角三角形的三条高在三角形内,并且相交于一点;直角三角形其中一条在三角形内,另外两条高与两直角边重合;而钝角三角形其中一条高在三角形内,另外两条高在三角形外。 这节课我们就研究到这儿,同学们再见! 【三角形的边的教学设计】相关文章: 三角形的边教学设计09-14 三角形的边的教学设计02-08 三角形边的关系教学设计01-14 三角形的边的教学设计10篇02-08 三角形教学设计12-19 《三角形边的关系》教学反思(精选17篇)08-19 《三角形三边的关系》教学反思02-15 《三角形的分类》教学设计02-02 三角形的边的教学设计 13