圆柱的表面积教学设计

时间:2023-08-29 08:36:33 教学设计 我要投稿

圆柱的表面积教学设计优选[15篇]

  作为一位杰出的老师,时常需要准备好教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么什么样的教学设计才是好的呢?下面是小编为大家整理的圆柱的表面积教学设计,希望能够帮助到大家。

圆柱的表面积教学设计优选[15篇]

圆柱的表面积教学设计1

  教学内容:

  青岛版教材五四分段五年级下册第三单元第二个信息窗圆柱的表面积。

  教学目标:

  1.让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。

  2.让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步发展学生的空间观念。

  3.让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  理解圆柱侧面积、表面积的意义,正确计算圆柱侧面积和表面积。

  教学难点:

  圆柱侧面积计算公式的推导过程。

  教学用具:

  茶叶盒,剪刀,计算器。

  教学过程:

  一、创设情境,导入新课

  师:在前面的学习中,我们认识了圆柱,并且知道生活中有很多物体的形状是圆柱。大家看,这些圆柱形状的物体。(课件出示)这些圆柱的制作都需要一定的材料。(课件出示一个茶叶盒)请同学们想一想,要求“制作一个茶叶盒需要多少材料”,实际上求的是圆柱的什么?(让学生边演示边说)

  二、动手操作,探究新知

  1.介绍圆柱的侧面积、底面积和表面积。

  师:要求“制作一个茶叶盒需要多少材料”,实际上是求圆柱的侧面面积和2个底面面积。(边指边说)我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的.面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。(让学生互相说一说“什么是圆柱的表面积”。)

  2.创疑激趣。

  师:我们知道,圆柱的底面是圆,我们已经会求圆的面积,可是圆柱的侧面是一个曲面,我们又该怎样求它的面积呢?

  3.小组合作探究。

  师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形求出它的面积呢?(小组合作探究,出示要求,结合圆柱的特征,用剪一剪、比一比等方法进行研究。)

  4.小组汇报。

  5.教师小结,课件演示。

  师:刚才同学们把圆柱的侧面沿高剪开,展开后是一个长方形,利用长方形面积公式推导出了圆柱的侧面积的计算方法,下面我们便结合电脑演示,进一步加深理解。

  6.学习计算圆柱表面积。

  师:我们已经会求圆柱的侧面积,你现在会求圆柱的表面积了吗?(让学生回答,并口头列式,教师板书求表面积的算式,并板书课题“圆柱的表面积”。)

  三、运用知识,解决问题

  师:下面我们便利用学过的知识解决一些问题。

  1.只列式不计算。订正时,让学生说想法。

  2.完整解答下面各题。

  让学生独立审题。问:要求“制作笔筒需要多少材料”,实际是求圆柱的什么?(让学生列综合算式,集体订正。)

  四、知识拓展

  将一个底面直径是8分米,高是10分米的圆柱沿底面直径垂直切开,它的表面积增加()平方分米。

  师:增加了几个面?是怎样的两个面?

  (课件演示)

  五、全课总结

  师:通过本节课的学习,你有什么收获?

圆柱的表面积教学设计2

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第21~22页。例3.4教学圆柱表面积的概念,探求表面积的计算方法。学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。利用已有知识的迁移,联系长方体、正方体的表面积进行类比,认识圆柱的表面积,并在此基础上,引导学生自主探索出圆柱表面积的计算方法,体会转化、变中有不变的数学思想。

  (二)核心能力

  运用迁移类推的学习方法,通过想象、操作、讨论认识圆柱的表面积及表面积的计算方法,发展空间观念,体会转化、变中有不变等数学思想。

  (三)学习目标

  1、通过复习旧知,对长方体和正方体表面积知识进行迁移,并结合自己制作的圆柱模型,理解圆柱表面积的含义。

  2、利用自制的圆柱,通过想象、操作、讨论等活动,自主探求出圆柱的侧面积和表面积的计算方法,在对比中理清二者的区别,经历知识形成的过程,发展空间观念,并体会转化、变中有不变等数学思想。

  3、利用所学知识解决圆柱表面积的相关实际问题,在解决问题的过程中,体会圆柱的广泛应用。

  (四)学习重点

  圆柱表面积的`计算

  (五)学习难点

  圆柱体侧面积计算方法的推导

  (六)配套资源

  实施资源:《圆柱的表面积》名师课件、长方体、正方体、圆柱学具

  二、学习设计

  (一)课前设计

  自己准备一个长方体、正方体,并分别测量出相关的数据,计算出它们的表面积。

  【设计意图:唤起对学生已有经验的回顾,为新知识的学习作铺垫。】

  (二)课堂设计

  1、创设情境,引入新课

  师:昨天我们认识了一位新朋友—圆柱,谁能向大家介绍一下你的这位新朋友。(生说各种特征)

  师:生活中有很多物体都是圆柱形的,我们很有必要进一步认识圆柱。关于圆柱你还想知道些什么?

  今天我们就来一起研究圆柱的表面积。(板书课题)

  2、探究新知

  (1)认识表面积

  ①回忆旧知

  师:我们学过正方体和长方体的表面积(出示一个长方体)谁来摸一摸这个长方体的表面积,怎么求它的表面积?

  学生上台演示。

  小结:六个面的面积总和是长方体的表面积。

  师:正方体呢?

  学生自由发言。

  ②迁移类推新知

  师:观察自己手中的圆柱模型,摸一摸、想一想并指出圆柱的表面积,怎样求圆柱的表面积?

  学生操作后,自主发言。

  根据学生发言板书:圆柱的表面积=圆柱的两个底面面积+圆柱的侧面积

  【设计意图:学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。所以利用已有知识的迁移,联系长方体、正方体的表面积进行类比,学生独立总结出圆柱的表面积定义。考查目标1。】

  (2)探求表面积计算方法

  ①自主探索

  师:两个底面是圆形,我们早就会求它的面积,而它的侧面是一个曲面,曲面的面积我们没有学过怎么办?想一想,能否将这个曲面转化成我们学过的平面图形?

  学生自由发言,师:因为我们已经知道圆柱的展开图,大家一致认为要把侧面展开,来计算它的侧面积。下面请四人一组对照手中的圆柱体学具进行操作,并讨论推导出圆柱侧面面积的计算方法。

  以小组为单位进行操作活动。

  ②交流汇报

  各小组展示汇报,引导学生互相评价。

  预设1:沿高剪开

  预设2:沿斜线剪开

  预设3:随意剪开或撕开

  引导小结(PPT演示并板书):无论我们将侧面展成什么样的不规则图形,最后都通过剪拼,得到一个长方形。长方形的面积等于圆柱的侧面积,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,长方形的面积等于长×宽,所以圆柱的侧面积等于底面周长×高。

  ③用字母表示

  师:怎么用字母表示呢?

  直接计算:S=Ch

  利用直径计算:S=πdh

  利用半径计算:S=2πrh

  ④归纳小结

  师:圆柱的侧面积问题解决了,圆柱的表面积问题也就迎刃而解了,我们一起用字母表示圆柱的表面积吧。

  S表=S侧+2S底

  师:要求圆柱的表面积需要知道哪些条件?

  练一练:

  的做一做。

  一个圆柱形茶叶筒的侧面贴着商标,圆柱底面半径是5cm,高是20cm。这张商标纸的面积是多少?

  学生独立完成后汇报。

  师:通过计算,你发现圆柱的表面积和侧面积有什么不同?

  引导小结:侧面积是表面积的一部分,表面积还包含两个底面积。

  【设计意图:学生已经知道圆柱的展开图,所以此环节让学生根据已经有知识经验,先进行自主操作探究,经历求侧面积的过程,加深理解并形成空间观念,然后归纳出表面积的计算方法,最后进行侧面积与表面积的对比,进步加深二者的区别和联系。考查目标1.2.3。】

  (3)举一反三,灵活应用

  出示例4:

  一顶圆柱形厨师帽,高30cm,帽顶直径20cm,做这样一顶帽子至少要用多少平方厘米的面料?(得数保留整十数。)

  ①理解题意

  师:求多少面料就是求什么?

  师:“没有底”的帽子如果展开,它由哪几部分组成?

  小结:“没有底”的帽子的展开图,它是由一个底面和一个侧面组成。

  ②独立完成

  学生独立完成后交流汇报。

  ③归纳小结

  师:通过计算这道题目,你有什么收获?

  引导小结:根据具体情况,确定求哪些面的面积之和。实际使用的面料要比计算的结果多一些,所以这类问题往往用“进一法”取近似数。

  【设计意图:例4是圆柱表面积的实际应用,现实生活中有关表面积计算的情形复杂多变,所以在解决此例题时,要培养学生养成认真审题的习惯,在学生理解题意后,独立解决,最后回顾反思,总结出解决此类问题要注意的事项。考查目标3。】

  3、巩固练习

  (1)求下面圆柱的侧面积。

  ①底面周长是1.6m,高是0.7m。

  ②底面半径是3.2dm,高是5dm。

  (2)小亚做了一个笔筒,她想给笔筒的侧面和底面贴上彩纸,至少需要多少彩纸?

  4、课堂总结

  师:回顾本节的学习,你们有什么收获?

  引导小结:认识了圆柱的表面积,并利用转化的思想推导出了圆柱的表面积怎样计算,并利用它来解决生活中的一些问题。

  (三)课时作业

  利用工具量出你所需要的信息,计算你手中圆柱体的表面积。

  (1)测量的数据

  (2)计算过程及结果

圆柱的表面积教学设计3

  教案背景:

  冀教20xx课标版小学数学六年级下册第四单元

  教学课题:

  圆柱的侧面积。

  教材分析:

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的重点。教材选用了来自现实生活中的.问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

  教学目标:

  1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。

  2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的情感。

  教学重点:

  圆柱侧面积的计算。

  教学难点:

  圆柱体侧面积计算方法的推导。

  教法运用:

  本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。

  学法指导:

  采取引导-放手-引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

  教具准备:

  圆柱体教具、多媒体课件。

  学具准备:

  圆柱体纸筒、圆柱体物体、长方形纸、剪刀。

  教学过程:

  一、复习导入,引入新知

  1、复习圆柱体的特征

  师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征? (指明学生回答后,课件动画展示同时师生小结)

  四、课堂小结

  1、本节课你有何收获?

  2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。

  五、课后作业

  应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧!附:板书设计

  圆柱的侧面积=底面周长×高→S侧=ch

  长方形面积=长×宽

  教学反思

  这节课,我在学生的认知发展水平和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:

  一、数学教学要注重数学思想和数学方法的渗透。

  在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为平面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。

  二、重视学生的合作意识和实践能力的培养。

  在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。

  三、合理利用现代化教学手段辅助教学。

  侧面积计算公式的推导是本届的难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。

圆柱的表面积教学设计4

  教学内容:九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1.2题

  教学目标:1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.

  2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。

  教具准备:

  圆柱形的物体,圆柱侧面的展开图

  教学重点:理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.

  教学难点:根据实际情况来计算圆柱的表面积。

  设计理念:教学中注意让学生在引导中发现与理解圆柱的侧面积和表面积的计算方法。先从学生的实际生活入手,通过操作、观察与推理,理解商标纸的面积就是圆柱的侧面积。在此基础上,再引导学生在方格纸上画出圆柱表面积的展开图,利用表象来尝试归纳计算方法。自主实验、自主探索、自主概括是本课的基本特征。

  教学步骤教师活动学生活动

  一.复习回忆一、复习

  1.指名学生说出圆柱的特征.

  2.口头回答下面问题.

  (1)一个圆形花池,直径是5米,周长是多少?

  (2)长方形的面积怎样计算?

  学生回答后,板书:长方形的面积=长×宽.

  回忆特征,口答。

  二.自主探索,一、认识侧面积的意义和计算方法。

  1.出示例2的情景图,引导学生思考:商标纸的面积大约是多少平方厘米,就是求圆柱的什么?

  2.学生拿出课前准备的类似例2的物体,摸一摸,看一看,理解得出商标纸的面积就是求圆柱的侧面积。

  师板书:圆柱的侧面积

  3.操作实验,认识侧面积的计算方法。

  (1)请学生先想一想,如果把圆柱侧面的`商标纸沿高剪开再展开,它会是什么形状?

  (2)学生拿出贴有商标纸的学具饮料罐,沿着它的一条高剪开,然后展开,观察是什么形状。

  (3)引导生观察,进一步思考得到的商标纸的长和宽跟圆柱体有什么关系呢?如何计算商标纸的面积?

  (4)概括提升:根据它们之间的这种关系,圆柱的侧面积应该怎样算?为什么?

  师板书:

  圆柱的侧面积=底面周长×高

  长方形的面积=长昂×宽.

  4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?

  5.独立完成“练一练”第1题

  二、认识表面积的意义和计算方法。

  1.出示例3。让学生对照直观图,说说圆柱的侧面和底面的位置,同座互相用学具指一指。

  2.思考:沿高展开后得到的长方形的长和宽分别是多少厘米?两个底面分别是多大的圆?

  3.要求:闭上眼睛想一想,圆柱的展开图是什么形状?

  4.试一试,在书中的方格纸上画出这个圆柱的展开图,再将学生所画的展开图进行交流与展示。

  5.观察展开图,想一想圆柱表面有哪些部分组成?

  6.教师小结,指出圆柱的侧面积与两个底面积的和,叫做圆柱的表面积。

  师板书:圆柱的表面积。

  7.引导学生概括:怎样计算圆柱的表面积?圆柱的表面积与侧面积有什么关系?

  师板书:圆柱的表面积=侧面积+两个底面积

  8.学生在小组里讨论,然后算一算这个圆柱的表面积。教师注意指导学生的答题格式。

  生独立思考

  学生动手操作

  学生联想

  动手操作

  仔细观察、归纳、概括

  学生联想,师相机指导。

  独立练习

  学生用学具指

  借助学具独立思考

  学生进行空间想象

  学生在方格纸上画

  学生进行归纳、概括

  先讨论,再独立算,然后交流汇报

  三.巩固应用

  1.完成“练一练”第2题

  可以先让学生分别算出有关圆柱的侧面积和底面积,再算出侧面积与两个底面积大和。

  2.完成练习六第1题。

  注意指导学生思考问题要求的是圆柱的哪个面。

  3.完成练习六第2题。

  先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?学生独立练习

  小交流,再练习

  四.总结反思

  1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?

  2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?畅谈体会。

  发散思考

圆柱的表面积教学设计5

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。教材中选用了许多来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面展开后可以是一个长方形,在操作中经历“圆柱侧面积”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。

  【学生分析】

  学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。

  【教学目标】

  1、掌握圆柱侧面积和表面积的概念。

  2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。

  3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。

  4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。

  【教学重点】

  掌握圆柱的侧面积和表面积的计算方法。

  【教学难点】

  将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。

  【教具准备】

  圆柱体纸盒、多媒体课件。

  【学具准备】

  圆柱形纸盒。

  【教学过程】

  一、引入新课

  1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?

  2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)

  3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?

  4、这节课我们就一起来研究“圆柱的.表面积”这个问题。

  二、探究新知

  1、初步感知

  (1)请同学们观察圆柱,想一想什么是圆柱的表面积。

  总结:圆柱所有面面积的总和就是圆柱的表面积。

  (2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)

  (3)圆柱的表面积怎么求?(两个底面积+侧面积)

  (4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。

  2、侧面积

  (1)小组合作:

  请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。

  (2)学生汇报

  (3)教师总结演示。

  (4)推导圆柱侧面积公式

  圆柱的侧面积=底面周长×圆柱的高,用字母表示圆柱的侧面积公式也可以写成:S侧=C×h,如果已知底面半径为r,圆柱的高为h,侧面积公式变形为:S侧=2πrh

  3、表面积

  (1)总结表面积公式

  怎么求圆柱的表面积?

  圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。

  (2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?

  侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2 )

  三、巩固练习

  1、现在我们自己尝试来算一算这两个圆柱的表面积。

  过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。

  2、设计一个无盖的圆柱形铁皮水桶,底面直径为4分米,高为5分米,至少需要多大面积的铁皮?

  3、一台压路机的滚筒宽1.2米,直径为0.8米。如果它滚动10周,压路的面积是多少平方米?

  4、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?

  四、总结收获

  同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?

  请记住同学们善意的提醒,这节课就上到这!

  五、板书设计

  圆柱的表面积

  侧面积=底面周长×高

  圆柱表面积= S侧=C×h=2πrh S表=2πrh+2πr2

  底面积×2 =2πr2

圆柱的表面积教学设计6

  【教学内容】

  P13-14页例3、例4,完成“做一做”及练习二的部分习题。

  【教学目标】

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

  【教学重点】

  掌握圆柱侧面积和表面积的计算方法。

  【教学难点】

  运用所学的知识解决简单的实际问题。

  【教学准备】

  多媒体课件

  【自学内容】

  学习提示:

  (1)长方体、正方体的表面积指的是什么?

  (2)圆柱的表面积指的是什么?

  (3)圆柱的底面积你会计算吗?侧面积呢?

  (4)你知道侧面的形状以及长、宽与圆柱的关系吗?

  【教学预设】

  一、自学反馈

  1、求下面各圆柱的侧面积

  (1)底面周长2.5分米,高0.6分米

  (2)底面直径8厘米,高12厘米

  2、求下面各圆柱的表面积

  (1)底面积是40平方厘米,侧面积是25平方厘米

  (2)底面半径是2分米,高是5分米

  二、关键点拨

  1、圆柱的侧面积。

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的.面积和圆柱的侧面积有什么关系呢?

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

  2、侧面积练习:练习七第5题

  (1)学生审题,回答下面的问题:

  ①这两道题分别已知什么,求什么?

  ②计算结果要注意什么?

  (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

  (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  3、理解圆柱表面积的含义。

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积×2

  4、教学例4

  (1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

  (2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

  (3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

  ①侧面积:3.14×20×28=1758.4(平方厘米)

  ②底面积:3.14×(20÷2)2=314(平方厘米)

  ③表面积:1758.4+314=20xx.4≈20xx(平方厘米)

  5、小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  三、巩固练习

  1、做“做一做”。(求表面积包括哪些部分?)

  2、练习七第6题。

  四、分享收获畅谈感想

  这节课,你有什么收获?

  五、板书:圆柱的侧面积=底面周长×高

  圆柱的表面积=圆柱的侧面积+底面积×2

  例4:

  ①侧面积:3.14×20×28=1758.4(平方厘米)

  ②底面积:3.14×(20÷2)2=314(平方厘米)③表面积:1758.4+314=20xx.4≈20xx(平方厘米)听课随想

  反思与体会

圆柱的表面积教学设计7

  【教学目的】:

  1、使学生理解和掌握求圆柱的侧面积和表面积的计算方法。

  2、培养学生分析推理,解决实际问题的能力。

  3、通过学生学习讨论,运用知识的迁移类推,培养学生的自主能动性。

  4、在计算机操作中培养学生的信息素养。

  【教学重点】:

  使学生理解和掌握求圆柱的侧面积和表面积的计算方法。

  【教学难点】:

  在计算机操作中培养学生的信息素养。

  【教具准备】:

  计算机辅助教学课件一套。

  【教学过程】:

  一、创设情境,提出问题。

  1、电脑显示:给一个圆柱形罐盒加外包装纸,包装纸要裁多大,应依什么大小来判断?(配有一幅圆柱形罐头盒图)

  2、点击鼠标,显示下一页:圆柱的侧面积和表面积计算(课题)

  二、自由选择,自学新知。

  1、电脑显示:自学新知a自学新知b

  说明:在学习新的'知识点中,老师给大家提供了两个学习方案,自学新知a形象直观,容易理解,自学新知b相对理解较难,请大家根据自己的学习情况,自由选择相应的学习方案。

  2、学生选择好后,调整座位,把选择相同学习方案的学生分坐在一起后,进入自学。

  (展开侧面)

  自学新知a:

圆柱的表面积教学设计8

  教学目标:

  1、理解圆柱侧面积和圆柱表面积的含义。

  2、掌握圆柱侧面积和表面积的计算方法。

  3、根据圆柱的表面积与侧面积的关系学会运用所学的知识解决简单的实际问题。

  教学重点:

  掌握圆柱侧面积和表面积的计算方法。

  教学难点:

  运用所学的知识解决简单的实际问题。

  教学准备:

  多媒体课件

  教学过程:

  一、创设情景

  1、复习圆柱的特征。

  2、大屏幕出示问题,学生口头回答:

  (1)一个圆形花池,直径是5米,周长是多少?面积是多少?

  (2)长方形的面积怎样计算?

  板书:长方形的面积=长×宽

  二、探究新知

  1、教学圆柱的侧面积。

  (1)大屏幕出示课题:圆柱的表面积。

  (2)理解“圆柱的侧面积”的含义。用手指出实物圆住的侧面积。

  (3)大屏幕出示圆柱的侧面展开图,思考:圆柱的侧面积应该怎样计算呢?引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,推出:圆柱的侧面积=底面周长×高

  2、小结。

  要计算圆柱的侧面积,必须知道什么条件?如果题目只给出直径或半径,又如何求圆住的侧面积呢?

  3、理解圆柱表面积的含义。

  观察自己制作的圆柱模型:圆柱的表面由哪几个部分组成?那么,圆柱的表面积是指什么?大屏幕:圆柱的'表面积=圆柱侧面积+两个底面的面积

  4、教学例4。

  (1)大屏幕出示例4的题目。

  思考:这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么?

  (2)学生试着解答。

  (3)全班交流:为什么只求了一个底面面积呢?

  (4)小结。

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  5、巩固练习:完成的“做一做”。

  三、课堂小结

  圆柱的表面积指的是哪几个面?如何求圆柱的表面积?

  四、作业

  完成练习二的5——7题。

  五、思维训练

  1、压路机前轮滚动一周能压多少路面,实际就是求圆柱的( )。

  2、在一个圆柱形的蓄水池里抹水泥,求抹水泥部分的面积,实际就是求( )与( )的( )。

圆柱的表面积教学设计9

  一、学习目标:

  1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

  2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

  二、学习重点:

  掌握圆柱侧面积和表面积的计算方法。

  三、学习难点:

  运用所学的知识解决简单的实际问题。

  四、学习过程:

  (一)、旧知复习

  1、圆柱有几个面?分别是xx、xx和xx。

  2、底面是xx形,它的面积=xx 。

  3、侧面是一个曲面,沿着它的高剪开,展开后得到一个xx形。它的长等于圆柱的xx,宽等于圆柱的xx。

  4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

  (二)列式为

  1、圆柱的侧面积

  (1)圆柱的侧面积指的是什么?

  (2)圆柱的侧面积的计算方法:

  圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积= xx,所以圆柱的侧面积= 。

  (3)侧面积的练习

  求下面各圆柱的侧面积。

  ①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。

  小结:要计算圆柱的侧面积,必须知道圆柱的xx和xx这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  2、圆柱的表面积

  (1)圆柱的表面是由和组成。

  (2)圆柱的'表面积的计算方法:

  圆柱的表面积=

  (3)圆柱的表面积练习题

  一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  分析,理解题意:求需要用多少面料,就是求帽子的。需要注意的是厨师帽没有下底面,说明它只有个底面。

  列式计算:

  ①帽子的侧面积=

  ②帽顶的面积=

  ③这顶帽子需要用面料=

  小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

  3、巩固练习

  一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

  4、总结:通过这节课的学习,你掌握了什么知识?

  圆柱的侧面积

  圆柱的表面积

  五、教学结束:

  布置学生课下复习本节课内容。

  教学反思

  本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、学生学到了有价值的知识。

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

  二、培养了学生的科学精神和方法。

  新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

  三、促进了学生的思维发展。

  传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

圆柱的表面积教学设计10

  教案背景:

  冀教20xx课标版小学数学六年级下册第四单元

  教学课题:

  圆柱的侧面积。

  教材分析:

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的重点。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的'计算方法。在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

  教学目标:

  1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。

  2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的情感。

  教学重点:圆柱侧面积的计算。

  教学难点:圆柱体侧面积计算方法的推导。

  教法运用:本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。

  学法指导:采取引导—放手—引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

  教具准备:圆柱体教具、多媒体课件。

  学具准备:圆柱体纸筒、圆柱体物体、长方形纸、剪刀。教学过程:

  一、复习导入,引入新知

  1、复习圆柱体的特征

  师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征?

  (指明学生回答后,课件动画展示同时师生小结)

  二、课堂小结

  1、本节课你有何收获?

  2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。

  三、课后作业

  应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧!

  附:板书设计

  圆柱的侧面积=底面周长×高→S侧=ch

  长方形面积=长×宽

  教学反思

  这节课,我在学生的认知发展水平和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:

  一、数学教学要注重数学思想和数学方法的渗透。

  在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为平面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。

  二、重视学生的合作意识和实践能力的培养。

  在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。

  三、合理利用现代化教学手段辅助教学。

  侧面积计算公式的推导是本届的难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。

圆柱的表面积教学设计11

  学习目标

  通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  学习重点

  使学生认识圆柱侧面展开图的多样性。

  过程与方法

  教师活动

  教学过程:

  一、创设情境,引起兴趣。

  拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?

  二、自主探究,发现问题。

  研究圆柱侧面积

  1、独立操作:

  2、观察对比:观察展开的图形各部分与圆柱体有什么关系?

  3、小组交流:能用已有的知识计算它的面积吗?

  4、小组汇报。重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?

  长方形的面积=圆柱的侧面积即长×宽=底面周长×高,所以,圆柱的侧面积=底面周长×高S侧==C×h

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h

  如果圆柱展开是平行四边形,是否也适用呢?

  (因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

  研究圆柱表面积

  1、现在请大家试着求出这个圆柱体茶叶罐用料多少。

  2、圆柱体的表面积怎样求呢?

  3、动画:圆柱体表面展开过程

  三、实际应用

  1、解决书上的.例题

  2、填空:圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()

  3、要求一个圆柱的表面积,一般需要知道哪些条件()

  4、教材第六页试一试。

  学生活动

  说说自己的猜想。

  利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。

  选出一个学生已经展开的图形贴到黑板上。

  长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高。

  学生动手操作,动笔验证,得出了同样适用的结论。

  学生测量,计算表面积。

  得出结论:圆柱的表面积=圆柱的侧面积+底面积×2

  指名板演,互相纠正。

  学生互相讨论后完成。

  课后完成。

  板书设计

  圆柱的表面积

  教学反思

  学生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

圆柱的表面积教学设计12

  一、设计理念

  新一轮课程标准指出:“数学学习的内容应当是现实的、有意义的,富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等教学活动”

  二、教学策略

  1.创设生活情景,激励自主探索。

  2.创建探究空间,主动发现新知。

  3.自主总结规律,验证领悟新知。

  4.解决生活问题,深化所学新知。

  三、教材分析

  《圆柱的表面积》是小学数学六年级下册第二单元的内容,包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。例3是说明圆柱的表面积的意义,给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分。例4是让学生运用求圆柱表面积的方法求出做一个厨师帽的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。

  四、教学目的:

  使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。

  五、教学难点:

  理解和掌握求圆柱表面积的计算方法。

  六、教具准备:

  圆柱表面积展开模型电脑课件

  学具准备:

  易拉罐、白纸壳、剪子

  七、教学过程

  (一)创设生活情景,激励自主探索

  在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的铁皮?”

  (评析:数学来源于生活又应用于生活实际,因此,用贴近儿童的生活实际去创设情景,很容易激发学生的求知欲,激活学生已有知识与经验,使其自主地积极探索新知,解决问题。)

  (二)创设探究空间,主动发现新知

  1、认识圆柱的表面积

  师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?

  生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。

  师:用什么形状的纸来做卷筒呢?(有的学生动手剪开模型)

  生:我知道了,圆筒是用长方形纸卷成的!

  师:各小组试试看,这位同学说的对吗?

  (其他小组也剪开模型,有的得到了长方形,有的得到了平行四边形,有的得到了正方形。)

  师:还有别的可能吗?如三角形、梯形。

  生:不能。如果是的'话,就不是这种圆柱形的饮料罐了。

  (评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)

  2、把实际问题转化为数学问题

  师:我们先研究把圆筒剪开展平是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?

  学生观察、思考、议。

  生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。

  生B:求饮料罐铁皮用料面积就是求:

  圆面积X 2 +长方形面积

  生C:必须知道圆的半径、长方形的长和宽才能求面积。

  生D:我看只要知道圆的半径和高就可以求出用料面积。

  师:我们让这位同学谈谈他的想法。

  生D:长方形的长与圆的周长相等,长方形的宽与高相等。

  所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。

  师随着板书:长方形的面积=长×宽

  圆柱的侧面积=底面周长×高

  (三)自主总结规律,验证领悟新知

  让学生就顺利地导出了圆柱的侧面积计算方法:S = 2 πr h

  师:如果圆柱展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (评析:学生在教师创设的情境中,由学生得出结论,又让学生验证,极大地发挥了学生的主观能动性,充分地展示自我,使学生个性得到发展。)

  (四)解决生活问题,深化所学新知

  师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。

  生汇报。

  师:通过计算,你有哪些收获?

  生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于侧面积加上底面积和的两倍。

  生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。

  (评析:教师让学生合作学习,自主发现问题,交流解决。)

  课件出示例四,读题明题意,学生试做,全班交流。

  课件出示第16页第七题,学生试做,全班交流。

  讨论:如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?小结,谈收获。

  八、板书设计

  S表面积=S侧+2S底

  =2πrh+2πr

圆柱的表面积教学设计13

  一、教学内容

  九年义务教育六年制小学数学人教版第十二册第33-34页的内容。

  二、教学目标

  知识与技能:理解并掌握圆柱体的侧面积和表面积的计算方法,能结合具体情境,灵活运用计算方法解决实际问题。

  过程与方法:经历圆柱表面积、侧面积计算方法的探索过程,培养学生自主探索、合作交流的能力。

  情感态度与价值观:学生获得积极成功的情感体验,体会数学与生活的密切联系。

  重点:理解并掌握求圆柱体表面积、侧面积的计算方法

  难点:能结合具体情境,灵活运用圆柱侧面积、表面积的计算方法解决实际问题。

  教具:圆柱形模型、剪刀

  三、教学过程

  (一)创设生活情景,引入新课

  我根据学生喜欢喝饮料的爱好,创建生活情景,“同学们都喜欢喝饮料,那么你们知道做这样的一个饮料罐至少需要多少的铁皮吗?怎样计算?”这节课,我们就来一起学习圆柱的表面积(板书课题)(设计意图:数学来源于生活,又应用于生活,我利用学生的生活实际设疑引入新课,很容易激发学生的学习兴趣,进而求知,解决问题。)

  (2)引导探究,学习新知

  1、认识圆柱的表面

  师:我们来做一个“饮料罐”,该怎样做?

  生:要做一个圆筒,和两个完全相同的圆。

  师:用什么形状的纸来做卷筒呢?同学们说的意见不一致时,我适时引导,你们动手剪一剪不就知道了吗?每一组的同学都剪开自己带来的圆筒,有的得到了长方形,有的得到了平行四边形,也有的得到了正方形。

  (设计意图:动手操作,使学生对圆柱各部分的组成有了完整的认识,培养了学生的创造能力,同时也揭示了知识间的内在联系,实现了知识的转化和迁移。)

  2、探究圆柱侧面积的计算。

  师:我们先来研究把圆筒剪开展平是一个长方形的情况,求这个饮料罐要用铁皮多少?就是求什么?学生观察、思考、议论。

  生1:求饮料罐铁皮用料面积就是求:圆面积×2+长方形面积。

  生2:也就是求圆柱体的表面积。

  师:这两位同学说得对吗?要求圆柱体的表面积要知道什么条件?

  生3:我看只要知道圆的半径和高就可以了。

  师:我们来听听这位同学是怎么想的。

  生3:长方形的长与圆的周长相等,长方形的宽与圆柱的高相等,所以只要知道圆的半径就可以求出长方形的长,也可以求出圆的面积。

  生4:我觉得知道圆的直径和高也可以了。

  生5:我还觉得知道圆的周长和高也行。

  师:这三位同学都说得很好,那么圆柱的侧面积该怎样求?

  生6:因为长方形面积=长×宽所以圆柱的'侧面积=底面周长×高

  师:如圆柱展开是平行四边形或正方形,是否也适用呢?

  学生分组动手操作,动笔验证,得出了同样的结论。

  小结:同学们会动手、动脑,巧妙地把圆柱的侧面转化为平面图形,圆柱的侧面展开后不论是长方形、正方形或平行四边形,圆柱的侧面积都等于它的底面周长乘高。

  师板书:圆柱侧面积=底面周长×高S侧=ch出示例1让学生独立计算出圆柱的侧面积,一生板演,集体订正。

  (设计意图:学生在教师创设的情境中,分组合作得出结论,充分调动了学生学习的积极性,同时个性也得到发展。)

  3、探究圆柱表面积的计算

  师:我们知道了圆柱侧面积的计算了,那么它的表面积该怎样算呢?

  (1)出示例2

  分组讨论例2中给了哪些条件?求什么问题?它的表面积应包括几个面?怎样解答。

  (设计意图:学生已掌握了圆面积和侧面积的计算方法,教学圆柱的表面积时,让学生自学交流就能掌握方法。)

  (2)教学例3

  师:在实际生活中,求圆柱的表面积的计算方法有着广泛的应用,我们一起来看例3,应该算几个面?为什么?学生做完后汇报

  师:通过计算,你有哪些收获?

  生5:我知道了,做这个无盖水桶要用铁皮多少平方厘米就是求一个侧面积和一个底面积的和。

  生6:在得数保留时,我觉得应该用进一法取近似值,因为用料比实际多一些,因为有损耗,所以要用进一法。让学生看34页,看“注意”后的一段话。

  (设计意图:让学生从生活实际出发,充分讨论,理解进一法,明确在什么情况下用“进一法”取近似值,培养学生实际应用意识。)

  (3)巩固练习,灵活运用

  1、出示牛奶罐、无盖水桶、水管等实物图,引导学生观察思考:计算制作这些物体所用铁皮的面积,各是求哪些面的总面积?

  小结:计算圆柱的表面积要根据具体实物分别处理,要学会运用新学的知识合理灵活地解决生活中的实际问题。

  2、综合练习(只列式,不计算)

  (1)用铁皮制作圆柱形的通风管10节,每节长9分米,底面周长3.5分米,至少需要铁皮多少平方米?

  (2)砌一个圆柱形水池,底面直径2.5米,深3米,在池的周围与底面抹上水泥,抹水泥的面积是多少平方米?

  (3)一个圆柱形的油桶,底面半径4分米,高1米2分米,制这个油桶至少要用铁皮多少平方米?

  (设计意图:通过这种练习进一步培养学生根据实际情况灵活运用知识的能力。)

  3、实践与应用

  小组合作测量计算:制作所带的圆柱形实物的用料面积,先让学生讲讲需要测量哪些数据,以及测量方法,再进行测量和计算。

  (设计意图:培养学生合作意识和动手操作能力,锻炼学生用所学知识解决生活中的实际问题,使学生感受数学就在身边,不断提高应用数学的意识。)

  (4)全课小结在实际生活中,计算圆柱的表面积,要根据具体情况灵活掌握,如计算油桶的表面积是求侧面积与两个底面积的总和;无盖水桶的表面积是求侧面积加上一个底面积;水管-的表面积只求侧面积,另外,在实际中使用的材料都要比计算得到的结果多一些,所以都要采用“进一法”取近似值。

  板书

  圆柱的表面积

  圆柱的表面积=两个底面积+侧面积

  圆柱的侧面积=底面周长×高

  长方形的面积=长×宽

圆柱的表面积教学设计14

  教学目标:

  1、通过动手操作,认识圆柱的展开图,理解圆柱侧面积和表面积的含义。

  2、探索和掌握圆柱侧面积和表面积计算方法,并能解决生活中相应的实际问题。

  3、进一步培养学生的动手操作能力,发展学生的空间观念。

  教学重点:

  圆柱体的表面积公式的推导。

  教学难点:

  圆柱体侧面积公式的推导

  教学过程:

  活动一:

  教师出示喝水用的杯子,提问是什么形状?

  进一步告诉学生,这个杯子的底面直径是4厘米,高是10厘米米,你能提出什么数学问题?

  学生思考并提出数学问题。

  活动二:

  1、教学圆柱体表面积的意义

  教师:求“做一个这样的圆柱形杯子,至少需要多少纸铁皮”实际上是求什么?

  学生通过思考得出:求需要多少铁皮,也就是求圆柱体的表面积。

  教师板书课题。

  请同学们观察手中的圆柱体,想一想圆柱的表面积包括哪些面的总面积?

  概括:圆柱的两个底面面积加一个侧面面积就是圆柱体的表面积

  板书:侧面积+一个底面积×2 =表面积

  2、引导学生探究圆柱体侧面展开图

  ⑴设疑:我们已经会求什么面的面积?还有什么面的面积不会求?

  ⑵引导:想一想,能否将这个曲面转化成我们学过的平面图形?

  ⑶小组合作进行探究。

  ⑷小组汇报交流研究成果。

  3、探究圆柱体侧面积计算方法

  教师:请各小组研究一下圆柱侧面展开得到的长方形的长和宽与圆柱的哪些部分有关系,有什么样的关系。想一想圆柱的侧面积应该如何计算?

  在学生交流、比较,完善,形成结论:圆柱的侧面积=底面周长×高。

  教师:你能求出做这个圆柱形杯子需要多少铁皮吗?

  学生通过讨论明确解题思路:求需要多少铁皮,就是求这个圆柱的'表面积。表面积=侧面积+底面积×2。然后尝试独立完成,并进行交流。

  活动三:

  课件出示闯关题,让学生进行抢答。

  活动四:

  1、请同学谈收获

  2、教师小结:

  今天同学们的表现让我感到很高兴:面对新的问题,不是等着老师讲解,而是自已想办法进行问题转化,用学过的知识去解决新问题,知道吗?这是一种很重要的思考方法,学习数学很需要这种知识迁移能力,希望在以后的学习中同学们继续发扬。

  活动五:

  布置作业:教科书五十页自主练习的第1题。

圆柱的表面积教学设计15

  预设目标:

  1、使学生理解和掌握圆柱体侧面积的计算方法,能正确计算圆柱的侧面积和表面积。

  2、培养学生的观察、操作、概括的能力以及利用知识合理灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识和主动探求知识的学习品质。

  教学重、难点:

  1、理解和掌握圆柱体的侧面积和表面积的计算方法。

  2、培养学生科学的学习态度。

  教学过程:

  一、检查复习,引入新课。

  1、检查:拿出自制的圆柱,分别指出它的底面、侧面和高。

  2、复习:点名说说圆柱两底的关系,圆柱高的条数和关系以及侧面展开可能是什么样的图形。

  3、引入:两个底面和侧面合在一起就是圆柱的表面,这节课我们来学习圆柱的表面积。

  板书:圆柱的表面积

  二、引导探究,学习新知。

  1、侧面积的意义和计算方法。

  ⑴摸一摸自制圆柱体的侧面,谈一谈自己感觉到什么。

  ⑵想一想用我们已有的知识,能不能求出这个曲面的面积。(你能求出这个曲面的面积吗?)

  小组讨论:有什么好办法求出圆柱的侧积吗?

  ⑶剪一剪自制圆柱,汇报交流结果。

  ⑷说一说:圆柱体的侧面可转化为已学过的平面图形是什么?

  它的侧面积正好等于底面周长乘高的乘积。

  板书:圆柱的侧面积=底面周长×高

  ⑸算一算:求出圆柱的侧面积,同学自己自作,交流结果。

  小结:计算圆柱体的侧面积的方法是什么?

  ⑹做一做:

  课本76页例1及77页的第一题。

  2、表面积的意义及计算方法

  ⑴自读课本:什么是圆柱的表面积?

  板书:圆柱的表面积=侧面积+2个底面积

  ⑵练一练:(小黑板出示)

  ⑶小结:

  圆柱的侧面积等于底面积周长与高的`乘积,圆柱的表面积等于两个底面积与侧面积的和,但在实际生活的应用中,有许多问题要根据实际情况,合理灵活地求出圆柱的表面积。

  三、巩固练习,灵活运用

  1、自学课本,书77页例3。

  ⑴分小组讨论;

  ⑵学生反馈。

  2、问:要知道圆柱形的物体的侧面积,要求哪些面的总面积?

  3、只列式不计算。

  小黑板出示题目。

  4、实践练习

  ⑴小组合作:测量并计算自制圆柱形实物的侧面积。

  ⑵讨论:要求出圆柱形的物体的侧面积,是求哪些面的总面积?需要知道哪些数据?怎样能测量这些数据?

  ⑶测量:测量所需的数据。

  ⑷计算:根据量得的数据。列出相应的算式并算出结果。

  四、课堂小结

  说一说你今天学会了什么知识?

【圆柱的表面积教学设计】相关文章:

《圆柱的表面积》教学设计07-22

圆柱的表面积教学设计02-23

圆柱的表面积教学设计02-18

《圆柱的表面积》教学设计07-22

圆柱的表面积教学设计实用07-28

圆柱的表面积教学设计推荐02-17

圆柱的表面积优秀教学设计01-11

《圆柱体的表面积》教学设计03-16

《圆柱的表面积》教学设计15篇04-28

《圆柱的表面积》教学设计15篇03-18