六年级数学教学设计

时间:2024-04-15 16:48:42 教学设计 我要投稿

苏教版六年级数学教学设计

  作为一名优秀的教育工作者,常常要写一份优秀的教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么问题来了,教学设计应该怎么写?下面是小编为大家收集的苏教版六年级数学教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

苏教版六年级数学教学设计

苏教版六年级数学教学设计1

  这部分内容教学相邻体积单位间的进率,是在学生认识了体积单位,学习了长方体、正方体体积计算后,进行教学的。让学生根据进率进行相邻体积单位的换算。在教学中让学生通过计算,探索发现相邻两个体积单位间的进率。教材通过两个同样大小的正方体,一个棱长标注为1分米,另一个棱长标注为10厘米。让学生依据图中给出的数据判断它们的体积是否相等,再让学生分别算一算他们的体积。根据体积单位的定义:棱长1分米的正方体,体积是1立方分米,第一个正方体的体积就是1立方分米。通过计算,棱长10厘米的正方体体积是1000立方厘米。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,放手让学生根据前面探索中得到的经验自主进行推算。

  [教学重点、难点]:体积单位间的进率和单位之间的互化。

  [教学目标]

  1、了解并掌握体积单位间的进率。

  2、理解并掌握体积高级单位与低级单位间的化和聚。

  3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。

  [教学过程]

  一、知识准备

  1、同学们今天我们要学习相邻体积单位间的进率。(板书课题)

  2、看了课题,能回忆回忆我们都学习过哪些相邻单位间的进率呢?

  3、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、液体体积单位间的进率。

  4、说说这些已经学过的相邻单位间的进率是多少?(教师板书)

  板书:

  长度单位

  1米=10分米

  1分米=10厘米

  面积单位

  1平方米=100平方分米

  1平方分米=100平方厘米

  质量单位

  1吨=1000千克

  1千克=1000克

  液体体积单位

  1升=1000毫升

  5、猜想今天我们学习的相邻体积单位间的进率可能是多少?

  6、提炼猜想,为研究作好必要的'准备。

  学生出现的猜想:1立方米=1000立方分米

  1立方分米=1000立方厘米

  二、实践探究、学习新知

  (一)探究立方分米与立方厘米间的进率

  1、指导学生分组进行探究,出示自学纲要:

  ①棱长1分米的正方体的体积是多少?

  ②棱长10厘米的正方体的体积是多少?

  ③1立方分米与1000立方厘米,哪个大?为什么?

  2、学具提供:

  ①教师提供1立方分米的正方体2个,一个标上棱长1分米,一个标上棱长10厘米,供学生观察使用。

  ②挂图,让学生可以观察分析,从而为得出结论提供感官上的支持。

  3、交流学习结果,分组汇报:

  因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米的正方体。1分米×1分米×1分米=1立方分米

  10厘米×10厘米×10厘米=1000立方厘米

  所以:1立方分米=1000立方厘米

  4、让学生在回顾一下思维的过程,再说说自己的理解。

  (二)独立探究立方米与立方分米之间的进率

  1、教师提问:请同学们猜想一下,立方米与立方分米之间的进率

  2、用什么方法可以验证自己的想法是正确的呢?

  3、学生自己尝试解决问题

  4、交流各自的思维过程:

  棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米×10分米×10分米=1000立方分米。所以1立方米=1000立方分米(板书)

  5、小结:相邻的两个体积单位之间的进率是1000。

  6、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之处?

  7、完成书上31页练习七的第1题

  让学生独立完成填表,让学生联系填表的过程再一次说说长度单位、面积单位、体积单位之间的联系与区别。

  (三)完成书上30页练一练

  1、让学生先想一想:审题时先注意什么?试着说说要解决这些题目的过程和算理。

  2、在学生独立完成的基础上,适当总结把相关体积单位进行换算的基本思考方法。要提醒学生运用小数点的位置移动的方法计算一个数乘或除以1000的得数。

  3、小结:体积单位间的进率转化与我们学过的长度单位、面积单位、质量单位之间的转化有什么相同处与不同处。

  三、解决实际问题,巩固所学方法

  1、完成31页第2题

  让学生先审题,观察这一组题目有什么特点?在解决的过程中要突出面积单位换算与体积单位换算的区别,还可以让学生认识到:把高级单位的数量换算成低级单位的数量,都要乘相应的进率。

  2、完成31页第3题

  让学生独立完成这一题。说说自己的思考的过程。帮助学生巩固方法,形成技能。

  3、完成31页第4题

  让学生在练习中回顾升与毫升的关系,进一步掌握升、毫升与本单元所学的立方分米、立方厘米的关系。

  四、全课总结

  今天的学习中你有什么收获?学到了什么?还有哪些疑惑?

苏教版六年级数学教学设计2

  教学目标

  1. 使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。

  2. 在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。

  教学重点

  理解比的意义,比和分数、除法之间的联系。

  教学过程

  一、 创设问题情境,引入比

  电脑出示三幅长方形的画(标出每一幅的长和宽)。

  谈话:这里有三幅不同形状的画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)

  提问:还可以怎样表示它们的关系?

  过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。

  二、 自主活动,认识比

  1. 用比表示两个同类量的相除关系。

  (1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的1/2也可以表示为:宽和长的比是1 ∶ 2。你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?

  学生分别用比表示另外两幅画的长和宽的关系。

  (2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。

  谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。

  指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)

  再问:那么水和洗洁液的比是几比几?表示什么意思?

  师生共同讨论1 ∶ 8和1 ∶ 1的含义。

  2. 用比表示两个不同类量的相除关系。

  谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。

  提问:根据图中的`信息,你知道梨的单价是多少元吗?

  根据学生回答,板书:单价=总价÷数量。

  讲解:像这样总价和数量之间的关系也可以用比来表示,梨的总价和数量的比是3 ∶ 2,表示总价除以数量。

  提问:你能用比来表示苹果的总价和数量之间的关系吗?

  这里的6 ∶ 3表示什么意思?(表示总价除以数量)

  3. 理解比的意义。

  谈话:根据上面的例子,你能说一说什么叫两个数的比吗?

  小结:两个数相除又叫做两个数的比。

  4. 自学课本。

  提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?

  反馈:通过自学,你又了解了哪些知识?

  师生共同讨论下面的问题:

  (1)比由哪几部分组成,分别叫什么?比的后项能为0吗?为什么?

  (2)什么叫比值?怎样求比的比值?

  (3)比和除法、分数有什么联系?

  (4)比还可以写成怎样的形式?

  小结:(略)

  三、 巩固练习,深化理解

  1. 完成“练一练”第1、2题。

  学生完成填空后,让学生说一说每个比所表示的意思。

  2. 完成“练一练”第3题。

  学生改写后,再读一读,并分别指出每一个比的前项和后项。

  3. 小强和爸爸身高的比。

  出示:小强的身高是1米,他爸爸的身高是 173厘米。写出小强和他爸爸身高的比。

  学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173。

  4. 糖水的甜度。

  出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25。

  提问:你知道哪杯水甜吗?为什么?

  出示:第三杯中糖4克,水100克。

  谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。

  提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?

  四、 课堂总结

  提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?

  五、 课外延伸

  出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?

  课件播放短片,介绍黄金比。

  谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。

苏教版六年级数学教学设计3

  教学目标:

  1、使学生通过把几个相同的正方体或长方体拼成较大的长方体的操作活动,探索并发现拼接前后有关几何体表面积的变化规律,并让学生应用发现的规律解决一些简单实际问题。

  2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

  3、培养学生的合作能力、空间想象能力和思维能力。

  4、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的自信心。

  教学重难点:

  通过操作,比较拼成的长方体的表面积与原来两个正方体的表面积的和究竟发生了什么,发现规律,学会分析。

  教学准备:正方体小块、长方体盒

  教学过程:

  一、创设情境,导入新课

  1、师:同学们,我们在日常生活中,往往可以看到,把一些长方体或正方体的物品这样摆放(课件),你们能说说这样摆放的理由吗?(对学生说的理由教师可不作过多评述,但如果学生说到与面积有关,适当点评后,引入新课)

  今天我们一起来研究物品摆放中的有关数学问题————表面积的变化

  2、复习:

  (1)请哪位同学说一说长方体表面积的计算方法

  (2)出示正方体,师:这个正方体体积是1立方厘米,你知道表面积是多少吗?你是怎样知道的?(复习正方体体积与表面积的公式)

  (本环节设计意图:通过观看录像资料,让学生发现,生活中,有些长方体、正方体形状的物品,在摆放的方式上,有时会平铺,有时却要叠放,这些日常生活的常见的现象中,也蕴藏着一定的道理,可以用数学知识来解释这些现象。体现数学的学习价值)

  二、探究操作,发现规律

  (一)引导操作,探索规律

  1、课件出示例题一

  将两个体积是1立方厘米的.正方休拼成一个长方体(如图),体积有没有变化?拼成的长方体的表面积与原来两个正方体的表面积之和是否相等?

  师:(演示操作两个正方体拼成一个长方体,师生同时操作)把两个正方体拼成一个长方体后,你有什么发现?请哪位同学说一说。(学生回答,师在黑板上的表格中写出相应的数量。)

  生:拼成长方体后,体积没有变化

  生:表面积变化了

  生:表面积减少了

  生:减少两个正方形的面,面积是2平方厘米

  生:原来正方体的表面积之和是12平方厘米,拼成后的长方体的表面积是10平方厘米。

  师:也就是说,把两个正方体拼成一个长方体后,表面积减少了,而且减少的是两个正方形的面的面积。(教师要在黑板上表格里,相应写出2,12,10

  同学们说的真好。老师还有一个问题,如果再增加一个正方体、两个正方体、三个正方体,这样拼成的长方体表面积会有怎样的变化呢?

  (第一环节设计意图:师生共同演示,学生观察两个正方体拼接前后形状的变化,引发思考,即体积与表面积发生了怎样的变化?学生要拼、看、找的基础上,说出表面积减少的结论,这是探究的第一步,让学生感知,两个正方体相拼,表面积会减少,为进一步探究减少的规律奠定基础)

苏教版六年级数学教学设计4

  一, 教学内容:国标版小学六年级数学上册第50页例7,练一练及第51页练习十第1-6题

  二, 教学目标 :

  知识目标:使学生经过探索理解倒数的意义,掌握求倒数的方法.

  能力目标:能熟练地写出一个数的倒数.

  情感目标:结合教学实际培养学生的抽象概括能力.

  三, 教学重点:理解倒数的意义,掌握求倒数的方法.

  四, 教学难点 :探索和理解倒数的意义

  五, 教学过程 :

  (一), 谈话

  1.我们知道语文中有反义词,谁能举几个这样的例子呢

  (学生举例)

  2.导入 那么在数学上也有类似的这样的现象,今天我们就一起来探索一下这方面的知识.

  (二),学习新知

  1.学习倒数的意义

  出示几组数据

  3/8和8/3 5/4和4/5 2/3和3/2 10/7和7/10

  你发现这几组数据有什么共同点吗

  可能1:第一个 分数的 分子就是第二个分数的分母,第一个分数的分母就是第二个分数的 分子

  可能2:两个分数的分子,分母相互调换了位置.

  可能3:两个分数的乘积是1.

  提问:谁能够根据刚才的回答给这几组数据起个名字呢 (注意可能1,倒过来的数字)(倒数)出示课题:倒数的认识

  提问:那么怎样的两个数才互为倒数呢 我们一起来看看书上是咱们说的(指导看书).

  思考:(1)什么是倒数 满足什么条件的两个数互为倒数

  (2)你能找出互为倒数的两个数吗.请举例

  *注意帮助学生理解"互为"的意义,以及叙述时语言要规范,如 2/3和3/2互为倒数.

  2教学求一个数倒数的方法

  出示例题:找出下列各数的倒数

  2/3 7/4 1/5

  小组讨论 指名板演

  提问:1.你是怎么找出2/3的倒数的

  生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3

  生2:因为互为倒数的两个数的分子与分母正好调换位置.2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 .

  2.你是怎么找出7/4的倒数的

  ……

  提问: 我们怎样才能很快地找到一个数的倒数 为什么

  (分数的分子和分母的位置互换)

  抢答:5/9 6/7 8/5 的倒数各是多少

  3质疑1:1 的是谁 0的倒数呢

  生:1的倒数是1

  师:能说明一下理由吗

  生1:因为1与1的乘积还是1.

  生2:因为1可以化成1/1,1/1分子与分母调换位置后还是1/1,即1,所以1的倒数是1.(板书:1的倒数是1)

  师:0的倒数呢 (引导学生质疑)

  生1:0的倒数是0.因为1的倒数是1,所以0的倒数是0.

  生2:因为0与任何数相乘都得0,所以0的倒数是任何数.

  生3:0的倒数是没有的因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数.

  生4:0可以写成0/1,0/1的.倒数是1/0.

  生5:不对,1/0分母是0,没有意义,所以0是没有倒数的 (板书:0没有倒数)

  4质疑2:5的倒数是几

  5完善求一个数的倒数的方法

  (三), 巩固练习

  (1)练一练

  写出下面各数的倒数

  7/12 1/3 9/4 8 13/5

  (2)判断*

  1.得数是1的两个数互为 倒数.()

  2.互为倒数的两个数乘积一定是1.()

  3. 1的倒数是1,所以0的倒数是0 .()

  4.分数的倒数都大于1.()

  (3)完成练习十第1-3题

  1.完成在书上

  2.举几个例子,说说你是怎么做的

  3.集体核对

  (4)完成练习十第4题

  1 分成4组,分别完成第1.2.3.4组

  2.同桌相互讨论,你发现了什么现象 (引导学生观察)

  3.归纳:

  真分数的倒数都是大于1的假分数

  大于1的假分数的倒数都是真分数

  一个分数的分数单位的倒数都是整数

  整数(0除外)的倒数都是几分之一

  (5) 完成练习十第6题*

  1.理解题意

  2.学生独立完成解题,师巡视.

  3.质疑:解题思路都一样吗 两个2/5有什么区别

  四,总结:今天我们学习了什么知识 你现在会求一个数的倒数了吗

  六 板书设计

  倒数的认识

  乘积是1的两个数互为倒数

  1的倒数是1 0没有倒数

苏教版六年级数学教学设计5

  教学内容:

  教材第68~69页例1,“练一练”,第72页练习十一第1~3题。

  教学目标:

  1.使学生初步学会运用假设的策略分析数量关系,能根据问题的特点确定假设的思路,理解假设的解题过程,能运用假设的策略解决相应的实际问题。

  2.使学生经历用假设解决实际问题的过程,感受假设策略对于解决特定问题的价值,进一步发展分析、推理和解决问题的能力。

  3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  解决用假设策略时总量不变的实际问题,认识假设的策略。

  教学难点:

  运用假设策略分析数量关系。

  教学准备:

  多媒体课件

  教学过程:

  一、激活旧知,引入新课。

  1.口答列式。

  (1)把720ML果法倒入9个相同的杯子里,正好都倒满,每个杯子的容量是多少毫升?

  (2)用600元买了5把相同的椅子,这种椅子的单价是多少元?

  指名口版式,并说说数量关系式。

  二、解决问题,认识策略。

  1.出示例1,理解题意。

  指名学生读题,说出题里的条件和问题。

  提问:和刚才解答的问题比,这个实际问题复杂在哪里?

  引导:你是怎样理解问题中数量之间的关系的?同桌互相说一说。

  交流:怎样理解题中数量之间的系?

  明确:根据“720毫升果汁倒入6个小杯和1个大杯,正好倒满”,可以知道6个小杯的容量+1个大杯的容量=720毫升;“小杯的容是一是大杯的1/3”就是大杯的容量是小杯的3倍,1个大杯容量等于3个小杯的`容量。

  2.思考交流,探究思路。

  引导:现在有两种大小不同的杯子,这是解决题复杂的地方,根据题里两种杯子容量间关系的理解,你有办法解决这个问题吗?自己先想一想,再和同桌说一说,看哪些同学能想到办法。如果思考有困难,也可以画图看一看。

  指名交流想法,引导学生理解:

  (1)画示意图看,1个大杯容量,可以看作果汁倒在9个小杯里;或3个小杯容量等于1个大杯容量,可以看作果汁倒在3个大杯里。

  (2)假设把果汁全部倒入小杯,就是9个小杯,可以先求出小杯容量再求大杯容量。

  (3)假设把果汁全部倒入在杯,就是3个大杯,可以先求出大杯容量再求小杯容量。

  (4)假设每个小杯容量是X毫升,大杯容量就是3X毫升,可以列方程解答。

  小结:通过交流,虽然大家有借助画图的,有直接思考的,但基本上是两种思路:一种是假设把果汁倒入同一种杯子,或者全看作大杯,或者全看作小杯;另一种是假设每个杯容量是X毫升,大杯容量就是3X毫升。

  3.解决问题,体会策略。

  引导:现在你能解决问题了吗?请选择一种方法列式解答,并进行检验。

  学生列式解答并检验,教师巡视,选择不同解答方法的学生进行板演。

  集体评析板演的不同方法,弄清各种算法中每一步算出的是什么。

  讨论板演的不同方法,明确:检验时要看求出的结果是否符合题目中的两个已知条件,就是算出6个杯和1杯总量720毫升,小杯容量是大杯的三分这一。

  追问:这些不同的解题方法里有什么共同的地方?用假设的方法有什么作用?

  指出:解题方法虽然不同,但都是用了假设的方法,这样可以使大杯和小杯转化为同一种杯子,即使用方程解答,也是假设小杯容量为X毫升,大杯容量就是3X毫升,实际上就是把1个大杯转化成3个小杯,这样就使问题变得比较简单。

  三、应用巩固,内化策略。

  1.做“练一练”。

  学生独立解答,指名板演。

  交流:这里是怎样用假设策略的?每一步算式表示什么?

  追问:为什么这道题假设全部买椅子而不是假设全部买桌子?

  指出:为了计算方便,要根据两个量之间的倍数关系合理选择假设。运用假设策略时,怎样根据数量间的关系假设也很重要。

  2.做练习十五第1题。

  学生独立完成填空,再同桌互相说说自己的想法。

  全班交流。

  指出:解决题这题时,要先弄清两个数量之间的关系,再通过假设正确地把两个数量转化成一个数量。

  3.做练习十一第2题。

  让学生填充并交流填充结果。

  提问:根据填充里的想法,这道题可以怎样假设?还可以怎样假设?

  学生独立完成解答,指名板演。

  集体交流,让学生说说解答的过程。

  四、全课总结,布置作业。

  1.交流认识。

  提问:今天学习的实际问题为什么要用假设的策略解决?通过今天的学习,你对假设的策略有了哪些认识?还有什么体会?

  五、作业布置。

  补充习题相对应页。

苏教版六年级数学教学设计6

  [教学内容]:

  教科书第89—90页的例1、“练一练”、练习十七第1题

  [教材分析]:

  本单元主要教学用替换和假设的策略解决实际问题。本单元共安排了2个例题,分3课时进行教学,本节课是其中的第1课时。“替”即替代,“换”则更换,替换能使复杂的问题变得简单。教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。教材安排的例题就是利用“小杯的容量是大杯的”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。这是例题的编写意图,也是设计的教学思路。教材要求学生“说说为什么这样替换”,引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。

  [教学意图]:

  这节课的教学设计,力求体现新课程的理念,给学生自主探索的空间,为学生营造宽松和谐的氛围,让他们学得更主动、更轻松,凸现了内容的情趣化和生活化;在探索的过程中,培养学生的实践能力、创造能力、合作精神,鼓励学生大胆发表自己的意见,最大限度地调动学生学习数学的积极性、主动性和创造性,体现了过程的活动化,达成了预定的教学目的。

  [教学目标]:

  1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

  2、使学学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

  [教学过程]:

  课前欣赏:播放《曹冲称象》录像,感受策略。

  创设情境,感受用策略解决问题的魅力

  1、承接故事情境,感受策略的作用。

  (1)故事中曹操提出了什么要求?

  (2)众大臣有没有解决这个难题吗?

  (3)曹冲用了什么办法解决了这个难题?

  (4)过渡语:要称出那头大象的重量,大人们都束手无策,七岁的曹冲却想出了那么妙的解决办法,用称出与大象相同重量的一船石头的重量来求出大象的重量,真了不起!今天我们就一起来学习用这种办法解决一些实际问题。

  板书:解决问题的策略

  [设计意图]通过创设一个问题情境,用学生感兴趣的小故事导入新课,初步感受用替换策略解决实际问题的'好处,让学生在课始就进入知识的探究中,自觉的参与到学习中去。

  探究新知,初步理解替换的策略

  (一)解决生活中的难题

  1、[电脑出示]例1小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的。小杯和大杯的容量各是多少毫升?

  2、引导交流:从题目中获得哪些信息?

  随机贴出杯子图

  3、你是怎样理解“小杯的容量是大杯的1/3”这句话?

  4、问:你可以提出哪些数学问题呢?(课前估计学生可能出现的问题,做好充分的准备,结合学生的回答灵活的提炼到今天要解决的问题上来)

  5、问:这些问题现在都能解决吗?

  6、(生广泛发言,教师及时肯定和评价)

  7、针对学生提出的问题,提炼到今天所要解决的问题上来。问题:同学们,你们看每个大杯和小杯的容器不一样。杯子的数量也不一样,只告诉我们这些杯子里果汁的总量720毫升,那怎样来求小杯和大杯的容量呢?我们该怎么办呢?你们能不能想一个比较好的方法呢?

  8、讨论讨论,想想曹冲称象的故事给我们解决这一个问题有什么启示呢?

  9、结合学生提出的已有经验,学生可能出现的情况是:

  A把大杯换成小杯

  B把小杯换成大杯

  10、小结学生的方法:不管是大杯换小杯,还是把小杯换成大杯,同学们有没有发现,他们的共同点都是把两个较复杂的量转化成比较简单的同一种量来考虑。

  这就是我们今天要学习的内容:替换策略来解决问题板书:替换

  11、过渡:在刚才的探究中,我们知道了可以把小杯替换成大杯,也可以把大杯替换成小杯,在这个过程中怎样来替换,又如何来解决这个问题呢?在每个同学的桌上有这样的一张作业纸,拿出来四人小组合作。

  要求1、画一画,选一种替换方法画出替换过程。

  2、说一说,应该怎样替换,并且如何计算。

  小组展示汇报。

  12、分析数量关系及解答。黑板上

  (1)学生根据投影出来的方法说一说解答思路。

  问:要解决这个问题,根据我们画的图可以怎么想?

  (2)哪些同学是和他一样的做法,还有不同的方法吗?交流第二种方法。

  13、怎样检验结果是否正确?学生口头检验。

  你觉得小杯的容量加上大杯的容量满足720毫升以后,还需要满足什么条件吗?

  14、回顾反思

  (1)在解决这一问题的过程中用到了什么策略?为什么要替换?

  (2)我们又是怎样来替换的?

  15、小结:在解决这一过程中,原来是有大杯和小杯两种不同的量,用替换的策略简化成了都是小杯这同一种量,而且总量也告诉我们,这样要求小杯的容量就方便了;同样用替换的方法把小杯替换成大杯,使题目中只出现了大杯这同一种量,要求大杯的容量也方便了。在整个过程中我们还借助了画图的方法,帮助我们解决问题。

  [设计意图]这一层次安排了观察、操作、交流、归纳等教学活动,让学生自己感受、探索替换策略的运用。在交流中,学生把自己各自的想法表述出来,大家互相借鉴、互相补充,这样不仅调动和激发了学习主动性,而且提高了独立获取知识的能力。

  三、拓展应用,巩固策略

  过渡:同学们在日常生活中用替换的策略可以帮助我们解决很多实际问题。来我们一起来看一段小广告

  1、播放达能广告

  同学们,从刚才的广告中你又发现了哪些数学知识呢?

  2、让学生说说自己的发现

  3、是啊!在我们每天的生活中蕴涵着丰富的数学知识,只要你做个有心人,你会有更多的收获。课前老师也做了一些调查:

  [电脑出示]8块达能饼干的钙含量相当于1杯牛奶的钙含量。小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克。你知道每块饼干的钙含量大约是多少毫克吗?1杯牛奶呢?

  (1)要解决这个问题你准备用什么策略?在替换的过程中还需要用到画图,老师给你们准备了一张图在练习纸二上,画一画来尝试解决这个问题。

  学生独立完成。并说出想的过程。

  (2)除了把牛奶替换成饼干,还有没有别的不同的方法吗?

  (3)说一说这题该怎样检验?

  (4)提问:为什么你们都不把饼干替换成牛奶来考虑?

  学生交流后小结:在解决实际问题的过程中,一般要选择简洁、容易的方法来解答。

  [设计意图]把数学知识与生活实际联系起来,使抽象的概念形象化、生活化,让学生感受到数学的趣味和作用,体验到数学的魅力。

  2、[电脑出示]在2个同样的大盒和5个同样的小盒里装满网球,正好是100个。每个大盒比小盒多装8个,每个大盒和小盒各装多少个?

  (1)读题,从题目中获得哪些信息?

  (2)与前面两题相比,有什么不同的地方?

  (3)你准备怎样替换?还有不同的替换吗?(学生说,教师演示部分课件)

  (4)“每个大盒比小盒多装8个”这句话你是怎么理解的?

  (5)选择一种喜欢的方法进行替换,请在练习纸上完成

  (6)学生汇报,结合学生的汇报让学生说说总数有没有发生变化?

  (7)口头检验

  3、学校买来5个足球和10个篮球,共计700元。每只足球比每只篮球便宜10元。足球和篮球的单价各是多少元?

  (1)画一画图来解决这个问题吗?

  (2)重点说说自己是怎样来解答的

  四、小结全课,优化策略

  通过今天的学习,你对用替换策略解决实际问题又有了哪些新的认识?

  五、课外知识的补充

  出示数学经典名题——清代康熙年间(1647年)编辑的算书《御制数理精蕴》中的一题“设有谷换米,每谷一石四斗,换米八斗四升。今有谷三十二石二斗,问换米几何?”先借助媒体帮助学生理解题意,课后让学生解答。

  [设计意图]给学生一个开放的思维空间,培养学生应用数学的实践能了勒,激发了孩子学好数学,同时也是一个很好的反馈机会。

苏教版六年级数学教学设计7

  教学内容:教科书第70~71页的例3、例4以及相应的“练一练”,练习十三的第6~9题

  教学目标:

  (一)使学生理解和掌握比的基本性质,能应用比的基本性质进行化简比;

  (二)使学生在经历和探索比的基本性质的过程中,进一步体会数学知识之间的内在联系,培养观察、比较、抽象、概括及合情推理的能力。

  教学过程:

  (一)复习旧知识,做好新课铺垫

  1、提问:①什么叫做比?

  ②除法、分数、比之间有什么联系吗?

  根据学生的回答板书。

  被除数÷除数==前项:后项

  2、观察下面的每组题目,你有什么发现吗?

  第一组:12÷4=3

  (12×3)÷(4×3)=3 商不变

  (12÷2)÷(4÷2)=3

  第二组:=3

  ==3 分数值不变

  ==3

  先让学生分组讨论,再组织全班交流。

  根据交流情况适时板书

  被除数÷除数==前项:后项

  商不变性质 分数基本性质

  [评析:为了激发学生的求知欲,也为了让学生更好地理解比的基本性质,在新课之前,让学生回忆旧知,使学生在回忆旧知识的过程中,自然地过渡到了新课,使学生很清楚地知道知识的内在联系。]

  (二)新课,概括比的基本性质。

  1、再观察一组题目

  例3:下面是小冬在实验里测量几瓶液体的质量和体积的记录表。

  填写下表,并把比值相等的比填入等式。

  质量/g 体积/cm3 质量和体积的比值

  第一瓶 4 5

  第二瓶 16 20

  第三瓶 50 50

  第四瓶 40 50

  ( ):( )=( ):( )=( ):( ) }比值不变

  1、学生独立填写后。

  2、提问:观察上面的等式,联系商不变性质和分数的基本性质,想一想,比会有什么性质?

  学生观察思考,再把自己的想法在小组里交流。教师巡视,了解学生的讨论情况,对有困难的学生给予指导。

  引导发现:比的前项和后项同时乘或除以相同的数(0除外),比值不变。这是比的基本性质(板书)

  问:为什么比的后项不能为0?指出:比的后项相当于除数或分母。除数和分母不能为0,所以比的`后项也不能为0。

  3、上面三个相等的比哪个更简单一些?

  学生比较后发现应用比的基本性质,可以把一些比化成最简单的整数比。

  (三)利用比的基本性质化简比

  例4:把下面各比化成最简单的整数比。

  (1)12:18 (2) (3)1.8:0.09

  讨论:你是怎样理解“化成最简单的整数比”的?你能根据“比的基本性质”进行化简吗?

  根据学生的回答,整理后板书。 板书后追问:

  12:18=(12÷6):(18÷6) 为什么要同时除以6?

  =2:3

  =(×12):(×12) 为什么要同时乘以12?

  =10:9

  1.8:0.09=(1.8×100):(0.09×100) 为什么要同时乘100?

  =180:9

  =20:1

  小结:化成最简单的整数比,就是根据比的基本的性质,直到比的前项和后项互质为止。

  [评析:当问题出现时,老师并没有急于去讲解,而是放手让学生自己去讨论、去交流,因为学生有了对商不变的性质和分数基本性质的理解,所以学生很快就理解了比的基本性质,并能化简比。]

  四、沟通联系,深化认识

  1、指导完成“练一练”

  做第1题。学生独立填完后,要求说说是怎样想的?

  做第2题。学生黑板上板演,集体订正时说出做每道题的理由。

  2、指导完成练习十三第6~9题

  做第6题。先让学生独立完成,再要求说说整数比,分数比和小数比化简的方法。

  做第7题。先让学生独立完成,再通过小组交流,发现每种规格国旗长和宽的比是一定的,都是3:2,并对学生进行爱护国旗的教育。

  做第8题。先让学生独立完成,学生完成后,指名说说思考的过程。

  做第9题。分组完成,组织交流,让学生知道化简比与求比值的方法是不同的。但有时可以互相利用。如4:16化简后是1:4,写成分数形式是,这个结果也可以看成比值;75:25的比值是3,写成分数形式是,这个结果也可以看成一个比。

  五、课堂总结:

  今天这节课,学习了什么内容?通过学习,有什么收获?你今天在课堂上的表现怎么样?

  教学评析:

  1、“最好的学习动机是学生对所学内容产生浓厚的兴趣”在新课开始,为了让学生更好地理解比的基本性质,在复习时,让学生回忆起商不变的性质和分数的基本性质,在学生的回忆中,很自然地过渡到比的基本性质,由于学生已经知道了商不变的性质和分数的基本性质;又理解了除法、分数、比之间的联系,所以很快理解了比的基本性质。这样激发学生的求知欲和主动参与学习的动机,使学生学习情绪高涨,达到学习的最佳境界。

  2、注重学生的合作学习,例如:在发现比的基本性质时,让学生先观察思考,再把自己的想法在小组里交流。再比如:让学生讨论是怎样理解“化成最简单的整数比的”?你能根据“比的基本性质”进行化简吗?学生在小组合作学习时,老师创设了一个积极探讨,合作研究的空间,让学生在小组里自由地各抒己见,展开议论,互帮互学,强化理解。通过反馈汇报,给学生提供展示自己思维的机会,充分发挥了学生的积极性、主动性和创造性,使学生最大限度地参与探究新知的活动。并让学生获得成功的喜悦。

  3、这节课,通过学生“回忆知识”“小组合作发现比的基本性质”……使学生兴趣浓厚,学得积极主动,这样的设计发挥学生的自主性和积极性,为学生创设了一个愉悦轻松的学习氛围,提高了课堂教学的效率。

苏教版六年级数学教学设计8

  分数除法这一单元是在学生已经掌握分数乘法的意义及分数乘法的计算方法的基础上进行教学的。在学习分数除法的计算方法时,教材循序渐进的安排了4个例题:分数除以整数、整数除以分数、和分数除以分数三部分内容,下面我就重点说一说自己对例4这部分教学内容的理解及简单的课堂教学设计。

  一、对例题4的认识及分析

  分数除以分数这一内容是在例4中出现的。在例4教学之前学生已经体会了分数除法的意义并掌握了分数除以整数和整数除以一个几分之一的数和整数除以一个几分之几的数的计算方法,而且在学习这些知识的时候,教材借助了分一分、画一画等直观手段去帮助学生理解算理并通过分析,比较,归纳出了算法,有了这些做基础,虽然这个例题是个新知,但学生完全能够利用比较、类推,迁移,用前面学过的方法来自己解决分数除以分数应怎样计算。然后再让学生在示意图中分一分,画一画,借助直观图来验证自己的计算方法和结果是否正确,有了这些环节做铺垫,教师就可以顺势引导学生总结出分数除以分数的计算方法:分数除以分数也可以等于分数乘以这个分数的倒数。这个例题的设计与以前的传统教材不同,它不在通过复杂的数学算式去理解为什么要变成乘10/3,而是通过直观的图示去验证9/10里面就是包含着3个3/10,所以9/10÷3/10就等于3,再就是要让学生明确除以一个数等于乘以一个数的倒数这种方法在分数除以分数中也同样适用就可以了。

  至此,分数除法各种类型的题目,就都学完了,紧接着就可以联系前面学习过的分数除以整数和整数除以分数的计算方法来总结概括出分数除法计算的一般方法。这个方法的概括和学习为后面教学已知一个数的几分之几是多少,求这个数的简单实际应用以及分数乘除混合运算打好了基础。

  二、课堂教学设计

  在这一课时中,我认为有两个教学重点:一是通过验证得出:分数除以分数的计算方法;二是由前面的4道例题概括出分数除法的一般方法:甲数除以乙数(0除外),等于甲数乘乙数的倒数.

  下面就是我根据对这一课时的教材理解进行的教学环节的设计

  (一)复习旧知

  口算:

  3/10÷6 2/5÷5 4/9÷2 4/5÷4 1÷5/6

  3 ÷1/8 2÷1/5 4÷2/5 1÷3/4 7÷5/7

  师:找学生选择其中几题说说计算方法 教师同时板书(类型各一个)

  概括:这两种情况的分数除法都可以转化乘除数的`倒数计算

  并板书:÷ ×除数的倒数 ( 类型各一个)

  (二)教授新知

  1、学习分数除以分数的计算方法

  量杯里有9/10升果汁,茶杯的容量是3/10升,这个量杯里的果汁能倒满几茶杯?

  师:你会列式吗?

  生回答后,师板书:9/10÷3/10=

  (1)为什么这样列?(因为要求能倒满几杯果汁就是求9/10里面包含着几个3/10,这就是除法意义中的包含除。这样就沟通了分数除法与整数除法的意义,让学生再一次理解分数除法与整数除法的意义是相同的。)

  (2)师引导:前面我们学习的例1到例3的分数除法都是把除法转化成乘除数的倒数。那么分数除以分数你会计算吗?

  (3)让学生自己尝试计算。

  (4)教师就可以引导学生让学生利用58页的示意图上分一分,验证自己刚才的计算结果是否正确。通过验证结果是正确的,让学生体会到自己用倒数的方法是正确的。

  师总结:由此验证分数除以分数也可以是乘除数的倒数。

  (5)做58页“练一练”(课件出示 两张)

  2、概括分数除法的一般计算方法。

  (1)根据板书引导:我们学过的分数除法都有哪几种情况?

  (2)这几种情况在计算时有什么相同的方法?

  (3)如果把被除数叫做甲数,除数叫做乙数,(乙数不等于0),你能概括出分数除法统一的计算法则吗?

  (4)板书:甲数除以乙数(0除外),等于甲数乘乙数的倒数.

  (三)课堂练习

  1、巩固各种类型的分数除法: 集体校对时可以找学生再说一说方法以得到巩固。

  2、13、14应用题:用学习的知识解决生活实际问题。

  3、思维训练:在□里填上适当的数。(体现练习的梯度)

  □/11÷3=7/□ □/5×3/□=6/35 5/9÷□/4=□/27

  4、思考题:分数除法的计算方法是否适用于整数除法(让学生通过举例验证,得出结论,4÷2=4X1/2=2,让学生发现分数除法的计算方法在整数除法中也好用。帮学生把前后的相关知识联系起来,形成系统的知识体系。

苏教版六年级数学教学设计9

课题:按比例分配

教学目标:

  1、使学生理解按比例分配实际问题的意义。

  2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。

  教学重点、难点:理解按比例分配实际问题的意义,掌握解题的关键。

  对策:

  引导学生分析明晰题意。

教学预案:

一、 基本训练:

  1、根据信息你想到了什么?

  六2班男生与女生的比是4:5

  (1) 男生是4份,女生是5份,一共是9份;

  (2) 男生相当于女生的4/5,女生相当于男生的5/4

  (3) 男生占全班人数的4/9,女生占全班人数的5/9

  2、根据已知条件回答问题:(第76页上第6题)  

二、自主探究:

  1、 出示例题5题目和方格图,让学生独立完成,先算一算,再涂一涂。

  2、 组织交流:你是怎样解决这个问题的?你是怎样想的?

  生1:根据红色与黄色方格数的比是3:2,可以想到:把30个方格平均分成5份,3份涂红色,黄色涂2份。

  列成算式是:

  30(3+2)=305=6(格) 每一份有几格

  因为红色有这样的3份,所以红色:63=18(格)

  因为黄色用这样的2份,所以黄色:62=12(格)

  教师追问:怎样验证这个答案是正确的?

  生2:根据红色与黄色方格数的比是3:2,可以想到:红色方格占总格数的3/5,黄色方格占总格数的2/5

  列成算式:

  红色:303/(3+2)=303/5=18(格)

  黄色:302/(3+2)=302/5=12(格)

  3、你是用哪种方法解决的?这两种方法你都理解吗?和你的同桌再说说解题思路。

三、理解体会:

  1、出示第75页上的试一试:

  (1) 齐读要求,提问:现在将这些方格按怎样的比来分配?说说1:2:3是什么意思?

  (2) 独立完成,组织交流。

  2、你觉得今天的问题已知什么?(已知总数和分配的比,将总数按一定比分割成几部分)要求的是什么?(将求按这样分配后的各部分的结果分别是多少?)

  像这样,将总数按一定的比进行分割成几部分,我们称之为按比例分配问题。(出示课题:按比例分配问题。)

  3、在解决时我们关键要理解是按怎样的比来分配。解答时可以怎样想?(转化成整数问题,先求出一份是多少?再求出这样的几份是多少?)还可以怎样想?(先转化成要求的量分别是总数的几比几,再按分数乘法问题进行计算)

四、巩固提高

  1、练一练第1题:学生独立完成,指名板演,组织交流。

  2、练一练第2题:提问:在这里将180块巧克力怎么分配?你从那句话中看出来的?帮助学生理解把180按35:31:24进行分配。

  3、练习十四第2题:读题理解要求,引导学生看图估计出已用去的时间与剩余时间的比,并说出是怎样想的。(把图中的白色部分平均分成两份,可以看出已用去的时间与剩下时间的比大约是1:2。)那么这题实质是求什么?(将90分钟时间按1:2进行分配,求比赛剩下的时间是多少分?)

  4、练习十四第4题:

  先让学生独立思考一会儿,再组织交流:这题符合今天的特征吗?那要分配的总数是什么?(引导学生注意隐含条件:三角形的内角和是180度)现在你会解决吗?

  5、补充:

  出示一条线段,要求按1:5将线段分成两部分。

  学生独立操作完成,组织交流。

  五、全课总结:通过今天的学习,你有什么收获?

  转化解答按比例分配问题的策略。

  按比例分配是把一个数量按照一定的比进行分配。解决一些常见的、较简单的按比例分配问题,能在实际应用中加强比的概念。

  按比例分配问题可以采用不同的思路和方法来解答。例5的编排在建立比的概念之后,适宜用比的知识解答。兔子卡通把比看作份数,小鸟卡通把比看作分数,都是从3∶2的具体含义出发,经过推理形成解题思路的。也可以先在教材的方格图上,通过涂色得到启发。如果每次涂5个方格,其中3个红色方格、2个黄色方格,那么要6次(305=6)刚好涂完。所以红色方格一共有3053=18(格),黄色方格一共有3052=12(格)。如果把方格图里的3行(列)涂红色、2行(列)涂黄色,那么就能直观看到红色方格是30格的3/5,黄色方格是30格的.2/5,所以两种颜色的格数分别用303/5和302/5计算。

  教学例题时要沟通两种解法的联系,要提倡小鸟卡通的方法,突出按比例分配问题转化成求一个数的几分之几是多少的问题,引导学生用分数乘法来解决问题。

  试一试里出现了1∶2∶3,对连比的概念不需要作过多解释。学生会从两个数的比来体会这个连比的含义,只要能够说出红色方格占1份、黄色方格占2份、绿色方格占3份,就能应用解答例5的经验完成这道题。

  练一练第2题给出了幼儿园大班、中班、小班各有的人数,把180块巧克力按班级人数的比分配。这道题变式呈现按比例分配的问题,没有直接给出班级人数比,要求学生根据人数先想出比,然后按比例分配。教师要重点帮助学生理解把180块巧克力按班级人数的比分给三个班就是把180按35:31:24进行分配。这道题还是解答练习十四第2、8题的平台。

课后反思:

  本课时的教学内容是引导学生应用比的意义和基本性质解答有关按比例分配的实际问题。由于在学习比的意义时学生已能根据两个数量间的比用分数来表述两者的关系,所以在教学例题5时,我给学生充分独立思考和解答的时间,让学生自主进行探索。在交流解法时,很多学生思维活跃,发言积极,想出了很多种解法。这时我再及时引导学生将这些方法进行总结,并突出了用分数乘法来解题的这种方法。在新知的学习中,我还请学生思考如何进行检验,学生们联系题中的信息想到了可以将求出的两个数量组成比进行化简,再将这两个数量的和求出来,与已知信息进行比较进行检验。

  整节数学课上,鼓励学生独立思考,主动探索,充分发挥学生学习主动性,课堂气氛活跃、和谐,提高了课堂教学效率的有效性。

课前思考:

  按比例分配是一种分配思想,在生活生产中是很常见的。已学过的平均分配其实是按比例分配的一种特例。教学中要通过解决实际生活中的问题,让学生了解在生产生活中要把一个量按照一定的比例来分配,从而感悟按比例存在的价值。

  学生在平时有一定的体验,所以在新知形成过程中,首先让学生根据原有的知识尝试解决问题,变被动接受学习为主动研究性学习。其次,鼓励解决问题策略的多样化,并充分展示学生的思考过程。在解决问题的过程中使学生体会到同一问题可以从不同角度去思考,得到不同解决问题的方法,这有利于学生多向思维的发展。

课后反思:

  在练习十四第4题后,进行相应的练习后,出示一道练习题:一个三角形的三个内角度数的比是2∶3∶4,这个三角形是什么三角形?

  生1:是锐角三角形,因为通过计算,我知道三个内角分别是40,60,80所以是锐角三角形。

  师:你讲得非常好。

  生2:不要把三个角都求出来,只要求一个最大的角就行了:1804/9=80,所以是锐角三角形。

  师:你分析问题的方式很独特,分析得很有道理。

  生3:其实一个角也不用求,就知道它是锐角三角形,因为三个角加起来是9份,而最大的角只占4份,没有达到9份的一半,也就是它的度数没有达到180的一半,所以是锐角三角形。

  说句实在话,当时我都有点听蒙了。

  师:哪个同学能把的想法重说一遍?

  生4:

  师:那如果三个内角的度数比是2∶3∶5呢?或者是2∶3∶7呢?又各是什么三角形呢?

反思中的反思:

  学生是可畏的,更是可敬的。在练习阶段,学生能运用所学的知识和原有的经验解决问题,在宽松、和谐、民主的氛围中,学生思维是如此的活跃,方法是如此的灵活,体现了思维的价值,很好地诠释了尝试从不同角度寻求解决问题的方法,并能有效地解决问题的新课程精神。

课后反思:

  这课内容按照知识点来划分属于按比例分配内容,解决这类问题的策略有两个:一是将比转化成份数来理解,先求出每一份是多少;二是将比转化成分数,然后按照分数应用题来解答。这两种方法共同的数学思想方法是转化。

  在课堂教学中,学生能结合具体图例,自己想到这两种解答方法,在师生的进一步对话中,体会到用这两种方法解答时,都得渗透对应思想。

苏教版六年级数学教学设计10

  一、教学内容:

  苏教版义务教育课程标准实验教科书六年级数学(上册)1—2页。

  二、教学目标:

  1.使学生在解决实际问题的过程中,理解并掌握形如ax±b=c的方程的解法,会列上述方程解决两步计算的实际问题。

  2.使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。

  3.使学生在积极参与数学活动的过程中,养成独立思考,主动与他人合作交流、自觉检验等习惯。

  教学重、难点:

  重点:使学生在解决实际问题的过程中,理解并掌握形如ax±b=c的方程的解法,会列上述方程解决两步计算的实际问题。

  难点:理解并掌握形如ax±b=c的方程的解法,会列上述方程解决两步计算的实际问题

  三、教学过程

  (一)复习铺垫

  口答解方程:你有那些方法?说说你是怎样解答的?

  X+16=19.28.7+X=10X-10.2=3.8X÷2.5=2

  2.3X=6.956.2-X=14.236.8÷X=9.2

  (二)教学例1

  1.谈话引入:西安是我国有名的历史文化名城,有很多著名的古代建筑,其中包括著名大雁塔和小雁塔,(出示相应图片)这节课,我们先来研究与这两处建筑有关的数学问题。(小黑板出示例1的文字部分)

  2.提问:每句话的含义你是怎样理解的?条件和问题各是什么?

  启发:题目中的哪句话能清楚地表明大雁塔和小雁塔高度之间的关系?(根据学生回答,教师在题目中相关文字下作出标志,说明这句话很重要)你能找到吗?

  3.引导学生观察找到的等量关系式,提问:在这个等量关系式中,哪个数量是已知的?哪个数量是要我们去求的?

  追问:我们可以用什么方法来解决这个问题?

  明确方法,揭示课题:这样的问题可以列方程来解答。今天我和大家一起学习列方程解决实际问题。(板书课题:列方程解决实际问题)

  4.谈话:我们已经学过列方程解决简单的实际问题。谁能说说列方程解决问题一般要经过哪几个步骤?

  让学生先自主尝试设未知数,并根据等量关系列出方程。

  5.提问:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗?你会检验结果是否正确吗?(让学生尝试解答并说明方法)

  6.引导小结:刚才我们通过列方程解决了这个实际问题,你能认为列方程解决实际问题的步骤中哪个环节很重要?用方程解这种应用题找等量关系时,题中哪句话最关键?

  提出要求:你能不能根据这句话再用不同的等量关系式将大雁塔和小雁塔高度之间的等量关系表示出来呢?你能根据这些等量关系列出方程吗?你认为几个等量关系及列出的方程哪个简单而且便于理解?

  解题时要用便于自己理解而且简单的方法解。

  (三)巩固练习

  1.做“练一练”让学生独立完成并交流。交流时让学生说说找出了怎样的等量关系,根据等量关系列出了怎样的方程,是怎样解列出的方程的,对求出的解有没有检验等。如果让你画图表示它的等量关系并列方程你会吗?请你试一试。(小结:画图也是一种很好的分析方法,同学们一定要掌握。)

  启发思考:这个一 与例1有什么相同的地方?有什么不同的`地方?

  2.做练习一第1题。

  先让学生说说解这些方程时第一步要怎样做,依据是什么?然后让学生独立完成。反馈时,要在关注结果是否正确的同时,了解学生是否进行了检验。

  3.做练习一的第2题。

  学生独立完成后,再要求说说写出的每个含有字母的式子分别表示哪个数量,是怎样想到写这样的式子的。

  4.解方程:

  4X+12=521.74-2.3X=0.3620X÷2=12030X×2=60

  5.看图列方程(略):

  6.下列两个问题你准备分别各用什么方法解答?为什么?

  大米的袋数比面粉的2.3倍少40袋。

  (1)面粉20袋,大米多少袋?

  (2)大米52袋,面粉多少袋?

  (四)全课总结

  今天这节课我们学习了什么内容?你有哪些收获?还有没有疑惑的地方?

  (五)课堂作业:练习一3、4、5、6。

  四、教学反思:

  教学这部分内容之前,首先复习了五年级下的解方程,学生对于解方程的格式已学会,解这类稍复杂的方程也很快能接受,所以在教学时我花了一些时间在让孩子找一找,说说应用题的等量关系上,交给学生分析应用题的方法,围绕“这道题讲了哪几个数量”,“他们之间有怎样的关系?”“从哪句话可以看出来”让学生说说。一堂课下来,几乎每个孩子都能找到数量间的等量关系,列出方程解答。

  不足之处:由于对解这类方程的方法格式强调不够,有少数学生解答时格式不规范,需进行个别辅导。

苏教版六年级数学教学设计11

  复习内容:第十二册第87页“整理与反思”及“练习与实践”的1~8题。

  复习目标:

  1、使学生进一步认识整数四则运算的意义,正确掌握整数。小数。分数四则运算的法则及整数计算法则与小数计算法则之间的联系,能正确进行计算。让学生掌握加减法之间,乘除法之间的关系,并能应用这种关系进行验算。并在计算过程中熟练地进行估算。

  2、使学生在解题过程中依据具体算式灵活地选择计算方式,体会不同计算方式的价值。

  3、使学生根据提议正确理解数量关系,合理选择和组合信息。

  4、使学生进一步体会百分数的意义和应用,理解相关的基本数量关系,掌握与百分数有关的计算。

  教学准备:课件

  课时安排:第一课时

  课前设计:

  (一)复习四则运算的意义及法则

  1、通常所说的四则运算是指什么?(加法。减法。乘法和除法)

  四则运算的意义各是怎样的?

  2、整数加减法是怎样计算的?[数位对齐,从个位加(减)起]

  小数加减法是怎样计算的?[小数点对齐,从最低位加减起]

  整数加减法和小数加减法计算时有什么相同的地方?

  3、分数加减法是怎样计算的?(同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,再按照同分母分数相加减的方法进行计算。)

  4、整数乘法和除法是怎样计算的?小数乘法和除法的`计算有什么相似的地方?有什么不同的地方?

  5、分数乘除法是怎样计算的?

  (二)完成“练习与实践”第1—8题。

  1、完成“练习与实践”第1题。先让学生直接写出得数,再交流总结出相关的口算方法。如果部分学生口算有困难,可以允许他们现写出计算过程,再写出得数。

  2、完成“练习与实践”第2题。让学生一组一组地进行计算,通过比较和交流进一步弄清各种运算的计算方法。

  3、完成“练习与实践”第3题。这一题的估算练习只要求学生估算整数加。减法和乘法。

  4、完成“练习与实践”第4题。先让学生独立完成,再交流各题的验算方法。这一题的演算方法可以是多样的,重点是让学生养成验算的意识和习惯。

  5、完成“练习与实践”第5题。先让学生列出解决问题的算式,再依据算式说说怎样计算。要让学生分析简单的数量关系,还要根据具体情况选择是用口算。笔算。估算还是用计算器算。做这4道题不难,关键是让学生以这4题为例,讨论什么情况下用口算,什么情况下用笔算,什么情况下用计算器算,什么情况下只需要估算,加深对这几种计算手段施用情况的感悟。

  6、完成“练习与实践”第6题。先帮助学生理解场景中的信息,再让学生正确理解相应的数量关系,合理选择。组合信息。

  7、完成“练习与实践”第7题。先让学生弄清应纳税款是多少元的14%,再独立完成。

  8、完成“练习与实践”第8题。先出示第8题表中数据,让学生试着比较这几个队员助跑摸底成绩。学生可能在认识上有分歧,要逐步引导他们明确:只比较助跑摸高的厘米数是不合理的,合理的方法是现分别算出每人助跑摸高的厘米数相当于起身高的百分之几,再比较得到的百分数。

苏教版六年级数学教学设计12

  [教学内容]

  义务教育课程标准实验教科书苏教版小学数学六年级上册(P47—P49)例6及练习九的第6~9题。

  [教材简析]

  分数连乘这部分内容安排在学完了“求几个几分之几是多少”可以用乘法计算以及“求一个数的几分之几是多少”用乘法计算的之后进行教学的。例题6通过解决实际问题教学分数连乘解决,既为学生提供练习分数乘法计算的机会,又为学生学习分数连除以及乘除混合运算作些准备。

  例题6在呈现实际问题之后,先通过线段图帮助学生理解题意,分析数量关系。分步解答之后,再引导学生列综合算式,教学三个数连乘。然后通过具体的示范,再告诉学生:计算分数连乘时,要先约分,再把约分的结果相乘。

  “练一练”和练习九的第6题都是分数连乘的计算练习,通过练习,帮助学生进一步掌握分数连乘的计算方法,提高计算能力。第7~9题是用分数连乘解决实际问题,有利于学生在解决问题的过程中逐步加深对分数乘法意义的理解,提高分析和解决问题的能力。

  [教学目标]

  1、使学生理解和掌握分数乘法应用题的数量关系,学会解答连续求一个数的几分之几是多少的乘法应用题及其计算方法。

  2、让学生在“用数学”活动中,学会收集、选择和加工信息,培养学生分析和解决实际问题的能力。

  3、进一步让学生体验数学与日常生活的密切联系,在共同探讨中培养合作意识。

  [教学重点]

  掌握求一个数的几分之几是多少的两步应用题的解题思路和计算方法。

  [教学难点]

  理解应用题中单位“1”和问题的关系。

  [教学过程]

  一、创设情境,引入新课

  1、媒体播放动画

  10月1日是国庆节,校园里到处充满欢乐的气氛,同学们有的做彩旗,有的做绸花……,其中六年级的同学为国庆节晚会在做绸花。一班做了135朵,二班做的朵数是一班的8/9。(这些绸花按班级分别装在不同的花篮中,并在篮子上标出相应的数量及字样,题目是采用画面、配音和文字叙述等形式出现)

  2、根据画面中提供的信息,谁能提出一个数学问题?怎么列式?你能说出8/9这个分数的意义吗?(学生口述)

  师:为了早些完成任务,学校又派了三班的同学去做花,你们想知道三班的同学做了多少朵吗?请同学们看大屏幕。(出示:三班做的朵数是二班的'3/4)同学们,你们能不能根据上面这些数据算出三班做的朵数?(出示:三班做了多少朵?)这道题就是我们这节课要学习的例题6。这个例题,老师还没有教,同学们敢试一试,自己来解决?

  [评:新课伊始,教师首先由学生身边“国庆做花”的生活图景开头创设数学问题,既激发了学生学习数学的兴趣,又使学生初步感受到数学来源于生活,数学与生活密不可分的道理。]

  二、小组合作,探究新知

  1、学习例6。

  找一名学生把屏幕上的例题6完整地读一遍,并找出已知条件和所求的问题。

  (1)提出问题。

  师:同学们是如何理解“二班做的朵数是一班的8/9”和“三班做的朵数是二班的3/4”这两句话的?

  学生自由发言,统一认识。

  (2)明确要求,分组学习。

  每组根据自己的理解,用你们喜欢的方式,表示出题目中所描述的等量关系。

  列出算式并讲出道理。

  分组活动,教师巡视,看学生是否需要帮忙。

  [评:学生各抒己见,在小组里充分发表自己的观点,在与同伴的讨论中,开阔思考、解决问题的思路,通过别人质疑,学生不断完善自己的想法,体现了学生是学习的主人。教师参与到小组中去,给予个别学生以适当点拨,体现了教师是学生学习活动的参与者与促进者。]

  (3)小组汇报,评价订正(让学生板演)

  订正线段图(或其他图示)。

  注意让学生说清三班做花朵数的线段的画法及依据。

  分析题意,解释算式。

  关键看学生能否说清“三班做的朵数是二班的3/4”的意义;要引导学生说清是按怎样的数量关系列的算式。

  方法一:135×8/9=120(朵)

  120×3/4=90(朵)

  方法二:135÷9×8=120(朵)

  120÷4×3=90(朵)

  (4)比较归纳,揭示规律。

  讨论:这三种方法有什么相同点和不同点,看看能发现什么?着重比较方法一和方法三。

  [评:使学生明确用综合算式解答,分析的思路和分步解答的是一样的。]

  师:135×8/9求的是什么?是把谁看作单位‘1’的?第一步乘得的数再乘3/4求的是什么?第二步是以谁作单位‘1’的?

  教师小结:今后解题时一定要认真分析题意,想好先算什么,再算什么,既可以用分步算式计算,也可以列综合算式计算,这就是我们这节课要学习的分数连乘。(板书课题:分数连乘)

  [评:对于例6,教师根据学生已有的知识采取了“放”的形式,让学生对例题中提出的问题积极思考,团结协作,尝试解决,较好地调动了全体学生参与教学活动的积极性。]

  师:分数连乘除了刚才同学介绍的方法外,还有一种更简便的计算方法,同学们想知道吗?

  同学们自学课本P47页,再比较课本上介绍的方法和刚才板演的方法有什么不一样?

  教师小结:教师边说,边在大屏幕上显示:计算分数连乘时,要先约分,再把约分的结果相乘。

  三、运用知识,解决问题

  1、“练一练”以及练习九的第6题。同学们能用刚才学习的计算方法算一算吗?学生独立计算,然后让学生说说怎样算更简便,最后学生板演。此题重点讲解,尤其对此式中的8是作分子呢还是作分母?为什么?

  2、练习九第7题。

  让学生读题后,可以适当启发:要求四年级去了多少人,先要算什么?为什么要先算五年级去了多少人?(可以说明既可以分步列式解答,也可以列综合算式解答。)

  学生独立完成,再集体校对。校对时要让学生再分析一下题里的数量关系,每步算的是什么,以谁作单位“1”。

  3、练习九第8、9题。

  先让学生独立完成,再让学生说说解决问题的思路,弄清解决每一个问题时应该先算什么,再算什么?

  四、质疑问难,全课总结

  让学生谈谈这节课的收获及应该注意的问题。

  [总评]

  本节课教师能从整体上把握教材,激励学生积极参与教学活动。首先教师带学生进入熟悉的情境之中,让学生从图中获取信息,学会提出有意义、有价值的问题。然后放手:问题让学生自己解决;方法让学生自己探索;规律让学生自己发现;知识让学生自己获得。课堂上给了学生充足的思考时间和活动空间,同时学生有了表现自我的机会和成功的体验,获得学习数学的积极情感。

苏教版六年级数学教学设计13

  [教学内容]

  教科书第45-46页的例4、例5及相应的试一试,完成随后的练一练和练习九第1-5题。

  [教材分析]

  这部分内容先教学分数与分数相乘的计算方法,再通过比较,引导学生把分数与分数相乘的计算方法推及分数与整数相乘,帮助学生形成对分数乘法相对完整的认识。

  例4先让学生借助直观图形,初步理解的、的的含义;再让学生联系示意图所显示的结果和分数乘法的意义,列出相应的乘法算式,算出两个分数相乘的积,建立分数与分数相乘的计算方法的初步猜想。例5让学生验证猜想,在操作探究中进一步理解分数乘分数的意义,启发学生以直观的方式探索分数乘分数的计算结果。然后组织学生观察例4、例5中几道题目的计算过程和结果,比较分析,归纳出分数和分数相乘的计算方法。其后,通过填空形式启发学生用分数与分数相乘的计算方法计算整数与分数相乘,把计算方法推及分数与整数相乘,促使学生从整体上把握分数乘法的计算方法,建立合理的认知结构。最后,教材举例介绍了计算分数乘法时更为简单的一种约分方法,简化计算过程。

  [教学目标]

  1、通过例题的直观操作,理解分数与分数相乘的意义,初步掌握分数乘分数的计算方法。

  2、在探究活动中,让学生运用已有知识和经验,主动进行分析、观察、猜想验证、比较、归纳的过程,进一步发展学生初步的演绎推理和合情推理能力。

  3、使学生通过学习进一步体会数学知识间的内在联系,感受数学知识和方法的应用价值,提高学好数学的信心。

  [教学过程]

  一、口算,说说分数和整数相乘的方法。

  (设计意图:抓住学生的认知起点,为学生进一步学习分数乘法的意义和计算方法作好铺垫。)

  二、教学新知

  (一)、建立猜想。

  1、出示例4的长方形纸,学生观察。

  2、依次呈现长方形图,逐步提问。

  (1)出示长方形纸的涂色部分。问:涂色部分是这张长方形纸的'几分之几?

  (2)出示斜线。问:画斜线的部分各占的几分之几?

  追问:的、的又各是这个长方形纸的几分之几?

  让学生明确:的是, 的是。(板书)

  3、思考:求的是多少,可以列怎样的算式?求的呢

  口答

  4、小结:求一个分数的几分之几是多少也可以用乘法计算。

  5、完成填空:

  6、比一比:

  这两个算式与以前的分数乘法有什么不同?(揭示课题)今天我们学习的是分数乘分数。

  7、猜想:观察这2个式子,猜猜分数与分数相乘是怎么计算的?

  让学生在观察的基础上初步说出自己的猜想。

  (设计意图:理解分数与分数相乘的意义,是一个难点,因此在教学中,结合直观图,逐步的引导学生深入理解,在不断的追问、交流中形成完善的分数乘法的意义,获得独特体验,同时建立了初步的计算方法的猜想。)

  (二)验证猜想。

  谈话:这个猜想很有价值,对不对呢?我们还要举一些例子来验证。

  1、出示例5的填空题和长方形图。

  2、结合题意提问。

  (1)说一说和分别表示的几分之几?

  (2)你能根据刚才的猜想写出这两个算式的结果吗? 学生完成填空。

  3、操作验证:

  (1)提出要求:请大家先在两个长方形图中分别画斜线表示的和的,然后观察一下结果和你猜想的得数一样吗?

  (2)学生操作活动,一生板演,师巡视

  (3)组织交流,证实猜想是正确的。

  (三)比较归纳。

  1、引导学生仔细观察例4、例5四道算式:

  提问:在这些算式中,你发现积的分子、分母与两个因数的分子、分母各有什么关系?

  2、在学生独立思考基础上,再在小组里交流。

  3、在交流中归纳总结方法;分数和分数相乘,用分子相乘的积作分子,分母相乘的积作的分母。

  (设计意图:计算方法的得出是学生经历了猜想、验证、观察比较、概括归纳等一系列的数学思维活动后得出的,教师在活动中适时引导,学生则主动建构,在这个过程中学生的自主学习能力得到了发展,也体验到了数学学习的乐趣。)

  (四)试一试

  1、学生尝试解答,指名板演,核对时说一说怎样想的?

  2、明确:计算过程中,能约分的,要先约分再算出结果。

  三、方法推广。

  1、出示:请用分数和分数相乘的方法计算下面各题

  2、 提示:整数都可以看成分母是1的分数。

  3、 学生尝试解答完成填空。指名板演。

  4、 追问:分数与分数相乘的计算方法适用于分数与整数相乘吗?为什么?

  5、说明:分数乘法也可以像下面的这样计算,教师示范:

  6、小结:今后计算分数乘法时,照上面的样子去做,而不必把整数改写成分母是1的分数,这样比较简便。

  (设计意图:在前面探究的基础上,提供空间和时间让学生自主探究,培养了学生运用已有知识和经验解决问题的能力,教师再加以介绍点拨,促使学生从整体上把握分数乘法的计算方法。)

  四、巩固练习。

  1、完成练一练

  学生独立完成,四名学生板演。

  交流时选择部分题目,让学生说一说计算过程。注意书写格式。

  2、完成练习九第1题

  先让学生独立完成后,再组织交流。使学生明白,要求小时耕地公顷,就是求 公顷的是多少。

  3、完成练习九第3题

  学生独立判断,分析错误原因,并进行订正。

  4、完成练习九第4题

  学生先直接在书上写出得数,再引导学生比较每组的两道题,说说计算的过程有什么相同和不同的地方。

  (设计意图:由学生自己探索得到的知识,最希望得到应用。利用好教材提供的练一练、改错比一比等多种形式的练习,让学生在练习中进一步巩固新知,并学会反思,养成检验的好习惯。)

  五、总结

  本节课学习了分数乘分数,你有什么收获?我们是怎么得到这个计算方法的?

  (设计意图:必要的学习小结可以帮助学生养成自我反思的习惯,提高他们自我梳理知识的能力,提升学习方法。)

  六、课堂作业

  练习九第2题、第5题

苏教版六年级数学教学设计14

  教学内容:苏教版国标本小学数学第十一册P58例4和练习十一T914.

  教学目标:

  1,使学生经历探索分数除以分数的计算方法的过程,理解并掌握分数除以分数的计算方法,能正确计算分数除以分数的式题.

  2,使学生在探索分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系.

  3,培养学生迁移,概括的能力.

  教学重点:理解分数除以分数的计算方法

  教学难点:理解分数除以分数的计算方法,能正确地进行计算.

  设计理念:本课力求使学生经历探索分数除以分数的'计算方法和应用分数知识解决简单实际问题的过程,培养学生迁移,概括的能力.

  教学步骤

  教师活动

  学生活动

  一,复习引新

  1,口算.

  2 4 10 6

  9 4 2 1

  2,揭示课题: 分数除以分数

  学生汇报口算结果.

  二,教学新知

  1,教学例4

  1,出示例4

  提问:这是已知什么,要求什么 用什么方法计算

  追问:为什么用除法计算 怎样列式 (板书: =)

  2.引导探索:分数除以整数怎么算呢

  (1)请大家画图探索一下 得多少

  (2)指名到黑板上画一画.

  (3)讨论:分数除以整数,能不能用被除数乘除数的倒数来计算呢

  板书:

  请大家计算一下它的积,看得数与我们画图的结果是不是一样

  得数相同,你能猜想到什么

  板书:=

  3,验证猜想

  完成练一练第1题:先再长方形中涂色表示,看看里有几个,有几个,再计算.

  你发现了什么

  4,概括方法

  联系前面学习的分数除以整数和整数除以分数的计算,你能说出分数除以分数的计算方法吗

  学生读题,列式.

  学生在书上的长方形里分一分,画一画.

  学生尝试计算.

  学生猜想分数除以分数的计算方法.

  根据学生的讨论,板书:甲乙=甲(甲0)

  三,巩固练习

  1,做练一练第2题.

  2,完成练习十一第10题.

  3,讨论练习十一第11题.

  独立计算后,引导比较,启发思考:什么情况下,除得商比被除数小 什么情况下,除得的商比被除数大

  4.讨论练习十一第12题:不计算,用发现的规律直接判断左边的式子和右边数的大小.

  各自练习,并指名板演,练习后评议交流.

  各自独立完成,并指名板演,练习后评议交流.

  学生独立计算.

  学生判断,并说一说是怎么想的

  四,小结

  这节课学习了哪些内容 你有什么收获

  五,作业

  练习十一T9,13,14

  学生练习.

  教后反思:

苏教版六年级数学教学设计15

  一、学情分析:

  本班共有 70名学生,根据上学期学习情况和期末测试来看,大部分学生对数学学习的积极性比较高,能从已有的知识和经验出发获取知识,抽象思维水平有一定的发展,基础知识掌握牢固,具备了一定的学习数学的能力。在课堂上能积极主动地参与学习过程,具有观察、分析、自学、表达、操作等能力。但是成绩出众者不多,高分比较少,即使是达到优秀的同学在同年级中所占比例较少,部分学生基础知识不扎实,极少数学生考试成绩是一位数,对提高全班整体成绩有比较大的难度。个别学生学习态度较差, 上课注意力不集中,作业拖拉,需要老师督促并辅导。

  本学期将重点抓好加强学习习惯培养和学习上有困难的学生,在教学中,面向全体学生,创设愉快情境教学,激发他们的学习动机,发挥学生的最佳潜能,其次,这学期分数的计算占了极大一块内容,所以培养他们的计算能力是关键,可以有目的的进行计算练习。一要求计算仔细,二是加强计算的基础练习,是引导学生使用简便方法。

  二、教材分析:

  本册教材共编排了十个单元。

  数与代数领域首先安排学习解方程和列方程解答实际问题,使学生进一步积累解方程和列方程的经验,为后继学习打好基础;本册教科书把分数的计算作为重点教学内容,安排了“分数乘法”“分数除法”“分数四则混合运算”三个单元,重在形成相应的计算技能,提高分析问题、解决问题的能力;同时把“认识比”“认识百分数”两个单元与分数运算的教学穿插安排;本册教科书还安排教学用“替换和假设”的策略解决简单的实际问题。

  空间与图形领域本册教科书让学生进一步认识长方体和正方体,认识物体的体积及其相应的计量单位,探索并理解长方体、正方体的体积和表面积的计算方法,解决一些与长方体、正方体的表面积和体积计算有关的简单实际问题。

  统计与概率领域本册教科书让学生学习用分数表示简单事件发生的可能性,学习根据事件发生的可能性大小的要求来设计相应的活动方案。

  实践与综合应用领域的内容在本册教科书中共安排三次。“表面积的变化”让学生利用对长方体和正方体表面积计算方法的已有认识,通过拼新的长方体的操作活动,探索表面积的变化规律,进一步发展空间观念和总结、归纳数学规律的能力;“大树有多高”结合学生对比的认识,使学生在实践中进一步加深对比的认识,体会比的知识在实际生活中的应用价值,培养动手实践的能力;“算出它们的普及率”让学生通过实际的调查活动,搜集整理获得的数据,进一步丰富对百分率的理解,体会百分数在实际生活中的广泛应用。

  三、教学目标:

  知识与技能:

  1、让学生联系已有的知识经验,经历将实际问题抽象成等式与方程的过程,增强列方程解决实际问题的意识和能

  力;经历探索分数乘除法的意义、分数四则混合运算的计算方法以及求比值和化简比的过程,熟练进行分数四则混合运算,形成必要的计算技能。

  2、让学生通过操作、试验、观察和思考等活动,认识长方体、正方体的特征,探索并理解长方体、正方体的体积和表面积的计算方法,学会体积、容积单位和体积单位的进率,进一步积累学习空间与图形内容的经验。

  3、初步掌握用分数表示具体情境中简单事件发生的可能性的方法,能根据指定的可能性(分数)设计相应的活动方案

  4、经历用应用百分数的意义解决简单实际问题的过程,能进行简单的分析和交流。

  数学思考:

  1、在认识倒数、比的意义等过程中,培养良好的思维品质,发展合情推理与初步的演绎推理能力,不断增强数感。

  2、在学习长方体、正方体的特征和展开图;长方体和正方体的表面积和体积等过程中,锻炼形象思维,发展空间观念。

  3、在学习百分数的过程中,引导学生经历调查活动的全过程,学会收集、整理、加工、描述数据的方法,积累统计活动的经验过程中,进一步增强统计观念,培养统计能力。

  解决问题:

  1、能从现实情境中发现并提出一些数学问题,并能用所学的方程、百分数等数学知识和方法解决问题。

  2、在列方程解决实际问题的过程中,进一步掌握其基本思路和方法,体会其特点和价值。

  3、在应用长方体、正方体的体积和表面积的计算方法解决简单实际问题,以及根据指定的可能性(分数)设计相应的活动方案,体会与他人交流的重要性,提高合作交流的能力

  4、能应用替换(置换) 、假设的策略解决一些简单的实际问题。增强解决问题的.策略和反思意识,体会解决问题策略的多样性,培养根据实际问题的特点选择相应策略的能力。

  情感与态度:

  1、能积极参与各项数学活动,感受自己在数学知识和方法等方面的收获与进步,提高学习数学的兴趣,树立学好数学的信心。

  2、在探索数学知识、发现数学规律的过程中,进一步感受数学思考的条理性、严谨性,不断增强自主探索的意识,锻炼克服困难的意志。

  3、在运用数学知识和方法解决简单实际问题的过程中,进一步感受数学的价值,感受数学与生活的密切联系,增强学数学、用数学的自觉性。

  4、在数学活动中,培养学生认真、细心的学习态度,以及发现错误及时订正的良好习惯。

  5、通过阅读“你知道吗”以及参与“时间与综合应用”等活动,了解数学的知识背景,体会数学对人类历史发展的作用,培养民族自豪感,增强创新意识,锻炼实践能力。

  四、具体措施:

  1、创设民主和谐的学习气氛,让学生真正成为学习的主人,为学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。

  2、充分利用学生熟悉、感兴趣的和富有现实意义的素材吸引学生,让学生主动参与各种数学活动中来,提高学习效率,激发学习兴趣,增强学习信心。

  3、认真研读教材,明确本册课本的编写意图,注意与老师之间的交流与切磋,循序渐进地采取有效、易懂教学策略,让每个学生有所发展。

  4、切实使用好与课本配套的教学辅助用书、教具、学具。教学内容的呈现采用不同的表达方式,以满足多样化的学习需求。

  5、注重学生知识形成和探究过程中获得的经验和方法的积累,积极创设有利于学生主动地进行观察实验、猜测验证、推理交流的数学活动。

  6、加强计算教学,计算是本册教材的重点,一方面引导学生探索并理解基本的计算方法,另一方面也通过相应的练习,帮助学生形成必要的计算技能,同时注意教材之间的衔接,对内容进行有机的整合,提高解决实际问题的能力。

  7、开展帮教结对活动,培养学生的合作精神,使每个学生在各自不同的基础上都能得到提高;对后进生建立家校联系卡,及时反映学校里的学习情况,促使其提高成绩,帮助他们树立学习的信心与决心。。

  8、向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,介绍课外数学知识与方法,开拓学生的视野,增强学生学习兴趣。

  9、加强数学数量关系的分析,让学生学会分析,学会审题,培养学生从周围情境中发现数学问题并能用所学知识解决问题的能力,提高解题能力。

  10、课余开展丰富多彩的数学活动,努力使数学知识的学习情境化、生活化、趣味化,使学生乐学、愿学、爱学,学有所得。

  五、教学进度安排及各单元教学重难点: 起讫时间 单元内容 教时 教学重点与难点 9.1~ 9.10 第一单元

  方程 7 重点:掌握方程的解法并能解决相关的实际问题。

  难点:找准实际问题中数量之间的相等关系

  9.13~ 9.30 第二单元

  长方体与正方体 14 重、难点:探索长方体和正方体的体积、表面积计算方法并解决实际问题,探索体积单位间的进率。

  10.8~ 10.22 第三单元

  分数乘法 9 重点:正确计算分数乘法式题,并能解决实际问题。

  难点:理解乘法计算方法 ,完善知识结构。

  10.25~ 11.5 第四单元

  分数除法 8 重点:正确计算分数除法式题,并能解决实际问题。

  难点:理解除法计算方法。

  11.8~ 11.12 期中复习考试 5 根据上半学期的学习进行认真复习,反思和总结,为后半学期打好基础

  11.15~ 11.23 第五单元

  认识比 6 重点:认识比的意义,解决按比例分配的问题。

  难点:探索比与分数、除法的关系;比的基本性质。

  11.24~ 12.3 第六单元

  分数四则混合运算 8 重点:理解并掌握分数四则混合运算的运算顺序。

  难点:运用分数混合运算解决稍复杂的实际问题。

  12.6~ 12.10 第七单元

  解决问题的策略 4 重点:学会用替换和假设的策略解决实际问题。

  难点:灵活运用学过的解题策略,体会策略价值。

  12.13~ 12.16 第八单元

  可能性 3 重点:会用分数表示事件发生的可能性的大校

  难点:设计公平游戏规则。

  12.17~ 12.31 第九单元

  认识百分数 9 重、难点:理解百分数的意义,会正确读写百分数,会与小数分数互化,掌握百分数与分数、比之间的关系。

  XX.1.4~ 整理知识

  期末复习 重、难点:综合整理知识,灵活解决问题

【六年级数学教学设计】相关文章:

数学教学教学设计04-15

数学六年级教学设计03-02

数学教学设计06-29

数学教学设计05-26

数学教学设计06-12

《数学》教学设计06-27

数学六年级教学设计:圆07-01

六年级小学数学教学设计11-09

六年级数学教学设计03-10

数学六年级教学设计:圆07-01