解决方案

时间:2022-06-29 10:01:15 解决方案 我要投稿

解决方案模板锦集四篇

  为了确保工作或事情能高效地开展,时常需要预先开展方案准备工作,方案可以对一个行动明确一个大概的方向。制定方案需要注意哪些问题呢?下面是小编为大家收集的解决方案5篇,欢迎阅读,希望大家能够喜欢。

解决方案模板锦集四篇

解决方案 篇1

  暖气不热的六大原因(

  ■原因一:顶层住户把截门完全或部分关闭,造成回路不畅或中断。

  ■原因二:暖气系统阻塞,一些运行多年却没有得到必要维护和养护的暖气系统出现的阻塞、渗漏等现象影响到整个系统的供暖效果。还有的小区原设计的供热量和供暖面积不相匹配,形成“小马拉大车”。

  ■原因三:老式的铸铁暖气造型老旧,要靠暖气罩扮靓。有些住户一到冬天就干脆打开暖气罩,尽管这样,散热效果还是大打折扣,要想从根本上热起来,最好的办法还是使用免罩的新型暖气。

  ■原因四:老式的钢制串片散热器,如果使用年限长了,串片和钢管之间的间隙增大、热阻增加,散热量会降低。

  ■原因五:暖气年久失修,内壁会结垢,造成水流不畅,直接影响散热效果。

  ■原因六:暖气排气阀失灵,暖气内积存大量空气,也会造成暖气不热。

  原因七:设计自身存在缺陷

  】原因八:安装原因,如PP-R管

  】原因九:原上供下回系统,后该为分户供暖

  】原因十:用户私拆、乱改

  】原因十一:供水温度低

  】原因十二:个别用户“偷水”

  原因十三:水力失调,流量小,需要调节。

  原因十四:管道里是否存在堵塞现象也是很重要的原因之一

  原因十五:房间负荷设计的太小也是原因之一

  室外管网不平衡,也是一主要原因。

解决方案 篇2

  1概述

  近年来,随着社会经济的高速发展,我国城市轨道交通进入了快速发展阶段,其安全性和舒适性得到社会的普遍关注,支撑城市轨道交通安全运营生产业务不断增加,现有基于2.4GWLAN的车地通信系统面临挑战。随着4G无线宽带技术的普及,轨道交通行业建设大容量车地无线通信系统成为可能。同时,为节省有限的频率资源,减少重复建设,充分发挥系统能力,建设基于TD-LTE技术的无线通信综合承载网,综合承载城市轨道交通信号系统、乘客信息系统(PIS)、视频监控系统等生产系统的业务信息,成为未来轨道交通行业发展的必然。

  2轨道交通车地无线通信业务介绍

  在轨道交通行业中,涉及车地无线通信业务的主要包括以下几个系统。

  2.1 信号系统

  信号系统传送的信息主要为列控CBTC信息,其中地面设备对列车传输的信息包括移动授权、限速信息、列车识别号、运营调整指令等信息,列车对地面设备传输的信息包括列车车组号、屏蔽门开/关命令、本列车的定位信息、本列车的速度信息等。

  在高速移动状态下,无线通信综合承载网需要提供满足宽带、稳定、具有QoS保障和实时性要求主备冗余的双向数据通道。

  1)列控系统实时性、可靠性及安全需求

  a.实时性、可靠性要求

  *列控信息经有线和无线网络传输延迟时间应小于150ms。

  *单网络信息传输的丢包率应小于1%,误码率小于10-6。

  *车-地通信单网络的越区切换中断时间应在100ms以内。

  *可靠性:系统设备平均无故障时间为MTBF>2×104h。

  *可用性:系统的可用性指标≥99.99%。

  *可维护性:系统设备的平均故障修复时间为MTTR<30 b.="" b=""><30min。

  b.列控安全性要求

  *传输通道应采用独立的热备冗余物理通信通道。

  *访问控制要求:要求信号系统A/B通道相互独立。

  *在安全监测、审计与监控、网络反病毒和备份与灾难恢复等方面应制定相应的安全措施,同时具备足够的防止内、外人员进行违规操作和攻击破坏的能力等。

  *把不同类型的数据传输通道应相对独立或采用经由不同的虚拟局域网(VLAN)进行传输。

  *无线网络的安全性:车载无线单元与基站之间在传递数据前,必须建立授权并关联。

  2)业务带宽需求

  a.正线需求

  信号系统需在车头、车尾分别冗余配置连接A、B承载网的传输通道。每传输通道上/下行信息承载需求各为100kbit/s,考虑25%余量后,承载网络按上/下行125kbit/s设计。每列车单网承载上/下行列控信息业务带宽各为2×125kbit/s=0.25Mbit/s。

  正常情况下,每个RRU小区内的列车数为2列车,无线通信综合承载网按4列车预设承载需求,单网业务信息承载带宽为上/下行各1Mbit/s。

  特殊情况下,多辆列车进入小区时,车地无线承载网络可根据QoS等调度策略,优先保障列控信息的安全传输,以满足列控信息传输实时性、可靠性及安全性需求。

  b.停车场和车辆段信息承载需求

  在车辆基地(停车场和车辆段)场景下,只有部分列车需传递信号系统车载自检(及车辆自检等)信息,上/下行各1Mbit/s即可满足列控业务信息承载需求。

  2.2 乘客信息系统(PIS)

  PIS系统需将播控中心下发的播放节目,如新闻广播、旅行指南、换乘信息、在线广告等便民信息在车载乘客信息系统显示屏上实时显示。无线通信综合承载网需提供匹配PIS需求的连续高带宽、低时延车地无线传输通道。

  PIS图像传输带宽需求如下:按照1080P分辨率考虑,H.264编码方式,采用组播方式进行数据传输,带宽需求为下行8Mbit/s。

  2.3 视频监控系统

  在轨道交通车地无线的应用场景下,车载视频监控系统视频监控图像回传是无线通信综合承载网最大的上行传输业务需求,其重要性仅次于信号系统业务需求。

  视频监控系统视频监控图像回传带宽需求如下:按照720P分辨率考虑,采用H.264编码方式,每路图像带宽为2Mbit/s,按照大小区最多上传2路图像考虑,共需带宽为上行4Mbit/s。

  2.4 紧急文本信息

  控制中心调度员可向列车发送紧急文本信息,在列车上紧急文本信息与PIS图像叠加后在客室显示屏上播出。

  紧急本文信息传输带宽需求:单列车传输带宽需求为下行20kbit/s。正常情况下,无线通信综合承载网单小区容量按4列车设计,信息承载带宽为下行100kbit/s。

  2.5 其他系统

  在轨道交通项目中,还有安防车载监测信息、车载火灾报警系统(FAS)信息、列车运行状态监测信息回传业务需要无线通信综合承载网进行承载,避免单独建设浪费投资。

  上述传输带宽需求:单列车传输带宽需求上行100kbit/s。正常情况下,无线通信综合承载网单小区容量按4列车设计,信息承载带宽为上行400kbit/s。

  3技术体制选择

  1)传统车地无线体制及存在的问题

  国内已开通的城市轨道交通工程信号系统均采用无线局域网技术,运行在2.4G频段。由于2.4G频段属于开放频段,极易受到干扰,给轨道交通安全运营带来了隐患。近些年,深圳地铁就发生了由于乘客的无线设备干扰地铁信号系统,并导致区间停车的情况发生。

  国内已开通的轨道交通工程乘客信息系统车地无线部分采用两种技术:WLAN和DVB-T。WLAN技术并不是针对快速移动而研发的技术,虽经过厂家不断更新,制定出快速移动切换的解决方案,但在轨道交通行业实际使用过程中,还是存在切换过程中降低数据传输效率、带宽不稳定的情况,在已开通的工程中,并不能完全满足设计要求的视频直播和列车监控图像实时上传的功能,WLAN技术只是在没有更好技术情况下的无奈选择。DVB-T技术单套设备配置时,仅支持地面至列车的单向数据传输,无法实现列车监控图像实时上传的功能,同时也需申请专用频率。

  2)车地无线网络技术的发展趋势

  针对轨道交通行业采用WLAN技术存在安全隐患的问题,20xx年2月工业与信息化部发布了“关于重新发布1785~1805MHz频段无线接入系统频率使用事宜的通知”,该文明确指出1785~1805MHz频段可用于城市轨道交通行业专用通信,解决了城市轨道交通车地通信迫切需要的专用频率问题。LTE技术以其大带宽、高可靠性、有效避免干扰、覆盖范围大、切换少等方面的优势,完全能够满足无线通信综合承载网的要求。目前,LTE已经有成熟的产品在运营商中使用,并且在郑州地铁和朔黄铁路等轨道交通工程中得到应用,并在20xx年完成了TD-LTE系统通信性能测试。

  3)无线通信综合承载网技术体制

  在地铁应用环境中,LTE拥有专用频点的情况下,相对于WLAN技术的优势。在轨道交通中,列车的高速移动会导致多普勒频移增大,LTE在设计时就考虑高速移动需求,有专门的频偏估算和纠错算法,增强的`算法可以容忍频偏范围超过1kHz,保证高速场景性能。

  相对于目前应用的WLAN设备,LTE具有的抗外界干扰以及高速移动性能,具有明显的优势。根据以上分析,建议采用LTE技术组建无线通信综合承载网,综合承载信号系统、PIS、视频监控系统、紧急文本信息等车地通信业务。

  4组网方案

  1)LTE技术体制概述

  LTE网络架构采用基于IP的扁平化网络结构,由核心网子系统(EPC)、无线网子系统eNodeB及终端设备组成,其中,eNodeB包含分布式基带处理单元(BBU)和射频拉远单元(RRU)设备。

  EPC由移动性管理实体(MME)、归属用户服务器(HSS)、服务网关(S-GW)及分组网关(PGW)、路由器及根据需要配置的MBMS-GW组播网关等设备构成。

  TD-LTE技术具备上下行资源可调配的特点,可根据业务需要灵活配置上下行业务比例。

  2)TD-LTE技术的宽带移动性优势

  移动接入性强:采用自动频率校正确保高速移动(>120km/h)场景下的无线链路质量,具备优良的高速移动状态下的宽带接入能力。

  抗干扰能力强:采用ICIC、IRC等专业技术,有效降低小区边缘频率干扰,提高小区吞吐率,若使用行业专有频段,外部干扰少。

  QoS机制:LTE系统定义了标准的QCI属性,所有QCI属性均可根据实际需求预配置在eNodeB上,这些参数决定了无线侧承载资源的分配。在资源受限的条件下由ARP参数决定是否接受相应的承载建立请求。

  3)组网方案

  本工程组建的无线通信综合承载网,采用两套LTE设备冗余组成A、B两张网,全线按照链状网结构分别部署两套完全相同的“BBU+RRU”网络,通过专用传输系统提供的传输通道分别接入控制中心设置的两套LTE核心网设备。

  隧道区间采用RRU+漏泄同轴电缆方式覆盖,车辆段采用RRU+天线方式覆盖。两张网络完全独立,并行工作,互不影响。

  每个网络均包括EPC、eNodeB、车载无线终端(CPE)。信号系统信息在两套网络上同时传输,以保证其对网络可靠性的要求,由信号系统同时接收并判断确定使用有用信息。

  4)频率规划及指配

  a.网络承载业务带宽需求

  根据第2节业务带宽需求分析,无线通信综合承载网需要承载的业务信息。

  b.频率资源规划

  正线(地下部分)无线频率需求:

  *根据业务信息承载统计,正线A、B双网共需20MHz频率资源。

  *A网使用15MHz带宽组网。

  *B网使用5MHz带宽组网。

  车辆基地(地面部分)无线带宽需求:

  *根据业务信息承载统计,A、B双网共需10MHz频率资源。

  *A网使用5MHz带宽组网。

  *B网使用5MHz带宽(与正线B网组网方式始终一致)。

  c.需要说明的问题

  由于A网在车辆段(地面)和正线(地下)采用不同的频率带宽组网,在2个不同频带的eNodeB小区边界位置(位于出入段线附近)会产生1~2s的链路中断时间,用于注册到A网的车载终端执行小区重选操作;B网在正线和车辆基地的组网方式始终一致,切换不受影响。

  在上下行时隙配置一致时,两个TD-LTE网络可以同站址共存。本方案通过对基站和车载设备侧的合路器加装滤波器进一步消除网络干扰,提高频谱利用率。

  5)与运营商无线频率干扰

  无线通信综合承载网与运营商间干扰主要需考虑TD-LTE与其频段最接近的运营商无线系统间的干扰,主要为FDD上行频率1755~1785MHz,移动DCS下行1805~1830MHz,通过分析运营商无线系统和TD-LTE(1785~1805MHz)系统杂散和阻塞要求,两系统间必须具备80dB的隔离度,既运营商无线系统的频率和TD-LTE(1785~1805MHz)间需设置5MHz的保护间隔。

  在实际工程中,轨道交通建设方可与运营商进行协商,要求运营商进行频率规划,在轨道交通中不引入与TD-LTE(1785~1805MHz)相邻的频段,且保证5MHz的频率间隔。

  6)QoS规划

  基于LTE技术的无线通信综合承载网承载了信号系统列控CBTC信息、PIS系统、视频监控系统、紧急文本信息等业务,各业务的ARP分配由高到低;同时根据各业务对可靠性、时延的要求,系统为其分配不同的QCI。

  7)无线信号覆盖设计

  a.系统指标

  根据无线通信综合承载网的承载需求,无线网络覆盖率的设计目标需要满足如下指标。

  *要求在覆盖区域内,TD-LTE无线网络覆盖率应满足RSRP≥-95dBm的概率大于95%;

  *要求在同频组网条件下,满足车地承载业务信息需求的概率大于95%;

  *无线接通率:基本目标>98%;

  *掉线率:基本目标98%;

  *块误码率(BLER):基本目标<10%,挑战目标<1%。

  b.区间覆盖

  覆盖方式:无线通信综合承载网无线覆盖可以采用天线和漏缆覆盖,对于地下线路建议采用漏缆方式进行覆盖,对于车辆段(维修基地)和地上线路建议采用天线覆盖。

  漏缆方案:对于单漏缆和双漏缆的选择,不能仅仅考虑设备数据吞吐能力的差异,还需要考虑漏缆部署的可靠性和安全性,当其中一根漏缆出现问题时,另外一根漏缆仍可以正常使用,系统可以通过传输模式自动转换(如从TM3转为TM1模式)消除无线覆盖的单点故障。另外双漏缆部署,按双流方式实现MIMO空间复用,可以有效提高信道的容量。综合以上分析,建议使用双漏缆方案。

  5实验测试

  20xx年上半年,由北京市轨道交通建设管理有限公司组织,多家LTE设备厂家、信号系统设备厂家、乘客信息系统设备厂家和视频监控系统设备厂家参与,共同进行了无线通信综合承载网试验。本次试验共分为两步:第一步为实验室测试,第二步为现场测试。20xx年上半年进行的实验室测试验证了LTE系统在城市轨道交通车地无线通信综合承载的可用性;20xx年下半年进行的现场测试对无线通信综合承载网及各项技术指标进行了验证,包括丢包率、切换试验和不同频宽的吞吐量,现场测试结果验证了基于LTE技术的无线通信综合承载网满足轨道交通信号系统、PIS系统、视频监控系统、紧急文本下发等业务需求。

  6结论

  综上所述,经过业务分析、技术比选和LTE技术研究,确立了基于LTE技术无线通信综合承载网的技术方案。实验测试数据验证了该技术方案的可用性和可行性。建设基于LTE技术无线通信综合承载网,可以有效解决专用频率资源的问题,同时还可以大大减少工程投资。因此,建设基于LTE技术的无线通信综合承载网将成为未来轨道交通建设的必然选择。

解决方案 篇3

  各办公室、社区、工作片:

  为解决农村垃圾处理难的问题,切实有效地改善农村环境卫生状况,建立长效保洁机制,根据天县委办[]33号通知精神,结合街道实际,特制订本实施方案。

  一、指导思想

  贯彻县委全会和县xx组织精神,坚持“环境先治”,在城乡环卫一体化的总体框架下,深入实施“统一收集,集中分检,生态处理”的农村垃圾生态处理方式,建立和完善农村环境卫生长效管理机制,逐步实现城乡环卫一体化的总体目标,加快新农村建设步伐。

  二、实施目标

  按照“统一收集,集中分检,生态处理”的农村垃圾生态处理方式,从年开始,分二年每年实施四个行政村,实现农村垃圾减量化、资源化、无害化的生态处理,达到城乡环卫一体化全覆盖。

  三、实施计划

  实施四个行政村

  四、实施内容

  (一)各村建立垃圾分检场。各村建立垃圾分检场选址要尽可能利用现有的场所设施,与周边环境相协调,既要避免空气和水源污染,又要便于运送垃圾;垃圾分检场按照城管局提供的设计图纸在技术部门的指导下因地制宜进行建设,必须具备完善垃圾分检场和污水处理配套设施,垃圾分检场对集中的垃圾进行分类处理:

  1、分出金属类垃圾、纸、玻璃、塑料泡沫制品等,可回收垃圾进行变卖。

  2、秸秆、剩饭馊菜、水果类垃圾进行堆肥处理,通过生物降解,还田利用。

  3、建筑垃圾、渣土进行就地堆埋。

  4、卫生间废纸、废日光灯管等有害垃圾,破旧衣服,泡沫等不可回收分解垃圾,以村为单位就地深埋。

  (二)配置垃圾桶。各村根据实际需要在村内设置垃圾桶(100人左右设1个),建立固定垃圾房,配置垃圾清运车。

  (三)配备卫生保洁员。各村根据人口实际配备村保洁员,村级卫生保洁员负责清扫村内公共场所,清运垃圾桶(房)中的垃圾到垃圾分检场,对垃圾分检场的垃圾进行分类处理,并将有害垃圾定期集中深埋。

  (四)修订村规民约。各村制订卫生保洁村规民约,落实农户门前“三包”责任制,包垃圾清扫,包垃圾进桶(房),包无污水溢流。

  五、实施时间

  本年度实施的村从7月份开始到10月底前结束,实施的村应早作准备,争取早启动早实施,有条件的村尽可能提前实施。各社区、工作片、各实施村要按照街道的统一安排,精心组织、周密部署,采取有力措施和方法,确保按时完成。

  六、工作措施

  (一)加强领导。街道为加强农村垃圾生态处理工作的领导,成立农村垃圾生态处理工作领导小组。各实施村要建立专门工作班子,明确职责,强化责任,确保该项工作落到实处。

  (二)广泛发动。农村垃圾生态处理工作涉及面广,工作量大,需要广大干部群众长期自觉参与。各社区、工作片要统一各村干部思想认识,充分调动各村干部群众的工作积极性,要切实帮助指导村级搞好规划选址、建立组织、完善制度和具体实施工作,要广泛深入开展宣传发动,尤其是重要性、必要性和建设新农村的现实需要的宣传,使之做到家喻户晓,人人皆知,使村民逐步养成讲究卫生,爱护环境,主动参与,共同维护的好习惯。

  (三)财政支持。对实施村经验收合格的垃圾分捡场县财政每个补助1万元,同时街道对此项工作做得好的村给予一定支持。

  (四)强化考核。各社区、工作片、各实施村要认真组织实施农村垃圾生态处理工作,根据各自职责确保任务完成。此项工作街道将建立督查考核机制,定期督查工作开展情况,并纳入对各社区、工作片的年终考核。

解决方案 篇4

  第一:首先,确认服务器硬件是否足够支持当前的流量。

  普通的P4服务器一般最多能支持每天10万独立IP,如果访问量比这个还要大,那么必须首先配置一台更高性能的专用服务器才能解决问题,否则怎么优化都不可能彻底解决性能问题。

  第二:其次,优化访问。数据库

  前台实现完全的静态化当然最好,可以完全不用访问数据库,不过对于频繁更新的网站,静态化往往不能满足某些功能。

  缓存就是另一个解决方案,就是将动态数据存储到缓存文件中,动态网页直接调用这些文件,而不必再访问数据库,WordPress和Z-Blog都大量使用这种缓存技术。我自己也写过一个Z-Blog的计数器插件,也是基于这样的原理。技术

  如果确实无法避免对数据库的访问,那么可以尝试优化数据库的查询SQL.避免使用Select * from这样的语句,每次查询只返回自己需要的结果,避免短时间内的大量SQL查询。

  .最好在相同字段进行比较操作,在建立好的索引字段上尽量减少函数操作,如果要做到极致的话需要代码的优化;

  第三,禁止外部的盗链。

  外部网站的或者文件盗链往往会带来大量的负载压力,因此应该严格限制外部对于自身的图片或者文件盗链,好在目前可以简单地通过refer来控制盗链,自己就可以通过配置来禁止盗链,IIS也有一些第三方的ISAPI可以实现同样的功能。当然,伪造refer也可以通过来实现盗链,不过目前蓄意伪造refer盗链的还不多,可以先不去考虑,或者使用非技术手段来解决,比如在图片上增加水印。

  第四,控制大文件的下载。

  大文件的下载会占用很大的流量,并且对于非SCSI硬盘来说,大量文件下载会消耗CPU,使得网站响应能力下降。因此,尽量不要提供超过2M的大文件下载,如果需要提供,建议将大文件放在另外一台服务器上。

  第五,使用不同主机分流主要流量

  将文件放在不同的主机上,提供不同的镜像供用户下载。比如如果觉得RSS文件占用流量大,那么使用FeedBurner或者FeedSky等服务将RSS输出放在其他主机上,这样别人访问的流量压力就大多集中在FeedBurner的主机上,RSS就不占用太多资源了。

  第六,使用流量分析统计软件。

  在网站上一个流量分析统计软件,可以即时知道哪些地方耗费了大量流量,哪些页面需要再进行优化,因此,解决流量问题还需要进行精确的统计分析才可以。我推荐使用的流量分析统计软件是Analytics(Google分析)。我使用过程中感觉其效果非常不错,稍后我将详细介绍一下Google Analytics的一些使用常识和技巧。

【解决方案】相关文章:

解决方案12-01

解决方案模板09-12

行业解决方案12-01

存储解决方案12-02

erp解决方案12-04

企业解决方案12-04

解决方案5篇05-05

精选解决方案6篇05-06

精选解决方案3篇04-30

解决方案3篇04-29