小学毕业考试卷数学及答案

时间:2024-11-12 22:30:45 美云 考试试题 我要投稿

小学毕业考试卷数学及答案

  从小学、初中、高中到大学乃至工作,我们都不可避免地要接触到试卷,作为学生,想要成绩提升得快,那么平时就一定要进行写练习,写试卷,你知道什么样的试卷才是规范的吗?下面是小编收集整理的小学毕业考试卷数学及答案,希望对大家有所帮助。

小学毕业考试卷数学及答案

  小学毕业考试卷数学及答案 1

  1. 一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千克?

  解题思路:

  由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。

  答题:

  解:9-(16-9)=9-7=2(千克)

  答:桶重2千克。

  2. 一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?

  解题思路:

  由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。

  答题:

  解:(10-5.5)×2=9(千克)

  答:原来有油9千克。

  3. 用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?

  解题思路:

  由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。

  答题:

  解:(22-10)÷(5-2)=12÷3=4(千克)

  答:桶里原有水4千克。

  4. 小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?

  解题思路:

  从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。

  答题:

  解:小华有书的本数:

  (36-5×2)÷2=13(本)

  小红有书的本数:

  13+5×2=23(本)

  答:原来小红有23本,小华有13本。

  5. 有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?

  解题思路:

  由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。

  答题:

  解:15×5÷(5-2)=25(千克)

  答:原来每桶油重25千克。

  6. 把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?

  解题思路:

  把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。

  答题:

  解:9÷(3-1)×(5-1)=18(分)

  答:锯成5段需要18分钟。

  7. 一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?

  解题思路:

  女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。

  答题:

  解:35÷(2-1)=35(人)

  女工原有:

  35+17=52(人)

  男工原有:

  52+35=87(人)

  答:原有男工87人,女工52人。

  8. 李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?

  解题思路:

  由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。由去时5小时到达和返回时多用1小时,可求出返回时所用时间。

  答题:

  解:12×5÷(5+1)=10(千米)

  答:返回时平均每小时行10千米。

  9. 甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?

  解题思路:

  由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。

  答题:

  解:18÷(5+4)=2(小时)

  8×2=16(千米)

  答:狗跑了16千米。

  10. 有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?

  解题思路:

  由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。

  答题:

  解:总个数:

  (21+20+19)÷2=30(个)

  白球:30-21=9(个)

  红球:30-20=10(个)

  黄球:30-19=11(个)

  答:白球有9个,红球有10个,黄球有11个。

  11. 在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?

  解题思路:

  根据题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。

  答题:

  解:(33-18)÷(5-2)=5(米)

  18-5×2=8(米)

  答:一根粗钢管长8米,一根细钢管长5米。

  12. 水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?

  解题思路:

  由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。

  答题:

  解:4.8×10÷(12-10)=24(吨)

  答:原计划每天生产水泥24吨。

  13. 学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?

  解题思路:

  由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。

  答题:

  解:4.8×10÷(12-10)=24(吨)

  答:原计划每天生产水泥24吨。

  14. 学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?

  解题思路:

  参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛的38人中也有参加语 文竞赛的,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛的人数加上参加数学竞赛的人数再加上一科也没参加 的人数减去全班人数就是双科都参加的人数。

  答题:

  解:36+38+5-59=20(人)

  答:双科都参加的有20人。

  15. 学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?

  解题思路:

  由“2张桌子和5把椅子的价钱相等”这一条件,可以推出4张桌子就相当于10把椅子的价钱,买4张桌子和6把椅子共用640元,也就相当于买16把椅子共用640元。

  答题:

  解:5×(4÷2)+6=16(把)

  640÷16=40(元)

  40×5÷2=10O(元)

  答:桌子和椅子的单价分别是100元、40元。

  16. 父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?

  解题思路:

  5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。

  答题:

  解:(45-5)÷4+5 =10+5 =15(岁)

  答:今年儿子15岁。

  17. 有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?

  解题思路:

  “如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的.4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。

  答题:

  解:18×2÷(4-1)=12(千克)

  12×4=48(千克)

  答:原来甲桶有油48千克,乙桶有油12千克。

  18. 光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?

  解题思路:

  根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-79)÷8=2(题)……5(分),分析答对、答错和没答的题数。

  答题:

  解:(5×20-75)÷8=2(题)……5(分)

  20-2-1=17(题)

  答:答对17题,答错2题,有1题没答。

  19. 光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?

  解题思路:

  “从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。

  答题:

  解:(240+264)÷(20+16)=504÷30 =14(秒)

  答:从两车头相遇到两车尾相离,需要14秒。

  20. 一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?

  解题思路:

  火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和。

  答题:

  解:(600+1150)÷700 =1750÷700 =2.5(分)

  答:火车通过隧道需2.5分。

  21.小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?

  解题思路:

  在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间。

  答题:

  解:60×2÷(60-50)=12(分)

  50×12=600(米)

  答:小明从家里到学校是600米。

  22.有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?

  解题思路:

  由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。

  答题:

  解:600÷(400-300)=600÷100 =6(分)

  答:经过6分钟两人第一次相遇

  23.有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?

  解题思路:

  由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积。

  答题:

  解:(12÷2)×(8÷2)=24(平方厘米)

  答:这个长方形纸板原来的面积是24平方厘米。

  24.妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?

  解题思路:

  用去的钱数除以3就是1千克苹果和1千克梨的总钱数。从这个总钱数里去掉1千克苹果的钱数,就是每千克梨的钱数。

  答题:

  解:(20-7.4)÷3-2.4 =12.6÷3-2.4 =4.2-2.4 =1.8(元)

  答:每千克梨1.8元。

  25.甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?

  解题思路:

  由题意知,甲乙速度和是(135÷3)千米,这个速度和是乙的速度的(2+1)倍。

  答题:

  解:135÷3÷(2+1)=15(千米)

  15×2=30(千米)

  答:甲乙每小时分别行30千米、15千米。

  26.盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?

  解题思路:

  两种球的数目相等,黑球取完时,白球还剩12个,说明黑球多取了12个,而每次多取(8-5)个,可求出一共取了几次。

  答题:

  解:12÷(8-5)=4(次)

  8×4+5×4+12=64(个)

  或8×4×2=64(个)

  答:一共取了4次,盒子里共有64个球。

  27.上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。

  解题思路:

  1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。也就是它们的最小公倍数。

  答题:

  解:12和18的最小公倍数是36

  6时+36分=6时36分

  答:下次同时发车时间是上午6时36分。

  28.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?

  解题思路:

  父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍。又知今年儿子15岁,两个岁数的差就是所求的问题。

  答题:

  解:(45-15)÷(11-1)=3(岁)

  15-3=12(年)

  答:12年前父亲的年龄是儿子年龄的11倍。

  29.王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?

  解题思路:

  根据题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题。

  答题:

  解:2、3、4、5的最小公倍数是60

  60-1=59(支)

  答:这盒铅笔最少有59支。

  30. 一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?

  解题思路:

  根据只把底增加8米,面积就增加40平方米,?可求出原来平行四边形的高。根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。再用原来的底乘以原来的高就是要求的面积。

  答题:

  解:(40÷5)×(40÷8)=40(平方米)

  答:平行四边形地原来的面积是40平方米。

  正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型。

  小学毕业考试卷数学及答案 2

  一、填空。

  1、 五百零三万七千写作( ),7295300省略“万”后面的尾数约是( )万。

  2、 1小时15分=( )小时 5.05公顷=( )平方米

  3、 在1.66,1.6,1.7%和3/4中,最大的数是( ),最小的数是( )。

  4、 在比例尺1:30000000的地图上,量得A地到B地的距离是3.5厘米,则A地到B地的实际距离是( )。

  5、 甲乙两数的和是28,甲与乙的比是3:4,乙数是( ),甲乙两数的差是( )。

  6、 一个两位小数,若去掉它的小数点,得到的新数比原数多47.52。这个两位小数是( )。

  7、 A、B两个数是互质数,它们的最大公因数是( ),最小公倍数是( )。

  8、 小红把2000元存入银行,存期一年,年利率为2.68%,利息税是5%,那么到期时可得利息( )元。

  9、 在边长为a厘米的正方形上剪下一个最大的圆,这个圆与正方形的周长比是( )。

  10、 一种铁丝1/2米重1/3千克,这种铁丝1米重( )千克,1千克长( )米。

  11、 一个圆柱与一个圆锥体积相等,底面积也相等。已知圆柱的高是12厘米,圆锥的高是( )。

  12、 已知一个比例中两个外项的积是最小的`合数,一个内项是5/6,另一个内项是( )。

  13、 一辆汽车从A城到B城,去时每小时行30千米,返回时每小时行25千米。去时和返回时的速度比是( ),在相同的时间里,行的路程比是( ),往返AB两城所需要的时间比是( )。

  二、判断。

  1、小数都比整数小。( )

  2、把一根长为1米的绳子分成5段,每段长1/5米。( )

  3、甲数的1/4等于乙数的1/6,则甲乙两数之比为2:3。( )

  4、任何一个质数加上1,必定是合数。( )

  5、半径为2厘米的加,圆的周长和面积相等。( )

  三、选择。

  1、2009年第一季度与第二季度的天数相比是( )

  A、第一季度多一天 B、天数相等 C、第二季度多1天

  2、一个三角形最小的锐角是50度,这个三角形一定是( )三角形。

  A、钝角 B、直角 C、锐角

  3、一件商品先涨价5%,后又降价5%,则( )

  A、现价比原价低 B、现价比原价高 C、现价和原价一样

  4、把12.5%后的%去掉,这个数( )

  A、扩大到原来的100倍 B、缩小原来的1/100 C、大小不变

  5、孙爷爷今年a岁,张伯伯今年(a-20)岁,过X年后,他们相差( )岁。

  A、20 B、X+20 C、X-20

  6、在一条线段中间另有6个点,则这8个点可以构成( )条线段。

  A、21 B、28 C、36

  四、计算。

  1、直接写出得数。

  4、求阴影部分的面积(单位:厘米)。

  五、 综合运用。

  1、甲乙两个商场出售洗衣机,一月份甲商场共售出980台,比乙商场多售出1/6,甲商场比乙商场多售出多少台?

  2、农机厂计划生产800台,平均每天生产44台,生产了10天,余下的任务要求8天完成,平均每天要生产多少台?

  3、一间教室要用方砖铺地。用边长是3分米的正方形方砖,需要960块,如果改用边长为2分米的正方形方砖,需要多少块?(用比例解)

  4、一个长为12厘米的长方形的面积比边长是12厘米的正方形面积少36平方厘米。这个长方形的宽是多少厘米?

  5、六年级三个班植树,任务分配是:甲班要植三个班植树总棵树的40%,乙、丙两班植树的棵树的比是4:3,当甲班植树200棵时,正好完成三个班植树总棵树的2/7。丙班植树多少棵?

  6、请根据下面的统计图回答下列问题。

  ⑴

  ⑵

  ⑶

  ⑷

  ⑸

  ( )月份收入和支出相差最小。 9月份收入和支出相差( )万元。 全年实际收入( )万元。 平均每月支出( )万元。 你还获得了哪些信息?

  参考答案

  一、填空(每一空1分,共20分)。

  二、判断(每小题1分,共5分)。

  1、× 2、× 3、√ 4、× 5、×

  三、选择(每小题2分,共12分)。

  1、C 2、C 3、A 4、A 5、A 6、C

  四、计算(9+8+12+3+2)

  1、直接写出得数(每小题1分,共9分)。

  2、求X的值(每小题4分,每一步1分,共8分)。

  3、能简算的要简算(每小题3分,共12分)。

  4、求阴影部分的面积(3分)

  6×6÷2

  =36÷2

  =18(平方厘米)

  五、综合运用(5+5+5+5+5+6,共31分)

  1、解:设乙商场售出X台

  6、(1)(4)

  (2)(30)

  (3)(740)

  (4)(30)

  (5)略,可多种方法解答。

【小学毕业考试卷数学及答案】相关文章:

小学数学毕业考试卷及答案10-17

小学毕业考试卷语文及答案10-17

小学数学毕业考试卷10-22

中考试卷试题及答案06-08

小学毕业考试卷10-22

小学数学毕业考试题及答案解析10-18

小学语文毕业试卷及答案08-20

小学数学毕业考试题计算题及答案10-18

小学语文毕业试卷附答案10-26