二次函数课件

时间:2021-03-18 15:40:55 课件 我要投稿

二次函数课件

  二次函数是初等函数中的重要函数,在解决各类数学问题和实际问题中有着广泛的应用,是中考热点之一。以下是专门为你收集整理的二次函数课件,供参考阅读!

二次函数课件

  二次函数课件

  1. 能画二次函数的图象,并能够比较它们与二次函数的图象的异同,理解对二次函数图象的影响.

  2. 能说出二次函数图象的开口方向、对称轴、顶点坐标、增减性、最值.

  3. 经历探索二次函数的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验,体会数形结合思想在数学中的应用.

  4. 通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.

  (教学重点)

  1.二次函数的图象和性质

  2.二次函数与二次函数图象的关系。

  (教学难点)

  能够比较和的图象的异同,理解对二次函数图象的影响.

  (板书设计)

  课题

  二次函数的图象与性质:

  (教学过程)

  Ⅰ.温故知新、引入新课:

  二次函数的图象是____________.

  (1)开口___________;

  (2)对称轴是___________;

  (3)顶点坐标是___________;

  (4)当时,随的增大而___________;

  当时,随的增大而___________;

  (5)函数图象有___________点,函数有___________值;

  当_____时,取得__________值____.

  问题:那二次函数的图象会是什么样子呢?它会有哪些性质呢?它与的图象有关系吗?

  Ⅱ.自主探索、小组互学、展学提升:

  1、学生活动内容及方法

  学生以小组为单位:(1)作出二次函数的图象;

  (2)观察、思考并与同伴交流完成“议一议”

  (3)一小组派代表展示,其它小组与老师评价、完善。

  2、自学问题设计

  (1)作出二次函数的图象:

  列表:观察的表达式,选择适当的值,填写下表:

  描点:在直角坐标系中描出各点;

  连线:用光滑的曲线连接各点,便得到函数的图象。

  议一议:

  仔细观察,用心思考,与同伴交流:

  (1)二次函数的图象是什么样子?

  (2)它的开口方向是什么?

  (3)它是轴对称图形吗?对称轴是谁?

  (4)它的顶点坐标是什么?

  (5)当取什么值时,随的增大而增大?当取什么值时,随的增大而减小?

  (6)二次函数的图象有最高点还是最低点?它会取得最大还是最小值?是多少?

  此时,等于多少?

  (7)二次函数与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?

  3、教师活动内容

  教师巡视,察看学生完成情况并适时给予指导。

  当学生展开讨论时,参与到学生的交流中启发、点拨学生的思维。

  当学生展示时,适时质疑、反问,帮助学生完善自己的思考

  Ⅲ.自主探索、展示完善:

  1、学生活动内容及方法

  学生通过上一环节的作图、观察、比较、归纳、交流讨论等过程,已经积累了一些方法和经验,所以此环节由学生自己独立完成:

  (1)作出二次函数的图象;

  (2)观察、思考完成“想一想”

  (3)一学生展示,其他同学与老师评价、完善。

  2、自学问题设计

  问:

  二次函数的图象会是什么样子?它与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?它图象的开口方向、对称轴、顶点坐标是什么?它的增减性、最值是什么情况呢?请你先猜一猜,然后做出它的图象观察思考,你猜的对吗?

  (1)作出二次函数的图象:

  列表:观察的表达式,选择适当的值,填写下表:

  描点:在直角坐标系中描出各点;

  连线:用光滑的曲线连接各点,便得到函数的图象。

  (2)想一想:

  仔细观察,用心思考:

  (1)二次函数的图象是什么样子?

  (2)它的开口方向是什么?

  (3)它是轴对称图形吗?对称轴是谁?

  (4)它的顶点坐标是什么?

  (5)当取什么值时,随的增大而增大?当取什么值时,随的增大而减小?

  (6)二次函数的图象有最高点还是最低点?它会取得最大还是最小值?是多少?

  此时,等于多少?

  (7)二次函数与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?

  3、教师活动内容

  教师巡视,察看学生解决问题情况并适时指导.之后请学生展示,师生共同评价完善.

  Ⅳ.自主探索、小组互学、展学提升:

  1、 学生活动内容及方法

  学生在前面作图、观察、思考、交流讨论的基础上,完成“猜一猜”,然后师生共同利用计算机进行验证。最后,学生在交流讨论的基础上总结二此函数的性质。

  2、导学问题设计

  猜一猜:

  (1)二次函数的图象是什么样子呢?二次函数的图象与二次函数的图象有什么关系?请你描述一下二次函数的性质.

  (2)二次函数的图象是什么样子呢?二次函数的图象与二次函数的图象有什么关系?请你描述一下二次函数的性质.

  议一议:

  (1)二次函数的图象与二次函数的图象有什么关系?

  (2)二次函数的.性质:

  二次函数

  性质

  开口方向

  对称轴

  顶点坐标

  增减性

  当______时,随的增大而增大;

  当______时,随的增大而减小.

  当______时,随的增大而增大;

  当______时,随的增大而减小.

  最值

  当____时,函数取得

  最____值____.

  当____时,函数取得

  最____值____.

  3、教师活动内容

  观察学生完成问题情况,并适时给予点拨。学生展示,师生共同评价完善。

  Ⅴ.评测练习

  1. 函数的图象可由的图象向 平移 个单位长度得到;

  函数的图象可由的图象向 平移 个单位长度得到.

  2. 将函数的图象向 平移 个单位可得函数的图象;

  将函数的图象向 平移 个单位长度可以得到函数的图象;

  将函数的图象向 平移 个单位可得到的图象.

  3. 将抛物线向上平移3个单位,所得的抛物线的表达式是 .

  将抛物线向下平移5个单位,所得的抛物线的表达式是 .

  4. 抛物线的开口 ,对称轴是 ,顶点坐标是 ,当时,随的增大而 ,当时,随的增大而 ,当 时,函数取得最 值,这个值等于 .

  5. 抛物线的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,随的增大而 ,在对称轴的右侧,随的增大而 ,当x= 时,函数取得最 值,这个值等于 .

  6.二次函数的图象经过点A(1,-1),B(2,5),则函数的表达式为 ;若点C(-2,m),D(n ,15)也在函数的图象上,则点C的坐标为 ,点D的坐标为___________

【二次函数课件】相关文章:

二次函数超级经典课件教案05-13

二次函数说课稿02-17

《集合与函数》课件设计05-08

《对数函数》课件设计05-08

二次函数的图像说课稿11-04

二次函数说课稿(11篇)02-17

二次函数说课稿11篇11-15

二次函数的说课稿(精选5篇)05-12

二次函数测试题的整理08-20

数学二次函数复习资料08-27