初一上册数学教学课件
导语:数学是除了语言与音乐之外,人类心灵自由创造力的主要表达方式之一,而且数学是经由理论的建构成为了解宇宙万物的媒介。以下是小编整理初一上册数学教学课件的资料,欢迎阅读参考。
初一上册数学教学课件1
第1学时
内容:正数和负数(1)
学习目标:
1、整理前两个学段学过的整数、分数(小数)知识,掌握正数和负数概念.
2、会区分两种不同意义的量,会用符号表示正数和负数.
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.
学习重点:两种意义相反的量
学习难点:正确会区分两种不同意义的量
教学方法:引导、探究、归纳与练习相结合
教学过程
一、学前准备
1、小学里学过哪些数请写出来:2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
3、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)
回答上面提出的问题: .
二、探究新知
1、正数与负数的产生
1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.
请你也举一个具有相反意义量的例子: .
2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
3)阅读P3练习前的内容
3、正数、负数的概念
1)大于0的数叫做0的数叫做。
2)正数是大于0的数,负数是0既不是正数也不是负数。
3)练习 P3第一题到第四题(直接做在课本上)
三、练习
1、读出下列各数,指出其中哪些是正数,哪些是负数?
—2, 0.6, +1, 0, —3.1415, 200, —754200, 3
2、举出几对(至少两对)具有相反意义的量,并分别用正、负数表示
四、应用迁移,巩固提高(A组为必做题)
A组 1.任意写出5个正数:________________;任意写出5个负数:_______________.
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.
3.已知下列各数:?13,?2,3.14,+3065,0,-239. 54
则正数有_____________________;负数有____________________.
4.如果向东为正,那么 -50m表示的意义是???( )
A.向东行进50m C.向北行进50m
B.向南行进50m D.向西行进50m
5.下列结论中正确的是 ????( )
A.0既是正数,又是负数 B.O是最小的正数
C.0是最大的负数 D.0既不是正数,也不是负数
6.给出下列各数:-3,0,+5,?3
B组
1.零下15℃,表示为_________,比O℃低4℃的温度是_________.
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______
地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________.
C组
1.写出比O小4的数,比4小2的数,比-4小2的数.
2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,
试用正负数分别表示潜水艇和鲨鱼的高度.
11,+3.1,?,2004,+2008. 22其中是负数的有 ??( ) A.2个 B.3个 C.4个 D.5个
第2学时
内容:正数和负数(2)
学习目标:
1、会用正、负数表示具有相反意义的量.
2、通过正、负数学习,培养学生应用数学知识的意识.
3、通过探究,渗透对立统一的辨证思想
学习重点:用正、负数表示具有相反意义的量
学习难点:实际问题中的数量关系
教学方法:讲练相结合
教学过程
一、.学前准备
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
问题1:“零”为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明.
参考例子:温度表示中的零上,零下和零度.
二.探究理解 解决问题
问题2:(教科书第4页例题)
先引导学生分析,再让学生独立完成
例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)2009年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%, 德国增长1.3%,
法国减少2.4%, 英国减少3.5%,
意大利增长0.2%, 中国增长7.5%.
写出这些国家2009年商品进出口总额的增长率.
解:(1)这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.
(2)六个国家2009年商品进出口总额的增长率:
美国-6.4%, 德国1.3%,
法国-2.4%, 英国-3.5%,
意大利0.2%, 中国7.5%.
三、巩固练习
从0表示一个也没有,是正数和负数的分界的角度引导学生理解.
在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.
在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示. 通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
四、阅读思考
(教科书第8页)用正负数表示加工允许误差.
问题:1.直径为30.032mm和直径为29.97的零件是否合格?
2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.
五、小结
1、本节课你有那些收获?
2、还有没解决的问题吗?
六、应用与拓展
必做题:
教科书5页习题4、5、:6、7、8题
选做题
1、甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是 .
2、一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?
3、吐鲁番的海拔是-155m,珠穆朗玛峰的海拔是8848m ,它们之间相差多少米?
4、如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?
5、10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。标重的记录情况如下:+1,-0.5,-0.5,-1,+0.5,-0.5,+0.5,+0.5,+0.5,-0.5。问这10筐橘子各重多少千克?总重多少千克?
【解】-17°
6.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少? 【解】9.05mm,8.95mm
正数和负数巩固提高练习
第3学时
1. 具有相反意思的量
某市某一天的最高温度是零上5℃,最低温度是零下5℃现实生活中,像这样的相反意义的量还有很多. 例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.
“运入”和“运出”,其意义是相反的.同学们能举例子吗?________________________________________
2.正数和负数
数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).
①高于海平面8848米,记作+8848米;低于海平面155米,记作________米。
②如果80m表示向东走80m,那么-60m表示_________。
③如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作_________m。
④月球表面的'白天平均温度是零上126℃,记作________℃,夜间平均温度是零下150℃,记作________℃。
问题1读下列各数,并指出其中哪些是正数,哪些是负数。
42?1,2.5,?,0,?3.14,120,?1.732,? 37
正数:__________________________________________________
负数:__________________________________________________
3.有理数
正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。(整数和分数统称为有理数)
有理数的分类:
初一上册数学教学课件2
第一章 有理数
1.1 正数和负数(1)
【学习目标】 1、掌握正数和负数概念;
2、会区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【导学指导】
一、:
1、小学里学过哪些数请写出来: 、 、 。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)
回答下面提出的问题:
3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
二、自主学习
1、正数与负数的产生
(1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子: 。
(2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
(3)阅读P3练习前的内容
3、正数、负数的概念
1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:
1. P3第1题到第2题(课本上做)
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。
3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54
则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( )
A.0既是正数,又是负数
C.0是最大的负数 B.O是最小的正数 D.0既不是正数,也不是负数
5.给出下列各数:-3,0,+5,?311,+3.1,?,2004,+2010; 22
C.4个 D.5个 其中是负数的有 ……………………………………………………( ) A.2个
【要点归纳】:
正数、负数的概念:
(1)大于0的数叫做 ,小于0的数叫做 。
(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【拓展训练】:
1.零下15?,表示为_________,比O?低4?的温度是_________。
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________。
4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。
【总结反思】:
B.3个
课题:1.1正数和负数(2)
【学习目标】:
1、会用正、负数表示具有相反意义的量;
2、通过正、负数学习,培养学生应用数学知识的意识;
【学习重点】:用正、负数表示具有相反意义的量;
【学习难点】:实际问题中的数量关系;
【导学指导】
一、知识链接.
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________ 来分别表示它们。
问题:“零”为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明。
参考例子:温度表示中的零上,零下和零度。
二.自主探究
问题:(课本第4页例题)
先引导学生分析,再让学生独立完成
例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
2)2001年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%, 德国增长1.3%,
法国减少2.4%, 英国减少3.5%,
意大利增长0.2%, 中国增长7.5%.
写出这些国家2001年商品进出口总额的增长率;
解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ ;
2)六个国家2001年商品进出口总额的增长率:
美国___________ 德国__________
法国___________ 英国__________
意大利__________ 中国__________
【课堂练习】
1.课本第4页练习
2、阅读思考
(课本第8页)用正负数表示加工允许误差;
问题:直径为30.032mm和直径为29.97的零件是否合格?
【要点归纳】
1、本节课你有那些收获?
2、还有没解决的问题吗?
【拓展训练】
1)甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度
是 ;
2)一种零件的内径尺寸在图纸上是9〒0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?
【总结反思】:
课题:1.2.1 有理数
【学习目标】:
1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;
2、了解分类的标准与集合的含义;
3、体验分类是数学上常用的处理问题方法;
【学习重点】:正确理解有理数的概念
【学习难点】:正确理解分类的标准和按照一定标准分类
【导学指导】
一、温故知新
1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)
__________________________________________
二、自主探究
问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类; 该分为几类,又该怎样分呢?先分组讨论交流,再写出来
分为 类,分别是:
引导归纳:
统称为整数, 统称为有理数。 问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类? 师生共同交流、归纳
2、正数集合与负数集合
所有的正数组成 集合,所有的负数组成 集合
【课堂练习】
略
【初一上册数学教学课件】相关文章:
初一上数学教学课件04-02
五年上册数学教学课件04-04
数学教学课件模板04-02
小学趣味数学教学课件09-12
优秀数学教学课件分享09-12
仁爱版初一英语上册课件05-15
初三英语上册教学课件04-07
人教版六年级上册数学教学课件09-12
人教版八年级上册数学教学课件09-12
人教版初一数学整式课件教案05-17