四年级奥数练习题

时间:2024-10-23 07:47:15 练习题 我要投稿

四年级奥数练习题(热门)

  无论在学习或是工作中,我们最离不开的就是练习题了,多做练习方可真正记牢知识点,明确知识点则做练习效果事半功倍,必须双管齐下。还在为找参考习题而苦恼吗?下面是小编精心整理的四年级奥数练习题,供大家参考借鉴,希望可以帮助到有需要的朋友。

四年级奥数练习题1

  三、 填空题(1-6每题 2分, 7-10每题 3分, 第11小题 4分, 第12小题 12分, 共 40分)

  1. 1吨=( )千克 11吨=( )千克

  2. 1米=( )分米 5米=( )分米

  3. 1米=( )毫米 9米=( )毫米

  4. 1千米=( )米 4千米=( )米

  5. 1米=( )厘米 10米=( )厘米

  6. 1分米=( )毫米 8分米=( )毫米

  7. 1吨+500千克=( )千克

  8. 1米-3分米=( )分米

  9. 21毫米+29毫米=( )毫米=( )厘米

  10. 47厘米-17厘米=( )厘米=( )分米

  11. 1分米=( )厘米 6分米=( )厘米

  1厘米=( )毫米 7厘米=( )毫米

  12. 在○里填上<、>或=.

  (1)4米○1400毫米 (3)910克○1千克

  (2)3吨○4500千克 (4)5时○300分

  四、 口算题( 10分 )

  (1)80÷4= (2)12÷6= (3)4000÷8=

  (4)96÷3= (5)150÷3= (6)300÷5=

  (7)420÷6= (8)21÷7= (9)630÷7÷3=

  (10)15÷5×6=

  五、 文字叙述题(每道小题 5分 共 10分 )

  1. 多少吨的3倍是150吨?

  2. 120分米是6分米的多少倍?

  六、 应用题(每道小题 8分 共 16分 )

  1. 在3千米长的公路一边,每隔5米种一棵树,一共要分多少段?

  2. 小明从家到学校要走200米长的'路,如果他来回走2趟共行多少米?

四年级奥数练习题2

  小朋友分糖果,若每人分4粒则多9粒;若每人分5粒则少6粒。问:有多少个小朋友分多少粒糖?

  答案与解析:

  由题目条件可以知道,小朋友的人数与糖的粒数是不变的。比较两种分配方案,第一种方案每人分4粒就多9粒,第二种方案每人分5粒就少6粒,两种不同的方案一多一少相差9+6=15(粒)。相差的原因在于两种方案的分配数不同,第一种方案每人分4粒,第二种方案每人分5粒,两次分配数之差为5—4=1(粒)。每人相差1粒,多少人相差15粒呢?由此求出小朋友的.人数为15÷1=15(人),糖果的粒数为4×15+9=69(粒)。

  解:

  (9+6)÷(5—4)=15(人),

  4×15+9=69(粒)。

  答:有15个小朋友,分69粒糖。

四年级奥数练习题3

  比较下面两个积的大小:

  A=987654321×123456789,

  B=987654322×123456788.

  分析经审题可知A的.第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.

  解:A=987654321×123456789

  =987654321×(123456788+1)

  =987654321×123456788+987654321.

  B=987654322×123456788

  =(987654321+1)×123456788

  =987654321×123456788+123456788. 因为987654321>123456788,所以A>B.

四年级奥数练习题4

  1.从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?

  【解答】6×4=24种

  6×2=12种

  4×2=8种

  24+12+8=44种

  【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。当从国画、油画各选一幅有多少种选法时,利用的乘法原理。由此可知这是一道利用两个原理的`综合题。关键是正确把握原理。

  符合要求的选法可分三类:

  设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。由乘法原理有 6×4=24种选法。

  第二类为:国画、水彩画各一幅,由乘法原理有 6×2=12种选法。

  第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。

  这三类是各自独立发生互不相干进行的。

  因此,依加法原理,选取两幅不同类型的画布置教室的选法有 24+12+8=44种。

  2.从1到100的所有自然数中,不含有数字4的自然数有多少个?

  【解答】从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.

  一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;

  两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72 个数不含4.

  三位数只有100.

  所以一共有8+8×9+1=81 个不含4的自然数.

四年级奥数练习题5

  一、数阵图

  1、△、□、〇分别代表三个不同的数,并且:△+△+△=〇+〇;〇+〇+〇+〇=□+□+□; △+〇+〇+□=60

  求:△=___ 〇=___ □=___

  2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.

  _____________________________________

  3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等。

  _____________________________________

  4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果。所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数。

  _____________________________________

  二、和差倍问题

  1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?

  _____________________________________

  2.一个长方形,周长是30厘米,长是宽的'2倍,求这个长方形的面积。

  _____________________________________

  3.甲、乙两个数,如果甲数加上320就等于乙数了。如果乙数加上460就等于甲数的3倍,两个数各是多少?

  _____________________________________

  4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?

  _____________________________________

  5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?

  _____________________________________

  6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?

  _____________________________________

  三、年龄问题

  1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?

  _____________________________________

  2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?

  _____________________________________

  3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?

  _____________________________________

  4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?

  _____________________________________

  四、假设问题

  1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵。男、女生各多少人?

  _____________________________________

  2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?

  _____________________________________

  3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?

  _____________________________________

  4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?

  _____________________________________

  5. 育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣5分,张小灵最终得分为41分,她做对了多少道题?

  _____________________________________

四年级奥数练习题6

  电车维修问题:

  电车维修问题的奥数练习题:电车公司维修站有7辆电车需要维修,如果用一名工人维修这7辆电车的修复时间分别为12,17,8,18,23,30,14分钟。每辆电车每停开1分钟的经济损失是11元。现在由3名工作效率相同的维修工人各自单独工作,要是经济损失减到最小程度,那么最小的损失是多少元?

  电车维修答案:

  因为3个工人各自单独工作,工效又相同,因此,每人维修的`时间应尽量相等,设需维修的车辆分别为:A、B、C、D、E、F、G,修复的时间依次是12、17、8、18、23、30、14分钟,则第一个工人应修复的车是:C、G、D;第二个工人应修复的车是:B、E;第三个工人应修复的车是:A、F。有因为要求把损失减少到最低程度,所以,每个人应尽量先修复需短时间修好的车辆,这样,可以按以下的顺序开修:第一个人:8,14,18。

四年级奥数练习题7

  有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶到了。哥哥看弟弟挑得太多,就抢过一半。弟弟不肯,又从哥哥那儿抢走一半。哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?

  【答案解析】

  解:{26-[26-(12+5)]×2}×2

  ={26-[26-17]×2}×2

  =(26-9×2)×2

  =8×2=16(块)

  【小结】最初弟弟准备挑16块。

  先利用"和差"问题的解法求弟弟最后挑多少块:

  (26-2)÷2=24÷2=12(块)

  再利用倒推法求最初弟弟准备挑多少块。

四年级奥数练习题8

  【例题】计算489+487+483+485+484+486+488

  【思路导航】认真观察每个加数,发现它们都和整数490接近,所以选490为基准数。

  489+487+483+485+484+486+488

  =490×7-1-3-7-5-6-4-2

  =3430-28

  =3402

  想一想:如果选480为基准数,可以怎样计算?.

  练习题:

  1.50+52+53+54+51

  2.262+266+270+268+264

  3.89+94+92+95+93+94+88+96+87

  4.381+378+382+383+379

  5.1032+1028+1033+1029+1031+1030

  6.2451+2452+2446+2453.

  【例题】计算9+99+999+9999

  【思路导航】这四个加数分别接近10、100、1000、10000。在计算这类题目时,常使用减整法,例如将99转化为100-1。这是小学数学计算中常用的一种技巧。

  9+99+999+9999

  =(10-1)+(100-1)+(1000-1)+(10000-1)

  =10+100+1000+10000-4

  =11106

  练习题:

  1.计算99999+9999+999+99+9

  2.计算9+98+996+9997

  3.计算1999+2998+396+497

  4.计算198+297+396+495

  5.计算1998+2997+4995+5994

  6.计算19998+39996+49995+69996

  【例题】计算下面各题。

  (1)286+879-679

  (2)812-593+193

  【思路导航】在计算没有括号的加减法混合运算式题时,有时可以根据题目的特点,采用添括号的方法使计算简便,与前面去括号的.方法类似,我们可以把这种方法概括为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。

  (1)286+879-679

  =286+(879-679)

  =286+200

  =868

  (2)812-593+193

  =812-(593-193)

  =812-400

  =412

  练习题:

  计算下面各题。

  1.368+1859-8592.582+393-293

  3.632-385+285

  4.2756-2748+1748+244

  5.612-375+275+(388+286)

  6.756+1478+346-(256+278)-246

  【例题】计算下面各题。

  (1)632-156-232

  (2)128+186+72-86

  【思路导航】在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置。

  (1)632-156-232

  =632-232-156

  =400-156

  =244

  (2)128+186+72-86

  =128+72+186-86

  =(128+72)+(186-86)

  =200+100=300

  练习题:

  计算下面各题

  1.1208-569-208

  2.283+69-183

  3.132-85+68

  4.2318+625-1318+375

  【例题】计算下面各题。

  1.248+(152-127)

  2.324-(124-97)

  3.283+(358-183)

  【思路导航】在计算有括号的加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+”号,去括号时,括号内的符号不变;如果括号前面是“-”号,去括号时,括号内的加号就要变成减号,减号就要变成加号。

  1.248+(152-127)

  =248+152-127

  =400-127

  =273

  2.324-(124-97)

  =324-124+97

  =200+97

  =297

  3.283+(358-183)

  =283+358-183

  =283-183+358

  =100+358=458

  我们可以把上面的计算方法概括为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号。

  练习题:

  计算下面各题

  1.348+(252-166)

  2.629+(320-129)

  3.462-(262-129)

  4.662-(315-238)

  5.5623-(623-289)+452-(352-211)

  6.736+678+2386-(336+278)-186

四年级奥数练习题9

  一、填空题

  1.四个小孩在校园内踢球."砰"的一声,不知是谁踢的球把课堂客户的玻璃打破了,王老师跑出来一看,问"是谁打破了玻璃?"

  小张说:"是小强打破的"

  小强说:"是小胖打破的"

  小明说:"我没有打破窗户的玻璃."

  小胖说:"王老师,小强在说谎,不要相信他."

  这四个小孩只有一个说了老实话.

  请判断:说实话的是______;是______打破窗户的玻璃.

  2.某工厂为了表扬好人好事核实一件事,厂方找了A,B,C,D四人.A说:"是B做的"B说:"是D做的"C说:"不是我做的"D说:"B说的不对."这四人中只有一人说了实话.问:这件好事是______做的

  3.李志明、张斌、王大为三个同学毕业后选择了不同的职业,三人中一个当了记者.一次有人问起他们的职业,李志明说:"我是记者."张斌说:"我不是记者."王大为说:"李志明说了假话."如果他们三人中只有一句是真的,那么_____是记者.

  4.甲、乙、丙三人对小强的藏书数目作了一个估计,甲说:"他至少有1000本书."乙说:"他的书不到1000本."丙说:"他最少有1本书."这三个估计中只有一句是对的,那么小强究竟有_______本书.

  5. 有四个人各说了一句话.

  第一个人说:"我是说实话的.人."

  第二个人说:"我们四个人都是说谎话的人."

  第三个人说:"我们四个人只有一个人是说谎话的人."

  第四个人说:"我们四个人只有两个人是说谎话的人."

  你能确定谁说的是实话,谁说的是假话的吗?

  6.请你从下面的谈话中确定甲、乙、丙三人的年龄,

  甲说:"我22岁,比乙小2岁,比丙大1岁."

  乙说:"我不是年龄最小的,丙和我差3岁.丙25岁."

  丙说:"我比甲年龄小,甲23岁,乙比甲大3岁."

  以上每人所说的三句话中,都有一句是虚构的

  甲是______岁,乙是______岁,丙是_______岁.

  7.在一星期的七天中,狼在星期一、二、三讲假话,其余各天都讲真话;狐狸在星期四、五、六讲假话,其余各天都讲真话.

  ①狼说:"昨天是我说谎日子."狐狸说:"昨天也是我说谎的日子."那么今天星期几?

  ②一天狼和狐狸都化了装,使人不容易辨认它们.

  一个说:"我是狼."另一个说:"我是狐狸."

  先说的是_______,这一天是星期_______.

  8.小张、小王、小李三人聊天,每人都说三句话,并且都是有两句真话,一句假话.

  小张:"我今年才22岁,我比小王还小两岁,我比小李大1岁."

  小王:"我不是年龄最小的;我和小李相差3岁,小李25岁了."

  小李:"我比小张小,小张23岁,小王比小张大3岁."

  小张______岁,小王______岁,小李______岁.

  9.A、B、C、D四个同学猜测他们之中谁被评为三好学生.A说:"如果我被评上,那么B也被评上."B说:"如果我被评上,那么C也被评上."C说:"如果D没评上,那么我也没评上."实际上他们之中只有一个没被评上,并且A、B、C说的都是正确的问:谁没被评上三好学生.

  10.某地有两种人,一种是说谎的,一种是说真话的,说谎的人,句句是假话,说真话的人,句句是真话,小明在那儿遇到甲、乙、丙三个人,甲对小明说:乙、丙都是说谎的人,乙听到后反驳说:我从来不说谎,这时丙接着说:乙确是在说谎.小明能不能判断出这三个人中有_____个人在说谎话,有______个人在说真话?

  二、解答题

  11.有三只袋子,一只放着糖,另外两只放着石子,它们分别写着:

  袋子A:"这只袋子放着石子."

  袋子B:"这只袋子放着糖."

  袋子C:"石子放在袋子B中."

  三只袋子上写的内容,只有一只袋子上写的是正确的问哪只袋子里放着糖?

  12.小红、小华、小明和小娟四人常为班里做好事.数学课上,老师发现昨天掉了钉儿的三角形板钉好了.下课找来他们四人询问:

  小红说:"不是我钉的"

  小华说:"是小红钉的"

  小明说:"不是我."

  小娟是:"是小华."

  为了不让老师知道,他们四人的回答中只有一人的话符合实际,但数学老师还是很快就知道了钉好三角板的人,并进行了表扬,你能猜出三角板是谁钉好的呢?

  13.从前有三个和尚,一个讲真话,一个讲假话,另一个有时讲真话,有时讲假话,一天,一位智者遇到这三个和尚,他问第一位和尚:"你后面是哪位各尚?"和尚回答:"讲真话的"他又问第二位和尚:"你是哪一位?"得到的回答是:"有时讲真话,有时讲假话."他问第三位和尚:"你前面的是哪位和尚?"第三位和尚回答说:"讲假话."根据他们的回答,智者马上分清了他们各是哪一位和尚,请你说出智者的答案.

  14.老师发现,他的办公室外有人帮他清扫,他问在场的四位同学.

  甲:不是我打扫的

  乙:是丁打扫的

  丙:是乙打扫的

  丁:乙说的是假话.

  经了解,老师发现他们四人中,只有一人说的是真话,其余三人说的是假话.问谁说的是真话,是谁帮助老师打扫办公室?

四年级奥数练习题10

  1.乘法原理

  王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?

  解答:三人报名参加比赛,彼此互不影响独立报名.所以可以看成是分三步完成,即一个人一个人地去报名.首先,王英去报名,可报4个项目中的一项,有4种不同的报名方法.其次,赵明去报名,也有4种不同的报名方法.同样,李刚也有4种不同的报名方法.满足乘法原理的条件,可由乘法原理解决.

  解:由乘法原理,报名的'结果共有4×4×4=64种不同的情形.

  2.乘法原理

  由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?

  解答:

  分析 要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.

  解:由1、2、3、4、5、6共可组成

  3×4×5×3=180

  个没有重复数字的四位奇数.

四年级奥数练习题11

  1、王老师从哈尔滨市出发,先到北京,再到上海参加2个会议。从哈尔滨市出发到北京可以乘飞机,坐火车,从北京到上海可以乘飞机,坐火车,坐汽车,那么,王老师从哈市出发,经过北京到上海,共有多少种不同的走法?

  _____________________________________

  2、在20名同学中,选正、副班长各一名,有多少种不同的选法?

  _____________________________________

  3、某班对45名学生进行体检,有15人近视,11人超重,既近视又超重的有4人,该班有多少人既不近视又不超重?

  _____________________________________

  4、过年了,小东在家里的阳台上并排挂了五种不同颜色的彩灯,这五种彩灯共有多少种不同的排法?

  _____________________________________

  5、小明和爸爸、妈妈三口人在家过新年,大年夜,爸爸拿出5支相同的冰淇淋,要小明分给全家人,每人至少分一个,分完为止,共有多少种不同的分法?如果你是小明,你要怎样分?在大年夜分分看吧!

  _____________________________________

  6、为漫画书《狮子王》编排页码。从1开始按自然数编排,已知共用了492个数字。那么这本《狮子王》共有多少页?

  _____________________________________

  7、军军到了公园里最爱玩射击游戏,今天,他连续射击了3次,电子指标靶上只能显示出“中”或“脱”靶两种情况,把每次命中或脱靶按顺序记录下来,那么,可能出现多少种不同的'结局?

  _____________________________________

  8、你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条对折把两头捏合在一起拉伸,再对折捏合再拉伸,经过3次后,把这根粗面条拉伸了多少根?这样继续捏合到第几次可以拉出128根面条呢?

  _____________________________________

  9、能举出三个你喜欢的“回文数”吗?在所有四位数中,回文数有多少个?所有的五位数中,回文数有多少个?

  _____________________________________

  10、某铁路线上共有10个车站,一共要设计多少种不同的车票?

  _____________________________________

四年级奥数练习题12

  三名工人师傅张强、李辉和王充分别加工200个零件。他们同时开始工作,当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。当张强加工200个零件的'任务全部完成时,王充还有多少个零件没有加工?

  答案与解析:

  当张强加工160个的时候,王充加工了200-48=152个。这时张强还差200-160=40个没有加工。根据刚才的数据,张强加工40个的时间里,王充可以加工152÷(160÷40)=38个,所以王充还剩下48-38=10个。

四年级奥数练习题13

  1、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?

  分析:从两个极端来考虑这个问题:最大为9999-1078=8921,最小为9921-1000=8921,所以共有9999-9921+1=79个,或1078-1000+1=79个

  2、一本书从第1页开始编排页码,共用数字2355个,那么这本书共有多少页?

  分析:按数位分类:一位数:1~9共用数字1*9=9个;二位数:10~99共用数字2*90=180个;

  三位数:100~999共用数字3*900=2700个,所以所求页数不超过999页,三位数共有:2355-9-180=2166,2166÷3=722个,所以本书有722+99=821页。

  3、小学四年级奥数加法原理与乘法原理的练习题:上、下两册书的页码共有687个数字,且上册比下册多5页,问上册有多少页?

  分析:一位数有9个数位,二位数有180个数位,所以上、下均过三位数,利用和差问题解决:和为687,差为3*5=15,大数为:(687+15)÷2=351个(351-189)÷3=54,54+99=153页。

  4、从1、2、3、4、5、6、7、8、9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积。

  分析:从整体考虑分两组和不变:1+2+3+4+5+6+7+8+9+10=55从极端考虑分成最小和最大的两组为(1+2+3+4+5)+(6+7+8+9+10)=15+40=55最接近的两组为27+28所以共有27-15+1=13个不同的积。

  另从15到27的任意一数是可以组合的。

  5、将所有自然数,自1开始依次写下去得到:12345678910111213……,试确定第206788个位置上出现的数字。

  分析:与前面的题目相似,同一个知识点:一位数9个位置,二位数180个位置,三位数2700个位置,四位数36000个位置,还剩:206788-9-180-2700-36000=167899,167899÷5=33579……4所以答案为33579+100=33679的'第4个数字7.

  6、用1分、2分、5分的硬币凑成1元,共有多少种不同的凑法?

  分析:分类再相加:只有一种硬币的组合有3种方法;1分和2分的组合:其中2分的从1枚到49枚均可,有49种方法;1分和5分的组合:其中5分的从1枚到19枚均可,有19种方法;2分和5分的组合:其中5分的有2、4、6、……、18共9种方法;1、2、5分的组合:因为5=1+2*2,10=2*5,15=1+2*7,20=2*10,……,95=1+2*47,共有2+4+7+9+12+14+17+19+22+24+27+29+32+34+37+39+42+44+47=461种方法,共有3+49+19+9+461=541种方法。

  7、在图中,从“华”字开始,每次向下移动到一个相邻的字可以读出“华罗庚学校”。那么共有多少种不同的读法?

  分析:按最短路线方法,给每个字标上数字即可,最后求和。所以共有1+4+6+4+1=16种不同的读法。

四年级奥数练习题14

  1.难度:你能不能将自然数2到10分别填入3×3 的方格中,使得每个横行中的三个数之和都是奇数?

  2.难度:

  A 、B 两人买了相同张数的信纸. A在每个信封里装1张信纸,最后用完所有的信封还剩40张信纸:B 在每个信封里装3张信纸,最后用完所有的信纸还剩40个信封.他们都买了张信纸

  1.难度:你能不能将自然数2到10分别填入3×3 的'方格中,使得每个横行中的三个数之和都是奇数?

  不能.如果能,我们把三个横行的和相加,其和就是三个奇数之和必为奇数数,然而它也恰是九个数之和,即2+3+4+……+10=54 ,根据任何一个奇数一定不等于任何一个偶数,所以不能做到.

  2.难度:

  A 、B 两人买了相同张数的信纸. A在每个信封里装1张信纸,最后用完所有的信封还剩40张信纸:B 在每个信封里装3张信纸,最后用完所有的信纸还剩40个信封.他们都买了张信纸.

  解析如下:第二个条件实际意味着“每个信封三张纸,则少120张纸”根据盈亏问题基本方法,信封有(120+40)÷(3-1)=80个,纸有80+40=120张

  这种类型的题目不能直接计算,要将其中的一个条件转化,使之转化为基本的盈亏问题.

四年级奥数练习题15

  【速算与巧算】

  1.难度:★★★★

  计算899998+89998+8998+898+88

  【解答】利用凑整法解.

  899998+89998+8998+898+88

  =(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10

  =900000+90000+9000+900+90-10

  =999980.

  2.难度:★★★★

  计算799999+79999+7999+799+79

  【解答】利用凑整法解.

  799999+79999+7999+799+79

  =800000+80000+8000+800+80-5

  =888875.

【四年级奥数练习题】相关文章:

奥数经典练习题05-28

经典的奥数练习题05-29

经典的初中奥数练习题05-30

小学奥数练习题07-28

初中奥数经典的练习题05-29

(精选)初中奥数经典的练习题07-25

初中奥数经典的练习题(热)07-23

初二奥数经典的练习题10-16

经典的初一奥数练习题10-16

简单的初中奥数练习题07-22