四年级奥数练习题

时间:2024-10-23 17:51:23 练习题 我要投稿

四年级奥数练习题[汇编15篇]

  在学习、工作中,我们很多时候都会有考试,接触到练习题,只有多做题,学习成绩才能提上来。学习就是一个反复反复再反复的过程,多做题。什么样的习题才能有效帮助到我们呢?下面是小编收集整理的四年级奥数练习题,仅供参考,希望能够帮助到大家。

四年级奥数练习题1

  三、 填空题(1-6每题 2分, 7-10每题 3分, 第11小题 4分, 第12小题 12分, 共 40分)

  1. 1吨=( )千克 11吨=( )千克

  2. 1米=( )分米 5米=( )分米

  3. 1米=( )毫米 9米=( )毫米

  4. 1千米=( )米 4千米=( )米

  5. 1米=( )厘米 10米=( )厘米

  6. 1分米=( )毫米 8分米=( )毫米

  7. 1吨+500千克=( )千克

  8. 1米-3分米=( )分米

  9. 21毫米+29毫米=( )毫米=( )厘米

  10. 47厘米-17厘米=( )厘米=( )分米

  11. 1分米=( )厘米 6分米=( )厘米

  1厘米=( )毫米 7厘米=( )毫米

  12. 在○里填上<、>或=.

  (1)4米○1400毫米 (3)910克○1千克

  (2)3吨○4500千克 (4)5时○300分

  四、 口算题( 10分 )

  (1)80÷4= (2)12÷6= (3)4000÷8=

  (4)96÷3= (5)150÷3= (6)300÷5=

  (7)420÷6= (8)21÷7= (9)630÷7÷3=

  (10)15÷5×6=

  五、 文字叙述题(每道小题 5分 共 10分 )

  1. 多少吨的3倍是150吨?

  2. 120分米是6分米的'多少倍?

  六、 应用题(每道小题 8分 共 16分 )

  1. 在3千米长的公路一边,每隔5米种一棵树,一共要分多少段?

  2. 小明从家到学校要走200米长的路,如果他来回走2趟共行多少米?

四年级奥数练习题2

  【例题】计算489+487+483+485+484+486+488

  【思路导航】认真观察每个加数,发现它们都和整数490接近,所以选490为基准数。

  489+487+483+485+484+486+488

  =490×7-1-3-7-5-6-4-2

  =3430-28

  =3402

  想一想:如果选480为基准数,可以怎样计算?.

  练习题:

  1.50+52+53+54+51

  2.262+266+270+268+264

  3.89+94+92+95+93+94+88+96+87

  4.381+378+382+383+379

  5.1032+1028+1033+1029+1031+1030

  6.2451+2452+2446+2453.

  【例题】计算9+99+999+9999

  【思路导航】这四个加数分别接近10、100、1000、10000。在计算这类题目时,常使用减整法,例如将99转化为100-1。这是小学数学计算中常用的一种技巧。

  9+99+999+9999

  =(10-1)+(100-1)+(1000-1)+(10000-1)

  =10+100+1000+10000-4

  =11106

  练习题:

  1.计算99999+9999+999+99+9

  2.计算9+98+996+9997

  3.计算1999+2998+396+497

  4.计算198+297+396+495

  5.计算1998+2997+4995+5994

  6.计算19998+39996+49995+69996

  【例题】计算下面各题。

  (1)286+879-679

  (2)812-593+193

  【思路导航】在计算没有括号的加减法混合运算式题时,有时可以根据题目的特点,采用添括号的方法使计算简便,与前面去括号的方法类似,我们可以把这种方法概括为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。

  (1)286+879-679

  =286+(879-679)

  =286+200

  =868

  (2)812-593+193

  =812-(593-193)

  =812-400

  =412

  练习题:

  计算下面各题。

  1.368+1859-8592.582+393-293

  3.632-385+285

  4.2756-2748+1748+244

  5.612-375+275+(388+286)

  6.756+1478+346-(256+278)-246

  【例题】计算下面各题。

  (1)632-156-232

  (2)128+186+72-86

  【思路导航】在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置。

  (1)632-156-232

  =632-232-156

  =400-156

  =244

  (2)128+186+72-86

  =128+72+186-86

  =(128+72)+(186-86)

  =200+100=300

  练习题:

  计算下面各题

  1.1208-569-208

  2.283+69-183

  3.132-85+68

  4.2318+625-1318+375

  【例题】计算下面各题。

  1.248+(152-127)

  2.324-(124-97)

  3.283+(358-183)

  【思路导航】在计算有括号的`加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+”号,去括号时,括号内的符号不变;如果括号前面是“-”号,去括号时,括号内的加号就要变成减号,减号就要变成加号。

  1.248+(152-127)

  =248+152-127

  =400-127

  =273

  2.324-(124-97)

  =324-124+97

  =200+97

  =297

  3.283+(358-183)

  =283+358-183

  =283-183+358

  =100+358=458

  我们可以把上面的计算方法概括为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号。

  练习题:

  计算下面各题

  1.348+(252-166)

  2.629+(320-129)

  3.462-(262-129)

  4.662-(315-238)

  5.5623-(623-289)+452-(352-211)

  6.736+678+2386-(336+278)-186

四年级奥数练习题3

  一、按规律填数。

  1)64,48,40,36,34,( )

  2)8,15,10,13,12,11,( )

  3)1、4、5、8、9、( )、13、( )、( )

  4)2、4、5、10、11、( )、( )

  5)5,9,13,17,21,( ),( )

  二、等差数列

  1.在等差数列3,12,21,30,39,48,…中912是第几个数?

  _____________________________________

  2.求1至100内所有不能被5或9整除的整数和

  _____________________________________

  3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?

  _____________________________________

  4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和_________。

  5.将自然数如下排列,

  1 2 6 7 15 16 …

  3 5 8 14 17 …

  4 9 13 18 …

  10 12 …

  11 …

  …

  在这样的排列下,数字3排在第2行第1列,13排在第3行第3列,问:1993排在第几行第几列?

  _____________________________________

  三、 平均数问题

  1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ .

  2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .

  3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的'平均储蓄超过5元?

  4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数。23,26,30,33 。 A、B、C、D 4个数的平均数是多少?

  _____________________________________

  5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是_______。

  四、加减乘除的简便运算

  1)100-98+96-94+92-90+……+8-6+4-2=( )

  2)1976+1977+……20xx-1975-1976-……-1999=( )

  3)26×99 =( )

  4)67×12+67×35+67×52+67=( )

  5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)

四年级奥数练习题4

  有一个挂钟每小时敲一次钟,几点敲几下。钟敲6下,5秒钟敲完。钟敲12下,几秒钟敲完?

  点拨:挂钟报时是身边的事,也是学生容易忽略的.事。这里需要注意的是,挂钟报时在敲击时并不费时,而是两次敲击之间需要间隔一段时间,这就符合植树问题中的两端植树这种情况。由此可知,敲钟6下,(6-1)个间隔,5秒钟敲完,所以,两次间隔5(6-1)=1(秒);敲钟12下,(12-1)个间隔,用时为1*(12-1)=11(秒)。

  解:5(6-1)=1(秒)1*(12-1)=11(秒)

  答:敲钟12下,11秒钟敲完。

四年级奥数练习题5

  【速算与巧算】

  1.难度:★★★★

  计算899998+89998+8998+898+88

  【解答】利用凑整法解.

  899998+89998+8998+898+88

  =(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10

  =900000+90000+9000+900+90-10

  =999980.

  2.难度:★★★★

  计算799999+79999+7999+799+79

  【解答】利用凑整法解.

  799999+79999+7999+799+79

  =800000+80000+8000+800+80-5

  =888875.

四年级奥数练习题6

  电车维修问题:

  电车维修问题的奥数练习题:电车公司维修站有7辆电车需要维修,如果用一名工人维修这7辆电车的修复时间分别为12,17,8,18,23,30,14分钟。每辆电车每停开1分钟的经济损失是11元。现在由3名工作效率相同的维修工人各自单独工作,要是经济损失减到最小程度,那么最小的损失是多少元?

  电车维修答案:

  因为3个工人各自单独工作,工效又相同,因此,每人维修的时间应尽量相等,设需维修的车辆分别为:A、B、C、D、E、F、G,修复的时间依次是12、17、8、18、23、30、14分钟,则第一个工人应修复的车是:C、G、D;第二个工人应修复的.车是:B、E;第三个工人应修复的车是:A、F。有因为要求把损失减少到最低程度,所以,每个人应尽量先修复需短时间修好的车辆,这样,可以按以下的顺序开修:第一个人:8,14,18。

四年级奥数练习题7

  一群蚂蚁搬家,原存一堆食物.第一天运出总数的一半少12克.第二天运出剩下的一半少12克,结果窝里还剩下43克.问蚂蚁家原有食物多少克?

  答案与解析:

  采用倒推法,教师可画线段图帮助学生理解.如果第二天再多运出12克,就是剩下的一半,所以第一天运出后,剩下的'一半重量是43-12=31(克);这样,第一天运出后剩下的重31×2=62(克).那么同理,一半的重量是62-12=50(克),原有食物50×2=100(克).即[(43-12)×2-12]×2=100(克).

四年级奥数练习题8

  有一筐苹果,把它们三等分后还剩两个苹果;取出其中两份,将它们三等分后还剩两个;然后再取出其中两份,又将这两份三等分后还剩2个。问:这筐苹果至少有几个?

  答案与解析:

  因为要求至少多少个,所以我们可以先假设最后的.每一份只有1个苹果。

  那么,第三次没有操作前的两份就有1*3+2=5个,2汾是5个显然不对。

  我们再假设最后的每一份有2个苹果。

  还原:

  第三次取出的两份有2*3+2=8个,每份8/2=4个;

  第二次取出的两份有4*3+2=14个,每份14/2=7个;

  原有7*3+2=23个。

四年级奥数练习题9

  有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶到了。哥哥看弟弟挑得太多,就抢过一半。弟弟不肯,又从哥哥那儿抢走一半。哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?

  【答案解析】

  解:{26-[26-(12+5)]×2}×2

  ={26-[26-17]×2}×2

  =(26-9×2)×2

  =8×2=16(块)

  【小结】最初弟弟准备挑16块。

  先利用"和差"问题的解法求弟弟最后挑多少块:

  (26-2)÷2=24÷2=12(块)

  再利用倒推法求最初弟弟准备挑多少块。

四年级奥数练习题10

  1、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?

  分析:从两个极端来考虑这个问题:最大为9999-1078=8921,最小为9921-1000=8921,所以共有9999-9921+1=79个,或1078-1000+1=79个

  2、一本书从第1页开始编排页码,共用数字2355个,那么这本书共有多少页?

  分析:按数位分类:一位数:1~9共用数字1*9=9个;二位数:10~99共用数字2*90=180个;

  三位数:100~999共用数字3*900=2700个,所以所求页数不超过999页,三位数共有:2355-9-180=2166,2166÷3=722个,所以本书有722+99=821页。

  3、小学四年级奥数加法原理与乘法原理的练习题:上、下两册书的页码共有687个数字,且上册比下册多5页,问上册有多少页?

  分析:一位数有9个数位,二位数有180个数位,所以上、下均过三位数,利用和差问题解决:和为687,差为3*5=15,大数为:(687+15)÷2=351个(351-189)÷3=54,54+99=153页。

  4、从1、2、3、4、5、6、7、8、9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积。

  分析:从整体考虑分两组和不变:1+2+3+4+5+6+7+8+9+10=55从极端考虑分成最小和最大的.两组为(1+2+3+4+5)+(6+7+8+9+10)=15+40=55最接近的两组为27+28所以共有27-15+1=13个不同的积。

  另从15到27的任意一数是可以组合的。

  5、将所有自然数,自1开始依次写下去得到:12345678910111213……,试确定第206788个位置上出现的数字。

  分析:与前面的题目相似,同一个知识点:一位数9个位置,二位数180个位置,三位数2700个位置,四位数36000个位置,还剩:206788-9-180-2700-36000=167899,167899÷5=33579……4所以答案为33579+100=33679的第4个数字7.

  6、用1分、2分、5分的硬币凑成1元,共有多少种不同的凑法?

  分析:分类再相加:只有一种硬币的组合有3种方法;1分和2分的组合:其中2分的从1枚到49枚均可,有49种方法;1分和5分的组合:其中5分的从1枚到19枚均可,有19种方法;2分和5分的组合:其中5分的有2、4、6、……、18共9种方法;1、2、5分的组合:因为5=1+2*2,10=2*5,15=1+2*7,20=2*10,……,95=1+2*47,共有2+4+7+9+12+14+17+19+22+24+27+29+32+34+37+39+42+44+47=461种方法,共有3+49+19+9+461=541种方法。

  7、在图中,从“华”字开始,每次向下移动到一个相邻的字可以读出“华罗庚学校”。那么共有多少种不同的读法?

  分析:按最短路线方法,给每个字标上数字即可,最后求和。所以共有1+4+6+4+1=16种不同的读法。

四年级奥数练习题11

  1.乘法原理

  王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?

  解答:三人报名参加比赛,彼此互不影响独立报名.所以可以看成是分三步完成,即一个人一个人地去报名.首先,王英去报名,可报4个项目中的一项,有4种不同的报名方法.其次,赵明去报名,也有4种不同的报名方法.同样,李刚也有4种不同的报名方法.满足乘法原理的条件,可由乘法原理解决.

  解:由乘法原理,报名的'结果共有4×4×4=64种不同的情形.

  2.乘法原理

  由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?

  解答:

  分析 要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.

  解:由1、2、3、4、5、6共可组成

  3×4×5×3=180

  个没有重复数字的四位奇数.

四年级奥数练习题12

  1、王老师从哈尔滨市出发,先到北京,再到上海参加2个会议。从哈尔滨市出发到北京可以乘飞机,坐火车,从北京到上海可以乘飞机,坐火车,坐汽车,那么,王老师从哈市出发,经过北京到上海,共有多少种不同的走法?

  _____________________________________

  2、在20名同学中,选正、副班长各一名,有多少种不同的选法?

  _____________________________________

  3、某班对45名学生进行体检,有15人近视,11人超重,既近视又超重的有4人,该班有多少人既不近视又不超重?

  _____________________________________

  4、过年了,小东在家里的阳台上并排挂了五种不同颜色的彩灯,这五种彩灯共有多少种不同的排法?

  _____________________________________

  5、小明和爸爸、妈妈三口人在家过新年,大年夜,爸爸拿出5支相同的冰淇淋,要小明分给全家人,每人至少分一个,分完为止,共有多少种不同的'分法?如果你是小明,你要怎样分?在大年夜分分看吧!

  _____________________________________

  6、为漫画书《狮子王》编排页码。从1开始按自然数编排,已知共用了492个数字。那么这本《狮子王》共有多少页?

  _____________________________________

  7、军军到了公园里最爱玩射击游戏,今天,他连续射击了3次,电子指标靶上只能显示出“中”或“脱”靶两种情况,把每次命中或脱靶按顺序记录下来,那么,可能出现多少种不同的结局?

  _____________________________________

  8、你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条对折把两头捏合在一起拉伸,再对折捏合再拉伸,经过3次后,把这根粗面条拉伸了多少根?这样继续捏合到第几次可以拉出128根面条呢?

  _____________________________________

  9、能举出三个你喜欢的“回文数”吗?在所有四位数中,回文数有多少个?所有的五位数中,回文数有多少个?

  _____________________________________

  10、某铁路线上共有10个车站,一共要设计多少种不同的车票?

  _____________________________________

四年级奥数练习题13

  有黑、白棋子一堆,黑子个数是白子个数的2倍,现从这堆棋子中每次取出黑子4个,白子3个,待到若干次后,白子已经取尽,而黑子还有16个。求黑、白棋子各有多少个?

  答案与解析:

  假设每次取出的黑子不是4个,而是6个,也就是说每次取出的黑子个数也是白子的`2倍。由于这堆棋子中黑子个数是白子的2倍,所以,待取到若干次后,黑子、白子应该都取尽。但是实际上当白子取尽时,剩下黑子还有16个,这是因为实际每次取黑子是4个,和假定每次取黑子6个相比,相差2个。由此可知,一共取的次数是(16÷2=)8(次)。故白棋子的个数为:(3×8=)24个),黑棋子个数为(24×2=)48(个)。

四年级奥数练习题14

  甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?

  答案与解析:

  船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求.

  顺水速度:560÷20=28(千米/小时)

  逆水速度:24-(28-24)=20(千米/小时)

  返回甲码头时间:560÷20=28(小时)

四年级奥数练习题15

  1.从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?

  【解答】6×4=24种

  6×2=12种

  4×2=8种

  24+12+8=44种

  【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。当从国画、油画各选一幅有多少种选法时,利用的乘法原理。由此可知这是一道利用两个原理的.综合题。关键是正确把握原理。

  符合要求的选法可分三类:

  设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。由乘法原理有 6×4=24种选法。

  第二类为:国画、水彩画各一幅,由乘法原理有 6×2=12种选法。

  第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。

  这三类是各自独立发生互不相干进行的。

  因此,依加法原理,选取两幅不同类型的画布置教室的选法有 24+12+8=44种。

  2.从1到100的所有自然数中,不含有数字4的自然数有多少个?

  【解答】从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.

  一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;

  两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72 个数不含4.

  三位数只有100.

  所以一共有8+8×9+1=81 个不含4的自然数.

【四年级奥数练习题】相关文章:

奥数经典练习题05-28

经典的奥数练习题05-29

经典的初中奥数练习题05-30

小学奥数练习题07-28

初中奥数经典的练习题05-29

(精选)初中奥数经典的练习题07-25

初中奥数经典的练习题(热)07-23

初二奥数经典的练习题10-16

经典的初一奥数练习题10-16

简单的初中奥数练习题07-22