四旋翼飞行器的稳定悬停与飞行设计论文

时间:2021-04-20 16:14:57 论文 我要投稿

四旋翼飞行器的稳定悬停与飞行设计论文

  四旋翼飞行器的研究解决了众多的军用与民用上的问题。下面由学术堂为大家整理出一篇题目为“四旋翼飞行器的稳定悬停与飞行设计”的航天工程论文,供大家参考。

四旋翼飞行器的稳定悬停与飞行设计论文

  原标题:四旋翼控制系统的设计

  摘要:在充分考虑四旋翼飞行器功能及性能的基础上,给出了微型四旋翼飞行器的实现方案,采用RL78G13为核心处理器,采用MPU6050实现飞行姿态数据的采集,利用nRF24L01无线模块实现参数的无线传输,并进行了驱动电路、电源稳压电路、电池电压检测电路的设计。针对四旋翼飞行器在工作过程中供电电压不断降低导致控制不稳的问题,采用电池电压反馈的控制策略有效解决了该问题。在搭建的硬件平台上,编写了相应的控制程序,经过测试,实现了四旋翼飞行器的稳定控制。

  关键词:四旋翼飞行器;姿态数据;无线传输

  四旋翼飞行器的研究解决了众多的军用与民用上的问题。军方利用四旋翼飞行器进行侦查、监视、诱饵与通信中继,解决了人为操作困难的问题,甚至减免了人员的伤亡;而在民用上,四旋翼飞行器能够实现大气监测、交通监控、森林防火等功能,有效预防了危机的产生,而促使四旋翼飞行器得到广泛应用的前提,是实现其平稳飞行及自主运行[1].本设计以实现四旋翼飞行器的稳定悬停与按照预定轨道自主飞行为目标,旨在探索四旋翼飞行器的硬件结构与飞行原理,并通过实际调试,理解四旋翼飞行器的相关控制理论,并解决四旋翼飞行器在工作过程中由于供电电压不断降低导致控制不稳的问题。

  1设计原理方案

  四旋翼飞行器的核心是利用MPU6050对其飞行过程中的三轴加速度与三轴角速度值进行采集,主控制器采用四元数方法及PID算法对姿态数据进行解算,并将计算后的PWM控制信号施加到电机上,进而实现对四旋翼飞行器的控制。

  通过调研及综合目前四旋翼飞行器系统的特点及要求,确定了设计的性能及指标如下。

  (1)通信功能:具有无线接口,实现飞行功能的无线设定。

  (2)飞行功能:①自主空中悬停于60cm处;②垂直升起至30cm处,水平飞行60cm后稳定降落;③垂直升起至60cm处,水平飞行1m后稳定降落;④由无线设定高度及飞行距离,完成起飞及降落功能。

  基于对需要实现功能的理解,确定该设计的核心控制器为16位MCU芯片RL78G13,主要完成飞行数据的处理、PID运算及PWM的输出。系统由RL78G13最小系统、无线收发模块、飞行数据采集模块、电池电压检测模块、高度检测模块、电源电路模块、电机驱动模块等构成,总体结构框图如图1所示。

  各模块的功能如下:RL78G13最小系统作为四旋翼飞行器的主控;飞行数据采集模块,用于对四旋翼飞行器飞行姿态的相关数据进行采集;高度检测模块,实现定位追踪四旋翼飞行器实际高度信息的功能;无线收发模块,实现数据的无线收发;电池电压检测模块,用于消除由于电池电量消耗对四旋翼飞行器造成的影响;电源电路模块,为整个四旋翼飞行器提供电能;电机驱动模块,用于提高I/O口的驱动带载能力。

  2硬件设计

  2.1电机驱动电路设计

  RL78G13单片机I/O口输出电流为10mA,3.7V空心杯电机的空载电流为80mA,显然采用RL78G13单片机I/O口作输出,无法驱动起四路空心杯电机,因此设计了驱动电路以提高I/O口的驱动带载能力。设计中采用SI2302N沟道CMOS管进行电流的驱动放大,单路电机驱动电路如图2所示。测试表明,经过SI2302驱动电路放大后,RL78G13能够稳定驱动四路空心杯电机,且长时间工作时,驱动电路元件自身发热不明显。

  图2中稳压二极管D1起到续流及保护SI2302的作用,电机停转过程中,电机内部线圈产生的反电动势经D1形成放电通路,避免因无放电通路而击穿驱动电路中SI2302的问题。

  2.2无线收发电路设计

  当采用功能开关对四旋翼飞行器飞行方式进行设定时,随着其飞行功能越来越多,对功能开关的使用也将增多,使得四旋翼飞行器的硬件设计复杂,而且会增加其自身的重量,同时在实际调试中,通过功能开关切换飞行方式,又使得调试较为繁琐,工作量较大。故在设计中引入无线参数给定的思想,设计了无线收发电路,采用nRF24L01无线模块实现数据的无线收发。nRF24L01在使用时所需的外部元件较少,仅需1个16MHz的晶振、几个电容和电感就可组成一个高可靠性的收发系统,相比于其他无线收发电路而言,该电路设计简单且成本较低。nRF24L01无线收发电路如图3所示。

  2.3TPS63001稳压电路设计

  四旋翼飞行器在飞行过程中,随着电机转速的增加,会造成控制电路电压大幅波动,进而导致各功能模块无法工作,为了避免此类情况发生,设计了TPS63001稳压电路,TPS63001在1.8~5.5V输入时,均稳压输出3.3V,保证系统各控制电路电压处于稳定状态。TPS63001稳压电路如图4所示。

  2.4电池电压检测电路设计

  四旋翼飞行器运行时,电池处于持续耗电状态,实验中发现电量的持续消耗成为影响四旋翼飞行器飞行稳定性的重要因素。为了消除其对四旋翼飞行器的影响,因此设计了电池电压检测电路,利用RL78G13自带的AD实时检测电池电压,并通过适时调整PWM输出信号的方式对飞行姿态进行补偿,以确保四旋翼飞行器始终处于稳定状态。

  2.5其他功能模块电路设计

  其他功能模块包括RL78G13最小系统、MPU6050数据采集电路、高度检测模块、功能开关电路。RL78G13最小系统包括复位电路及晶振电路;MPU6050用来采集飞行过程中的三轴加速度与三轴角速度信息;高度检测则由GP2Y0A02YK0F模块实现,其工作原理是发射的红外线经过地面反射回来,并由模块输出电压信号,输出的电压值会对应相应的探测距离,RL78G13通过测量电压值就可以得出所探测的距离。设计的硬件实物图如图5所示。

  3软件设计

  四旋翼飞行器在空间上具有6个自由度,分别为载体坐标系X、Y、Z轴上的加速度与角速度。核心控制器RL78G13利用MPU6050采集这些参数,然后进行姿态解算,最终以PWM控制信号的方式施加到4路空心杯电机上,通过调整各路PWM信号完成相应的飞行控制功能。

  3.1控制算法

  (1)飞行姿态数据:RL78G13通过MPU6050采集载体坐标系下的三轴加速度与三轴角速度,分别用axB、ayB、azB、ωxB、ωyB、ωzB表示。

  (2)数据更新:由于设计中采用四元数进行欧拉角的计算,而欧拉角将随着四元数的变化而变化,设计中采用四元数的自补偿算法进行数据的更新,如式(1)~(4)所示。式中q0、q1、q2、q3表示四元数,Δt为MPU6050的采样时间。

  (3)姿态角的计算:令ψ、θ和φ表示方向Z、Y、X欧拉角(分别称为偏航角、俯仰角和横滚角)。ψ、θ和φ的计算如式(5)~(7)所示。

  (4)补偿零点漂移:由于存在陀螺零点漂移和离散采样产生的累积误差,由载体坐标系下的三轴角速度计算得到的四元数只能保证短期的精度,需要使用集成在MPU6050芯片内部的加速度计对其进行矫正。式(8)~(10)为axB、ayB、azB的数据归一化。

  式(11)~(13)中的vx、vy、vz分别为利用四元数方法估计的四旋翼飞行器载体质心的速度在载体坐标系三轴上的分量。然后利用式(14)~(16)求出陀螺零点漂移和离散采样产生的累积误差ex、ey、ez.

  再对所得到的误差进行比例与积分,式(17)~(19)中的gx、gy、gz即为对零点漂移的补偿。

  (5)PID计算:式(20)~(22)中θd、φd、ψd分别表示下一次解算出来的俯仰角、横滚角及偏航角的值,eθ、eφ、eψ分别用来表示两次解算的俯仰角、横滚角、偏航角的误差。

  kp、ki、kd为PID的控制参数,利用PID算法通过式(23)~(25),分别求出施加在4个电机上的可调变量uψ、uθ、uφ。

  (6)输出整合:令motor1、motor2、motor3、motor4为控制4个电机的PWM输出参数,Moto_PwmMin为PWM基础量(根据不同情况设定,一般为0)。根据理论计算,施加在4个电机上的PWM输出信号如式(26)~(29)所示。

  3.2参数整定与调试

  设计中采用PID控制算法进行四旋翼飞行器的控制,I是积分项,积分项会随着时间的增加而增大,能够消除系统进入稳态后存在的稳态误差,但是在实际调试过程中,通过增大P值可以抑制稳态误差[2],因此主要是采用PD的控制方式。调试过程中,对P、D值的同时调整会产生的两种控制效果的叠加,以致无法进行每一控制参数的影响分析,故先使D值为零,P值由0增加,初次调试时,四旋翼飞行器自身不存在调节,当P值增加时,根据式(23)~(25)计算所得的uψ、uθ、uφ值均增加,再经式(26)~(29)后,施加在4个空心杯电机上的PWM控制信号均有所变化。调试中,为了防止四旋翼飞行器控制出错而损坏硬件,故将四旋翼飞行器以X字型倒挂固定在一根活动的长杆上,当P值由0增加到4时,四旋翼飞行器出现了翻滚的飞行状态,表明P开始对整体系统起作用,逐渐增大P值,四旋翼飞行器开始产生大幅度的'等幅振荡,当P值增大到14时,振荡幅度减至最低,四旋翼飞行器几乎稳定,再增加P值,四旋翼飞行器又开始进行等幅振荡,说明P值为14时为系统自稳的一个分界点。根据查阅的大量资料了解到D值是通过预测系统误差的变化来减少系统的响应时间,提高系统的稳定性[3].调试过程中,逐渐增加D值,当D值增加至0.8时,四旋翼飞行器的自身调节更快,稳定性更高。同时D值的增加会对P值有一定的影响,最终确定P值为13.8、D值为0.8时,系统稳定飞行于长杆上方。当去掉长杆时,四旋翼飞行器能够稳定飞行,但随着飞行时间增加,飞行稳定性越来越差,因此考虑了姿态补偿问题。

  3.3姿态补偿

  在实际调试过程中发现,电池处于满电状态与大幅度消耗状态下,四旋翼飞行器的飞行姿态存在较大差异:满电状态下,各部分电路工作稳定,电机转速正常,当电池的电量持续消耗时,电机的转速不断降低,因此四旋翼飞行器的整体性能处于下降趋势,为了消除这一影响,利用RL78G13实时检测电池电压,并适时调整PWM输出信号来实现四旋翼飞行器的飞行姿态补偿。由式(26)~(29)知,通过增大Moto_PwmMin可以增大施加在四路电机上的PWM信号,进而增大电机转速,可以实现对飞行姿态进行补偿[4].经调试知,当RL78G13检测到3.7V的电压降到3.5V时,将Moto_PwmMin增至100对飞行姿态的补偿最佳,随后电压值的下降与Moto_PwmMin值的增加基本呈非线性的关系,经大量实验验证,补偿系数符合式(30)的规律,式中u1代表电池当前的电压值。

  当检测到的电压值低于2.6V时,飞行姿态将无法得到补偿,必须停止飞行。将式(30)分别代入式(26)~(29),得到(31)~(34),此4式则为最终施加到4路电机的PWM控制信号。

  4结论

  实验结果表明,本文所设计的四旋翼飞行器结构简易、飞行姿态灵活,实现了空中稳定悬停及按预设路线飞行等两种飞行功能,并实现了无线参数的给定,满足了设计的技术指标与功能要求,解决了因供电电压不断降低而导致的控制不稳的问题。为推动四旋翼飞行器技术的发展提供了很好的参考设计方案。

  参考文献:

  [1]胡从坤,余泽宇,陈曦晨。四旋翼飞行器控制系统研究[J].科技广场,2014(6):50-56.

  [2]宿敬亚,樊鹏辉,蔡开元。四旋翼飞行器的非线性PID姿态控制[J].北京航空航天大学学报,2011,37(9):1054-1058.

  [3]阮旭日,王史春。新型四旋翼飞行器设计与制作[J].科技视界,2015(3):21.

  [4]易先军,周敏,谢亚奇。四旋翼飞行器控制系统的设计与实现[J].武汉工程大学学报,2014,36(11):59-62.

【四旋翼飞行器的稳定悬停与飞行设计论文】相关文章:

浅谈基于SolidWorks 和ANSYS 的一种四旋翼飞行器旋翼的设计及分11-14

《我的太空飞行器》教案设计09-25

飞行器大战小学日记12-25

科学三年级自转旋翼教学设计01-23

书本就是时空飞行器随笔06-03

有关微型飞行器的小幅运动气动力建模研究论文11-01

四年级美术《万能飞行器》教学反思07-11

四年级美术《万能飞行器》的教学反思03-03

飞行冲突事故模拟系统的设计及实现探析论文11-15