大数据自动分析与数据挖掘探讨的论文

时间:2021-04-25 16:00:56 论文 我要投稿

大数据自动分析与数据挖掘探讨的论文

  近些年来,信息科技和网络的通信技术已经得到了飞速的发展,并且全国的信息基础设施也得到了完善,在全球的数据已经呈现出了极速增长的模式状态。在此种情况下,传统的数据处理方式已经满足不了现代化的处理需求,因此需要利用大数据的自动分析和数据挖掘来实现对数据的有效分享和利用。大数据科学已经成为了一个横跨信息科学、社会科学以及网络科学的新型交叉学科,受到了学术界的广泛关注。

大数据自动分析与数据挖掘探讨的论文

  一、遥感大数据的概述以及特征

  在现代社会当中,遥感大数据已经成为了大数据的重要代表,成为了科学研究方面的重点研究方面,但是在现阶段当中还需要对其科学理论和方式进行不断的深入研究。遥感大数据具有大数据的特征,并且也具有自身独特的特征。在外部特征方面,首先具有海量的特征。遥感大数据的数据具有海量的特点,并且对着遥感技术的不断发展,在现阶段当中的高分辨率和高动态的新型卫星传感器在单位时间之内可以捕获到更多的数据量;其次还具有数据异构的特点,也就是说在数据生产过程当中所依赖到的业务系统之间会呈现出的不同状态,都需要由不同的数据中心来进行提供的,并且在逻辑结构或者组织方式上也呈现出了不同的特点;另外,还具有数据多源的特点,集中体现在数据的来源和捕获信息的手段方面,是可以拥有多种获取形式的,包括全球的观察网络点接收到的实时信息,以及民众手中的用户端的个性化信息。在内部特征方面,首先具有高维度性的特点,遥感大数据的数据类型呈现出了多样化的特点,因此数据当中的维度也变得越来越高,集中体现在了空间维度、时间维度以及光谱维度等。其次还具有多尺度性的特点,成为了遥感大数据的重要特点,也就是说在进行数据的获取过程当中,可以根据不同的遥感技术和相对应的技术水平,来进行有效的划分,在空间和时间上呈现出多尺度的特点。另外,还具有非平稳性的特点,由于遥感大数据广泛的获取方式和物理意义,在信息理论的角度上来说,就属于典型的非平稳信号,呈现出分布参数或者规律随时发生变化的特点。

  二、遥感大数据的自动分析和数据挖掘

  2.1自动分析。首先,需要对遥感大数据的表达进行了解,在这个过程当中需要抽取多元化的特征来进行表示,从而建立起遥感大数据的目标一体化,在研究过程当中主要包括对遥感大数据的`多元离散特征的有效提取,形成在不同的传感器当中的提取方式和方法。还要对若干大数据的多元特征进行归一化的表达,从而提升对大数据的处理能力和处理效率。其次就需要对遥感大数据进行相关的检索,在检索过程当中,需要利用网络化和集成化的方式进行检索,制定出基础设施的计划,提升对其数据的访问和检索效率。并且针对海量的遥感大数据来会说,需要检索出符合用户需求和感兴趣的内容和数据,就需要对数据内容进行比对,从而判断出用户所需要的内容,从大量的数据当中进行快速的检索到目标。在检索的过程当中,发展知识驱动的遥感大数据的检索方式是最有效的方式之一,可以分为场景检索服务、多源海量复杂场景数据的智能检索以及信息数据的检索等。另外,就是对遥感大数据的理解的,通过遥感大数据的科学,可以实现数据向知识的有效转变,在这个过程当中就需要根据遥感大数据本身的特征和数据检索的方式来对数据内容实现有效的提取。最后就是遥感大数据云的技术,可以将各种方式的遥感信息资源进行有效的整合,建立起遥感云服务的相关新型业务应用和服务模式,可以将在天空当中的传感器所捕捉到的信息通过软件的计算和整合来实现数据资源的有效存储和处理,从而使得用户可以在很快的时间之内获取到有效的服务。

  2.2数据挖掘。首先需要对遥感大数据的数据挖掘过程进行了解,包括数据的获取、存储以及处理和整合等,在整个过程当中都具有大数据的特点。在进行捕获数据的过程当中可以从各种不同的传感器当中进行获取,然后对数据进行采样和过滤,之后就可以对采集到的数据进行处理和分析,最后将其数据用可视化的模式进行显示,方便了客户的使用和利用。其次,就是遥感大数据和广义的遥感大数据的综合挖掘的过程,利用此种方式,一方面可以与其他的数据方式形成良好的互补关系,另外一方面也可以对其数据当中的变化规律以及其他信息进行更好的挖掘和采集。在广义的遥感时空大数据当中,存储的费用是相当昂贵的,并且在数据的分析能力方面也存在严重不足的现象,因此在现代社会的智慧城市的建设过程当中发挥不了其巨大的作用,因此需要利用其他自动化的数据智能处理和挖掘的方式来对其空间地理分布的数据进行全新的挖掘和过滤。在时空分布的视频数据挖掘过程当中,在对智能数据进行处理和信息提取的同时,还要通过时空当中所分布的视频数据进行自动化的区分,来有效的区分正常和非正常的状态。在对时空数据的挖掘过程当中,主要可以从时空数据当中进行提取出隐藏的有用的信息知识,利用各种综合性的方式和方法,比如统计法、聚类法、归纳法以及云理论等。在遥感大数据的挖掘应用方面,可以适用于地球各种尺度和方位的变化,还可以在很大程度上对未知的信息进行良好的筛选和挖掘,推动国家的科学技术的发展,实现社会的可持续化发展。

  综上所述,在不断的发展过程当中,我国的遥感数据的种类和数量将呈现出飞速增长的模式,在很多方面以及领域当中已经开展了遥感大数据的研究工作。值得注意的是,现阶段当中需要将遥感大数据的理论知识进行实践化的转变,从而实现遥感大数据的自动分析和数据挖掘功能,推动科学信息的不断进步。

  参考文献

  [1]宋维静,刘鹏,王力哲,等.遥感大数据的智能处理:现状与挑战[J].工程研究-跨学科视野中的工程,2014,(3):259-265.

【大数据自动分析与数据挖掘探讨的论文】相关文章:

《简单的数据分析》说课稿10-09

《数据的波动》说课稿09-25

《数据的波动》说课稿范文09-27

《Excel中的数据排序》说课稿11-13

《数据的分段整理》数学说课稿06-29

《数据的分段整理》的数学教学反思07-14

《数据收集整理》教学设计11-04

《数据的收集和整理》说课稿范文10-20

《表格数据图形化》说课稿11-20

《制作图表呈现数据关系》说课稿06-22