高中数学几类不同增长的函数模型练习题
一、选择题
1.下列函数中,增长速度最慢的是()
A.y=6x B.y=log6x
C.y=x6 D.y=6x
[答案] B
2.下列函数中,随x的增大,增长速度最快的是()
A.y=50(xZ) B.y=1 000x
C.y=0.42x-1 D.y=1100 000ex
[答案] D
[解析] 指数函数增长速度最快,且e2,因而ex增长最快.
3.(2013~2014长沙高一检测)如图,能使不等式log2x<x2<2x成立的自变量x的取值范围是()
A.x>0 B.x>2
C.x<2 D.0<x<2
[答案] D
4.以下四种说法中,正确的是()
A.幂函数增长的速度比一次函数增长的速度快
B.对任意的x>0,xn>logax
C.对任意的x>0,ax>logax
D.不一定存在x0,当x>x0时,总有ax>xn>logax
[答案] D
[解析] 对于A,幂函数与一次函数的.增长速度受幂指数及一次项系数的影响,幂指数与一次项系数不确定,增长幅度不能比较;对于B,C,当0<a<1时,显然不成立.当a>1,n>0时,一定存在x0,使得当x>x0时,总有ax>xn>logax,但若去掉限制条件“a>1,n>0”,则结论不成立.
5.三个变量y1,y2,y3随着变量x的变化情况如下表:
x 1 3 5 7 9 11
y1 5 135 625 1715 3645 6655
y2 5 29 245 2189 19685 177149
y3 5 6.10 6.61 6.985 7.2 7.4
则关于x分别呈对数函数、指数函数、幂函数变化的变量依次为()
A.y1,y2,y3 B.y2,y1,y3
C.y3,y2,y1 D.y1,y3,y2
[答案] C
[解析] 通过指数函数、对数函数、幂函数等不同函数模型的增长规律比较可知,对数函数的增长速度越来越慢,变量y3随x的变化符合此规律;指数函数的增长速度越来越快,y2随x的变化符合此规律;幂函数的增长速度介于指数函数与对数函数之间,y1随x的变化符合此规律,故选C.
6.四个人赛跑,假设他们跑过的路程fi(x)(i{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是()
A.f1(x)=x2 B.f2(x)=4x
C.f3(x)=log2x D.f4(x)=2x
[答案] D
[解析] 显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f4(x)=2x,故选D.
二、填空题
7.现测得(x,y)的两组对应值分别为(1,2),(2,5),现有两个待选模型,甲:y=x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用________作为函数模型.
[答案] 甲
8.某食品加工厂生产总值的月平均增长率为p,则年平均增长率为________.
[答案] (1+p)12-1
9.在某种金属材料的耐高温实验中,温度y(℃)随着时间t(分)变化的情况由计算机记录后显示的图象如图所示:现给出下列说法________
①前5分钟温度增加越来越快;
②前5分钟温度增加越来越慢;
③5分钟后温度保持匀速增加;
④5分钟后温度保持不变.
[答案] ②③
[解析] 前5分钟,温度y随x增加而增加,增长速度越来越慢;
5分钟后,温度y随x的变化曲线是直线,即温度匀速增加.故说法②③正确.
三、解答题
10.(2013~2014沈阳高一检测)某种新栽树木5年成材,在此期间年生长率为20%,以后每年生长率为x%(x<20).树木成材后,既可以砍伐重新再栽,也可以继续让其生长,哪种方案更好?
[解析] 只需考虑10年的情形.设新树苗的木材量为Q,则连续生长10年后木材量为:Q(1+20%)5(1+x%)5,5年后再重栽的木才量为2Q(1+20%)5,画出函数y=(1+x%)5与y=2的图象,用二分法可求得方程(1+x%)5=2的近似根x=14.87,故当x<14.87时就考虑重栽,否则让它继续生长.
11.有甲、乙两个水桶,开始时水桶甲中有a升水,水桶乙中无水,水通过水桶甲的底部小孔流入水桶乙中,t分钟后剩余的水符合指数衰减曲线y=ae-nt,假设过5分钟时水桶甲和水桶乙的水相等,求再过多长时间水桶甲中的水只有a8.
[解析] 由题意得,ae-5n=a-ae-5n,即e-5n=12,设再过t分钟水桶甲中的水只有a8,得ae-n(t+5)=a8,
所以(12)t+55=(e-5n)t+55=e-n(t+5)=18=(12)3,
t+55=3,
t=10.
再过10分钟水桶甲中的水只有a8.
12.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58.为了预测以后各月的患 病人数,甲选择了模型y=ax2+bx+c,乙选择了模型y=pqx+r,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数.结果4月,5月,6月份的患病人数分别为66,82,115,你认为谁选择的模型较好?
[解析] 依题意:
得a12+b1+c=52,a22+b2+c=54,a32+b3+c=58,
即a+b+c=52,4a+2b+c=54,9a+3b+c=58,解得a=1,b=-1,c=52.
甲:y1=x2-x+52,
又pq1+r=52 ①pq2+r=54 ②pq3+r=58 ③
①-②,得pq2-pq1=2 ④
②-③,得pq3-pq2=4 ⑤
⑤④,得q=2,
将q=2代入④式,得p=1,
将q=2,p=1代入①式,得r=50,
乙:y2=2x+50,
计算当x=4时,y1=64,y2=66;
当x=5时,y1=72,y2=82;
当x=6时,y1=82,y2=114.
可见,乙选择的模型较好.
【高中数学几类不同增长的函数模型练习题】相关文章:
《几类不同增长函数模型》说课稿08-28
不同函数模型测试题精选四道03-31
数学函数模型及其应用专项练习题07-26
高中数学函数教案07-17
函数模型及其应用习题及答案06-29
函数的达标练习题07-15
函数的图像练习题06-23
函数单元练习题06-21
变量与函数的练习题04-18