华杯赛第二期练习题及答案
试题一
某公司有一项运动——爬楼上班,该公司正好在xx大厦18楼办公。一天编辑箫菲爬楼上班,她数了一下楼梯,每段有14级台阶,每层有2段。她想我每一步走一级或二级。那么我到公司走楼梯共有多少种走法呢?亲爱的小朋友你能帮萧菲解决这个难题吗?
解析:
如果用n表示台阶的级数,an表示某人走到第n级台阶时,所有可能不同的走法,容易得到:
①当n=1时,显然只要1种走法,即a1=1。
②当n=2时,可以一步一级走,也可以一步走二级上楼,
因此,共有2种不同的走法,即a2=2。
③当n=3时,
如果第一步走一级台阶,那么还剩下二级台阶,由②可知有a2=2(种)走法。
如果第一步走二级台阶,那么还剩下一级台阶,由①可知有a1=1(种)走法。
根据加法原理,有a3=a1+a2=1+2=3(种)
类推,有:
a4=a2+a3=2+3=5(种)
a5=a3+a4=3+5=8(种)
a6=a4+a5=5+8=13(种)
a7=a5+a6=8+13=21(种)
a8=a6+a7=13+21=34(种)
a9=a7+a8=21+34=55(种)
a10=a8+a9=34+55=89(种)
a11=a9+a10=55+89=144(种)
a12=a10+a11=89+144=233(种)
a13=a11+a12=144+233=377(种)
a14=a12+a13=233+377=610(种)
一般地,有an=an-1+an-2
走一段共有610种走法。
共有(18-1)×2=34(段)。
共有走法:
试题二
昨天大家帮助萧菲解决了她的一个疑问,告诉了萧菲她走楼梯共有61034种走法?萧菲想这个数这么大呀,是不是我的年龄24岁的.倍数呢?如果不是这个数除以24余多少呢?亲爱的小朋友,你们可以回答她的这个疑问吗?
解析:610不是3的倍数,所以61034也不是3的倍数。因此这个数不能整除24。
610÷24=25……10
6102÷24余4
6103÷24余16
6104÷24余16
……
以后余数都是16,所以61034除以24余16。
试题三
X公司进行草原拉练活动,教学服务部有100名员工,决定比赛拉练的速度。公司给他们准备了100块标有整数1到100的号码布,分发给这个100名员工。员工们被要求在拉练比赛结束时,将自己号码布上的数字与到达终点时的名次数相加,并将这个和数交上去。萧菲想这交上来的100个数字的末2位数字是否可能都不相同呢?(注:没有同时到达终点的选手)
解析:不可能。
因为已知没有同时到达的员工,
所以名次是从第1名排到第100名,共100个名次。
100位选手,编号为1~100。
不管哪位选手得到名次如何,交上来的100个数字的末两位数字肯定是:00,01,……99,它们的和的末两位数字为50。
而各位选手的编号加上各位选手名次的和为:(1+2+…+100)+(1+2+…+100)=9900,末两组数字为00,即00≠50,
【华杯赛第二期练习题及答案】相关文章:
2017华杯赛试题及答案03-19
华杯赛考试内容介绍08-13
冯剑华《雨》阅读答案03-25
过华清宫绝句阅读答案04-01
《锁》何君华阅读答案04-01
华老师,你在哪里阅读答案04-09
病句练习题答案01-13
英语练习题及答案08-25
《论语》练习题及答案01-28
《门牙》《雨伞》练习题及答案07-01