- 精馏实验报告 推荐度:
- 精馏实验报告 推荐度:
- 相关推荐
精馏实验报告
我们眼下的社会,报告使用的次数愈发增长,报告根据用途的不同也有着不同的类型。那么什么样的报告才是有效的呢?以下是小编帮大家整理的精馏实验报告,供大家参考借鉴,希望可以帮助到有需要的朋友。
精馏实验报告1
采用乙醇—水溶液的精馏实验研究
学校:漳州师范学院
系别:化学与环境科学系
班级:
姓名:
学号:
采用乙醇—水溶液的精馏实验研究
摘要:本文介绍了精馏实验的基本原理以及填料精馏塔的基本结构,研究了精馏塔在全回流条件下,塔顶温度等参数随时间的变化情况,测定了全回流和部分回流条件下的理论板数,分析了不同回流比对操作条件和分离能力的影响。
关键词:精馏;全回流;部分回流;等板高度;理论塔板数
1.引言
欲将复杂混合物提纯为单一组分,采用精馏技术是最常用的方法。尽管现在已发展了柱色谱法、吸附分离法、膜分离法、萃取法和结晶法等分离技术,但只有在分离一些特殊物资或通过精馏法不易达到的目的时才采用。从技术和经济上考虑,精馏法也是最有价值的方法。在实验室进行化工开发过程时,精馏技术的主要作用有:(1)进行精馏理论和设备方面的研究。(2)确定物质分离的工艺流程和工艺条件。(3)制备高纯物质,提供产品或中间产品的纯样,供分析评价使用。
(4)分析工业塔的故障。(5)在食品工业、香料工业的生产中,通过精馏方法可以保留或除去某些微量杂质。
2.精馏实验部分
2.1实验目的
(1)了解填料精馏塔的基本结构,熟悉精馏的工艺流程。
(2)掌握精馏过程的基本操作及调节方法。
(3)掌握测定塔顶、塔釜溶液浓度的实验方法。
(4)掌握精馏塔性能参数的测定方法,并掌握其影响因素。
(5)掌握用图解法求取理论板数的方法。
(6)通过如何寻找连续精馏分离适宜的操作条件,培养分析解决化工生产中实际问题的能力、组织能力、实验能力和创新能力。
2.2实验原理
精馏塔一般分为两大类:填料塔和板式塔。实验室精密分馏多采用填料塔。填料塔属连续接触式传质设备,塔内气液相浓度呈连续变化。常以等板高度(HETP)来表示精馏设备的分离能力,等板高度越小,填料层的传质分离效果就越好。
(1)等板高度(HETP)
HETP是指与一层理论塔板的传质作用相当的填料层高度。它的大小,不仅取决于填料的类型、材质与尺寸,而且受系统物性、操作条件及塔设备尺寸的影
响。对于双组分体系,根据其物料关系xn,通过实验测得塔顶组成xD、塔釜组成xW、进料组成xF及进料热状况q、回流比R和填料层高度Z等有关参数,用图解法求得其理论板NT后,即可用下式确定:HETP=Z/NT
(2)图解法求理论塔板数NT
精馏段的操作线方程为:yn+1= Rxn+xD R?1R?1
上式中, yn+1---精馏段第n+1块塔板伤身的蒸汽组成,摩尔分数;
xn---精馏段第n块塔板下流的液体组成,摩尔分数;
xD---塔顶馏出液的液体组成,摩尔分数;
R---泡点回流下的回流比;
L'提馏段的操作线方程为:ym+1=xm-Wxw L'?WL'-W
上式中, ym+1---提镏段第m+1块塔板上升的蒸汽组成,摩尔分数;
xm---提镏段第m块塔板下流的液体组成,摩尔分数;
xW---塔釜的液体组成,摩尔分数;
L′--提镏段内下流的液体量,kmol/s;
W----釜液流量, kmol/s;
cpF(ts?tF)qxF加料线(q线)方程为:y=x-,其中q=1+ q?1q?1rF
上式中,q---进料热状况参数;
rF---进料液组成下的汽化潜热,kJ/kmol;
ts---进料液的泡点温度, ℃;
tF---进料温度,℃;
---进料液组成,摩尔分数;
L回流比R为:R= DFcxpF---进料液在平均温度(tS-tF)/2的比热容,kJ/(kmol.℃);
上式中, L---回流流量,kmol/s;
D---馏出流量,kmol/s
① 全回流操作
在精馏全回流操作时,操作线在y-x图上为对角线,如下图1所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板数。
全回流时理论板数的`确定 图2.部分回流时理论板数的确定
② 部分回流操作
部分回流操作时,如上图2,图解法的主要步骤为:
A.根据物系和操作压力在y-x图上作出相平衡曲线,并画出对角线作为辅助线;
B.在x轴上定出x=xD、xF、xW三点,依次通过这三点作垂线分别交对角线于点a、f、b;
C.在y轴上定出yC= xD /(R+1)的点c,连接a、c作出精馏段操作线; D.由进料热状况求出q线的斜率q/(q-1),过点f作出q线交精馏段操作线于点d;
E.连接点d、b作出提馏段操作线;
F.从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏段操作线之间画阶梯,直至梯级跨过点b为止;
G.所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板,其上的阶梯数为精馏段的理论塔板数。
2.3实验装置流程示意图
1-塔釜排液口;2-电加热管;3-塔釜;4-塔釜液位计;5-θ填料;6-窥视节;7-冷却水流量计;8-盘管冷凝器;9-塔顶平衡管;10-回流液流量计;11-塔顶出料流量计;12-产品取样口;13-进料管路;14-塔釜平衡管;15-旁管换热器;16-塔釜出料流量计;17-进料流量计;18-进料泵;19-产品、残液储槽;20-料槽液位计;21-料液取样口。
2.4实验操作步骤
2.4.1全回流槽操作
(1)配料:在料液桶中配制浓度20%(酒精的质量百分比)的料液。取料液少许分析浓度,达到要求后把料液装入原料罐中。
(2)打开仪器控制箱电源、仪表开关,仪表开始自检,完毕,按功能键调整显示界面到所需工作界面。
精馏实验报告2
一、目的及任务
①熟悉精馏的工艺流程,掌握精馏实验的操作方法。
②了解板式塔的结构,观察塔板上汽—液接触状况。
③测定全回流时的全塔效率及单塔效率。
④测定部分回流时的全塔效率。
⑤测定全塔的浓度(或温度)分布。
⑥测定塔釜再沸器的沸腾给热系数。
二、基本原理
在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。
回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。
实际回流比常取最小回流比的1。2~2。0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。
板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。
(1)总板效率E
E=N/Ne
式中E——总板效率;N——理论板数(不包括塔釜);
Ne——实际板数。
(2)单板效率Eml
Eml=(xn—1—xn)/(xn—1—xn*)
式中Eml——以液相浓度表示的单板效率;
xn,xn—1——第n块板和第n—1块板的液相浓度;
xn*——与第n块板气相浓度相平衡的液相浓度。
总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因数。当物系与板型确定后,可通过改变气液负荷达到最高板效率;对于不同的板型,可以保持相同的物系及操作条件下,测定其单板效率,以评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。
若改变塔釜再沸器中加热器的'电压,塔内上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数与加热量的关系。由牛顿冷却定律,可知Q=αA△tm
式中Q——加热量,kw;
α——沸腾给热系数,kw/(m2*K);
A——传热面积,m2;
△tm——加热器表面与主体温度之差,℃。
若加热器的壁面温度为ts,塔釜内液体的主体温度为tw,则上式可改写为
Q=aA(ts—tw)
由于塔釜再沸器为直接电加热,则加热量Q为Q=U2/R式中U——电加热的加热电压,V;R——电加热器的电阻,Ω。
三、装置和流程
本实验的流程如图1所示,主要有精馏塔、回流分配装置及测控系统组成。
1。精馏塔
精馏塔为筛板塔,全塔共八块塔板,塔身的结构尺寸为:塔径∮(57×3。5)mm,塔板间距80mm;溢流管截面积78。5mm2,溢流堰高12mm,底隙高度6mm;每块塔板开有43个直径为1。5mm的小孔,正三角形排列,孔间距为6mm。为了便于观察踏板上的汽—液接触情况,塔身设有一节玻璃视盅,在第1—6块塔板上均有液相取样口。
蒸馏釜尺寸为∮108mm×4mm×400mm。塔釜装有液位计、电加热器(1。5kw)、控温电热器(200w)、温度计接口、测压口和取样口,分别用于观测釜内液面高度,加热料液,控制电加热装置,测量塔釜温度,测量塔顶与塔釜的压差和塔釜液取样。由于本实验所取试样为塔釜液相物料,故塔釜内可视为一块理论板。塔顶冷凝器为一蛇管式换热器,换热面积为0。06m2,管外走冷却液。
图1精馏装置和流程示意图
1、塔顶冷凝器
2、塔身
3、视盅
4、塔釜
5、控温棒
6、支座
7、加热棒
8、塔釜液冷却器
9、转子流量计
10、回流分配器
11、原料液罐
12、原料泵
13、缓冲罐
14、加料口
15、液位计
2、回流分配装置
回流分配装置由回流分配器与控制器组成。控制器由控制仪表和电磁线圈构成。回流分配器由玻璃制成,它由一个入口管、两个出口管及引流棒组成。两个出口管分别用于回流和采出。引流棒为一根∮4mm的玻璃棒,内部装有铁芯,塔顶冷凝器中的冷凝液顺着引流棒流下,在控制器的控制下实现塔顶冷凝器的回流或采出操作。
即当控制器电路接通后,电磁圈将引流棒吸起,操作处于采出状态;当控制器电路断开时,电磁线圈不工作,引流棒自然下垂,操作处于回流状态。此回流分配器可通过控制器实现手动控制,也可通过计算机实现自动控制。
3、测控系统
在本实验中,利用人工智能仪表分别测定塔顶温度、塔釜温度、塔身伴热温度、塔釜加热温度、全塔压降、加热电压、进料温度及回流比等参数,该系统的引入,不仅使实验跟更为简便、快捷,又可实现计算机在线数据采集与控制。
4、物料浓度分析
本实验所用的体系为乙醇—正丙醇,由于这两种物质的折射率存在差异,且其混合物的质量分数与折射率有良好的线性关系,故可通过阿贝折光仪分析料液的折射率,从而得到浓度。这种测定方法的特点是方便快捷、操作简单,但精度稍低;若要实现高精度的测量,可利用气相色谱进行浓度分析。
混合料液的折射率与质量分数(以乙醇计)的关系如下。
.=60.8238—44.0529nD式中。——料液的质量分数;nD——料液的折射率(以上数据为由实验测得)。
四、操作要点
①对照流程图,先熟悉精馏过程中的流程,并搞清仪表上的按钮与各仪表相对应的设备与测控点。
②全回流操作时,在原料贮罐中配置乙醇含量20%~25%(摩尔分数)左右的乙醇—正丙醇料液,启动进料泵,向塔中供料至塔釜液面达250~300mm。
③启动塔釜加热及塔身伴热,观察塔釜、塔身t、塔顶温度及塔板上的气液接触状况(观察视镜),发现塔板上有料液时,打开塔顶冷凝器的水控制阀。
④测定全回流情况下的单板效率及全塔效率,在一定的回流量下,全回流一段时间,待该塔操作参数稳定后,即可在塔顶、塔釜及相邻两块塔板上取样,用阿贝折光仪进行分析,测取数据(重复2~3次),并记录各操作参数。
⑤实验完毕后,停止加料,关闭塔釜加热及塔身伴热,待一段时间后(视镜内无料液时),切断塔顶冷凝器及釜液冷却器的供水,切断电源,清理现场。
五、报告要求
①在直角坐标系中绘制x—y图,用图解法求出理论板数。
②求出全塔效率和单板效率。
③结合精馏操作对实验结果进行分析。
六、数据处理
(1)原始数据
①塔顶:nD1=1.3597,nD2=1.3599;塔釜:nD1=1.3778,nD2=1.3779
nD1=1.3658,nD2=1.3658;nD1=1.3678,nD2=1.3681。
②第四块板:第五块板:
(2)数据处理
①由附录查得101.325kPa下乙醇—正丙醇t—x—y关系:
表1:乙醇—正丙醇平衡数据(p=101.325kPa)序号
1 2 3 4 5 6 7 8 9 10 11
液相组成x气相组成y沸点/℃ 0 、0.126 、0.188 、0.210 、0.358 、0.461 、0.546、 0.600 、0.663 、0.844 、1.0
0 、0.240 、0.318 、0.339、 0.550、 0.650、 0.711、 0.760、 0.799 、0.914、 1.0
97.16 、93.85 、92.66 、91.60 、88.32 、86.25、 84.98 、84.13、 83.06、 80.59、 78.38
乙醇沸点:78.38℃,丙醇沸点:97.16℃。纯溶质(溶剂)折光率原始数据
纯物质冰乙醇正丙醇
折光率
1.3581 、1.3579 、1.3809、 1.3805
均值1.3580 、1.3807
回归方程:
由质量分数m=A—BnD代入m1=1 nD1=1.3580与m2=0 nD2=1.3807得=60.8238—44.0529nD ① ②原始数据处理:
表2:原始数据处理
名称
塔顶塔釜第4块板第5块板
折光率nD
1.3597 、1.3778 、1.3658 、1.3678
折光率nD
1.3599 、1.3779 、1.3658、 1.3681
平均折光率nD质量分数ω摩尔分数x
1.3598 、1.37785 、1.3658 、1.36795
0.9207、 0.1255 、0.6563、 0.5616
0.9380 、0.1577 、0.7136、 0.6256
以塔顶数据为例进行数据处理:
DnD1.nD2
1.3597.1.3599
1.3598
将平均折光率带入①式
60.8238.44.0529nD.60.8238.44.0529.1.3598.0.9207
0.9207
x...0.9380
1—0.92071—0.9207
乙醇。正丙醇4660
③在直角坐标系中绘制x—y图,用图解法求出理论板数。
乙醇
参见乙醇—丙醇平衡数据作出乙醇—正丙醇平衡线,全回流条件下操作线方程为y=x,具体作图如下所示(塔顶组成,塔釜组成):
图2:乙醇—正丙醇平衡线与操作线图
④求出全塔效率和单板效率。
由图解法可知,理论塔板数为6。2块(包含塔釜),故全塔效率为E。
第5块板的入板液相浓度x4=0。7136,出板组成x5=0。6256
由y5=x4=0。7136查图2中乙醇和正丙醇相平衡图,得x5=0。5490N6。2.100%。。100%。77。5%N总8
则第5块板单板效率Em1,5。
0。7136。0。6256
。100%。53。46%
0。7136。0。5490
七、误差分析及结果讨论
1。误差分析:
(1)实验过程误差:测定折光率时溶质组分有所挥发造成数据误差
(2)数据处理误差:使用手绘作图法求取理论塔板数存在一定程度的误差,尤其是在求取x5=0。5490时,直接在图上寻找对应点,误差较大。
(3)折光仪和精馏塔自身存在的系统误差。
2。结果讨论:
此次实验测得的全塔效率为77。5%,单板效率为53。46%,全回流操作稳定,全塔效率和塔板效率较为合理。
八、思考题
1。什么是全回流。全回流操作有哪些特点,在生产中有什么实际意义。如何测定全回流条件下的气液负荷。
答:a、冷凝后的液体全部回流至塔内,这称作全回流。简单来说,就是塔顶蒸汽冷凝后全部又回到了塔中继续精馏。
b、D=0,实际生产是没有意义的,但一般生产之前精馏塔都要进行全回流操作,因为刚开始精馏时,塔顶的产品还不合格,而且让气液充分接触,使精馏塔尽快稳定、平衡。
U2
Qq。r R c、要测定全回流条件下的气液负荷,利用公式,其中塔釜的加热电压和电阻已知,查出相变焓,则可以求出汽化量q,则有在全回流下L=V=q。
精馏实验报告3
一、实验目的
1.学会识别精馏塔内出现的几种操作状态,并分析这些操作状态对塔性能的影响;
2.学会精馏塔性能参数的测量方法,并掌握其影响因素;
3.测定精馏过程的动态特性,提高学生对精馏过程的认识。
二、实验原理
1.理论塔板数的图解求解法
对于二元物系,如已知其汽液平衡数据,则根据精馏塔的操作回流比、塔顶馏出液组成及塔底釜液组成计算得到操作线,从而使用图解求解法,绘图得到精馏操作的理论塔板数。
精馏段操作线方程:
提馏段操作线方程:
用图解法求算理论塔板的理论依据为:
(1)根据理论塔板定义,离开任一塔板上气液两相的'浓度x n和y n必在平衡线上;
(2)根据组分物料衡算,位于任两塔板间两相浓度x n和y n+1必落在相应塔段的操作线上。
本实验采用全回流的操作方式,即。此时,精馏段操作线和提馏段操作线简化为:
2.总板效率
精馏操作的总板效率的计算公式为:
式中,N T为理论塔板数,N P为实际塔板数。
3.折光率与液相组成
本实验通过测量塔顶馏出液与塔底釜液的折光率,计算得到馏出液与釜液的组成。对30%下质量分率与阿贝折光仪读数之间关系可按下列回归式计算:
式中,w为质量分率,n30为30oC下的折光指数。
测量温度下的折光指数与30oC下的折光指数之间关系可由下式计算:
式中,n t为测量温度下的折光指数,t为测量温度。测量温度可从阿贝折光仪上读出。
馏出液与釜液的质量分数与摩尔分数之间的关系可由下式表示:
三、实验步骤
1.实验前检查实验装置上的各个旋塞、阀门均应处于关闭状态;电流电压表及电位器位置均为零;
2.打开塔顶冷凝器的冷却水,冷却水的水量约为8升/分钟;
3.接上电源闸,按下装置上总电源开关,调节回流比控制器至全回流状态;
4.调节电位器使加热电压为70V,开始计时并测量塔顶温度。刚开始时每隔5分钟记录一
精馏实验报告4
一、目的及任务
①熟悉精馏的工艺流程,掌握精馏实验的操作方法。
②了解板式塔的结构,观察塔板上汽-液接触状况。
③测定全回流时的全塔效率及单塔效率。
④测定部分回流时的全塔效率。
⑤测定全塔的浓度(或温度)分布。
⑥测定塔釜再沸器的沸腾给热系数。
二、基本原理
在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。
回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。
回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。
实际回流比常取最小回流比的1.2~2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。
板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。
(1)总板效率E
E=N/Ne
式中E--总板效率;N理论板数(不包括塔釜);
Ne--实际板数。
(2)单板效率Eml
Eml=(xn-1-xn)/(xn-1-xn*)
式中Eml--以液相浓度表示的单板效率;
xn,xn-1--第n块板和第n-1块板的液相浓度;
xn*--与第n块板气相浓度相平衡的液相浓度。
总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因数。当物系与板型确定后,可通过改变气液负荷达到最高板效率;对于不同的板型,可以保持相同的物系及操作条件下,测定其单板效率,以评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。
若改变塔釜再沸器中加热器的电压,塔内上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数与加热量的关系。由牛顿冷却定律,可知Q=αA△tm
式中Q--加热量,kw;
α--沸腾给热系数,kw/(m2*K);
A--传热面积,m2;
△tm--加热器表面与主体温度之差,℃。
若加热器的壁面温度为ts ,塔釜内液体的'主体温度为tw ,则上式可改写为
Q=aA(ts-tw)
由于塔釜再沸器为直接电加热,则加热量Q为Q=U2/R式中U--电加热的加热电压,V; R--电加热器的电阻,Ω。
三、装置和流程
本实验的流程如图1所示,主要有精馏塔、回流分配装置及测控系统组成。
1.精馏塔
精馏塔为筛板塔,全塔共八块塔板,塔身的结构尺寸为:塔径∮(57×3.5)mm,塔板间距80mm;溢流管截面积78.5mm2,溢流堰高mm,底隙高度6mm;每块塔板开有43个直径为1.5mm的小孔,正三角形排列,孔间距为6mm。为了便于观察踏板上的汽-液接触情况,塔身设有一节玻璃视盅,在第1-6块塔板上均有液相取样口。
蒸馏釜尺寸为∮108mm×4mm×400mm.塔釜装有液位计、电加热器(1.5kw)、控温电热器(200w)、温度计接口、测压口和取样口,分别用于观测釜内液面高度,加热料液,控制电加热装置,测量塔釜温度,测量塔顶与塔釜的压差和塔釜液取样。由于本实验所取试样为塔釜液相物料,故塔釜内可视为一块理论板。塔顶冷凝器为一蛇管式换热器,换热面积为0.06m2,管外走冷却液。
图1精馏装置和流程示意图
1.塔顶冷凝器2.塔身3.视盅4.塔釜5.控温棒6.支座
7.加热棒8.塔釜液冷却器9.转子流量计10.回流分配器
11.原料液罐.原料泵13.缓冲罐14.加料口15.液位计
2.回流分配装置
回流分配装置由回流分配器与控制器组成。控制器由控制仪表和电磁线圈构成。回流分配器由玻璃制成,它由一个入口管、两个出口管及引流棒组成。两个出口管分别用于回流和采出。引流棒为一根∮4mm的玻璃棒,内部装有铁芯,塔顶冷凝器中的冷凝液顺着引流棒流下,在控制器的控制下实现塔顶冷凝器的回流或采出操作。即当控制器电路接通后,电磁圈将引流棒吸起,操作处于采出状态;当控制器电路断开时,电磁线圈不工作,引流棒自然下垂,操作处于回流状态。此回流分配器可通过控制器实现手动控制,也可通过计算机实现自动控制。
3.测控系统
在本实验中,利用人工智能仪表分别测定塔顶温度、塔釜温度、塔身伴热温度、塔釜加热温度、全塔压降、加热电压、进料温度及回流比等参数,该系统的引入,不仅使实验跟更为简便、快捷,又可实现计算机在线数据采集与控制。
4.物料浓度分析
本实验所用的体系为乙醇-正丙醇,由于这两种物质的折射率存在差异,且其混合物的质量分数与折射率有良好的线性关系,故可通过阿贝折光仪分析料液的折射率,从而得到浓度。这种测定方法的特点是方便快捷、操作简单,但精度稍低;若要实现高精度的测量,可利用气相色谱进行浓度分析。
混合料液的折射率与质量分数(以乙醇计)的关系如下。
.=60.8238-44.0529nD
式中.--料液的质量分数;
nD--料液的折射率(以上数据为由实验测得)。
四、操作要点
①对照流程图,先熟悉精馏过程中的流程,并搞清仪表上的按钮与各仪表相对应的设备与测控点。
②全回流操作时,在原料贮罐中配置乙醇含量20%~25%(摩尔分数)左右的乙醇-正丙醇料液,启动进料泵,向塔中供料至塔釜液面达250~300mm。
③启动塔釜加热及塔身伴热,观察塔釜、塔身t、塔顶温度及塔板上的气液接触状况(观察视镜),发现塔板上有料液时,打开塔顶冷凝器的水控制阀。
④测定全回流情况下的单板效率及全塔效率,在一定的回流量下,全回流一段时间,待该塔操作参数稳定后,即可在塔顶、塔釜及相邻两块塔板上取样,用阿贝折光仪进行分析,测取数据(重复2~3次),并记录各操作参数。
⑤实验完毕后,停止加料,关闭塔釜加热及塔身伴热,待一段时间后(视镜内无料液时),切断塔顶冷凝器及釜液冷却器的供水,切断电源,清理现场。
五、报告要求
①在直角坐标系中绘制x-y图,用图解法求出理论板数。
②求出全塔效率和单板效率。
③结合精馏操作对实验结果进行分析。
六、数据处理
(1)原始数据
①塔顶:nD1=1.3597,nD2=1.3599;塔釜:nD1=1.3778,nD2=1.3779
nD1=1.3658,nD2=1.3658;nD1=1.3678,nD2=1.3681。②第四块板:第五块板:(2)数据处理
①由附录查得101.325kPa下乙醇-正丙醇t-x-y关系:
表1:乙醇—正丙醇平衡数据(p=101.325kPa)序号1
2 3 4 5 6 7 8 9 10 11
液相组成x气相组成y沸点/℃ 0 0.6 0.188 0.210 0.358 0.461 0.546 0.600 0.663 0.844 1.0
0 0.240 0.318 0.339 0.550 0.650 0.711 0.760 0.799 0.914 1.0
97.16 93.85 92.66 91.60 88.32 86.25 84.98 84.13 83.06 80.59 78.38
乙醇沸点:78.38℃,丙醇沸点:97.16℃。
纯溶质(溶剂)折光率原始数据
纯物质冰乙醇正丙醇
折光率
1.3581 1.3579 1.3809 1.3805
均值1.3580 1.3807
回归方程:
由质量分数m=A-BnD代入m1=1 nD1=1.3580与m2=0 nD2=1.3807得.=60.8238-44.0529nD ① ②原始数据处理:
表2:原始数据处理
名称
塔顶塔釜第4块板第5块板
折光率nD
1.3597 1.3778 1.3658 1.3678
折光率nD
1.3599 1.3779 1.3658 1.3681
平均折光率nD质量分数ω摩尔分数x
1.3598 1.37785 1.3658 1.36795
0.9207 0.55 0.6563 0.5616
0.9380 0.1577 0.7136 0.6256
以塔顶数据为例进行数据处理:
D
nD1.nD2
1.3597.1.3599
.1.3598
将平均折光率带入①式
..60.8238.44.0529nD.60.8238.44.0529.1.3598.0.9207
0.9207
x...0.9380
1-0.92071-0.9207
...乙醇.正丙醇4660
③在直角坐标系中绘制x-y图,用图解法求出理论板数。
乙醇
参见乙醇-丙醇平衡数据作出乙醇-正丙醇平衡线,全回流条件下操作线方程为y=x,具体作图如下所示(塔顶组成,塔釜组成):
图2:乙醇—正丙醇平衡线与操作线图
④求出全塔效率和单板效率。
由图解法可知,理论塔板数为6.2块(包含塔釜),故全塔效率为E.
第5块板的入板液相浓度x4=0.7136,出板组成x5=0.6256
由y5=x4=0.7136查图2中乙醇和正丙醇相平衡图,得x5=0.5490
N6.2
.100%..100%.77.5%N总8
则第5块板单板效率Em1,5.
0.7136.0.6256
.100%.53.46%
0.7136.0.5490
七、误差分析及结果讨论
1.误差分析:
(1)实验过程误差:测定折光率时溶质组分有所挥发造成数据误差
(2)数据处理误差:使用手绘作图法求取理论塔板数存在一定程度的误差,尤其是在求取x5=0.5490时,直接在图上寻找对应点,误差较大。
(3)折光仪和精馏塔自身存在的系统误差。
2.结果讨论:
此次实验测得的全塔效率为77.5%,单板效率为53.46%,全回流操作稳定,全塔效率和塔板效率较为合理。
八、思考题
1.什么是全回流.全回流操作有哪些特点,在生产中有什么实际意义.如何测定全回流条件下的气液负荷.
答:a、冷凝后的液体全部回流至塔内,这称作全回流。
简单来说,就是塔顶蒸汽冷凝后全部又回到了塔中继续精馏。
b、D=0,实际生产是没有意义的,但一般生产之前精馏塔都要进行全回流操作,因为刚开始精馏时,塔顶的产品还不合格,而且让气液充分接触,使精馏塔尽快稳定、平衡。
U2
Q..q.r R c、要测定全回流条件下的气液负荷,利用公式,其中塔釜的加热电压和电阻已知,查出相变焓,则可以求出汽化量q,则有在全回流下L=V=q。
精馏实验报告5
学院:化学工程学院 姓名:学 号: 专业:化学工程与工艺 班 级:同组人员:
课程名称: 化工原理实验 实验名称: 精馏实验实验日期
北 京 化 工 大 学
实验五 精馏实验
摘要:本实验通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,根据数据绘出x-y图并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。通过实验,了解精馏塔工作原理。 关键词:精馏,图解法,理论板数,全塔效率,单板效率。
一、目的及任务
①熟悉精馏的工艺流程,掌握精馏实验的操作方法。
②了解板式塔的结构,观察塔板上汽-液接触状况。
③测定全回流时的全塔效率及单塔效率。
④测定部分回流时的全塔效率。
⑤测定全塔的浓度(或温度)分布。
⑥测定塔釜再沸器的沸腾给热系数。
二、基本原理
在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。
实际回流比常取最小回流比的1.2~2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。
板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。
(1) 总板效率E
E=N/Ne
式中E——总板效率;N——理论板数(不包括塔釜);
Ne——实际板数。
(2)单板效率Eml
Eml=(xn-1-xn)/(xn-1-xn*)
式中 Eml——以液相浓度表示的单板效率;
xn ,xn-1——第n块板和第n-1块板的液相浓度;
xn*——与第n块板气相浓度相平衡的液相浓度。
总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因数。当物系与板型确定后,可通过改变气液负荷达到最高板效率;对于不同的板型,可以保持相同的物系及操作条件下,测定其单板效率,以评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。
若改变塔釜再沸器中加热器的电压,塔内上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数与加热量的关系。由牛顿冷却定律,可知
Q=αA△tm
式中 Q——加热量,kw;
α——沸腾给热系数,kw/(m2*K);
A——传热面积,m2;
△tm——加热器表面与主体温度之差,℃。
若加热器的壁面温度为ts ,塔釜内液体的主体温度为tw ,则上式可改写为
Q=aA(ts-tw)
由于塔釜再沸器为直接电加热,则加热量Q为
Q=U2/R
式中 U——电加热的加热电压,V; R——电加热器的电阻,Ω。
三、装置和流程
本实验的'流程如图1所示,主要有精馏塔、回流分配装置及测控系
统组成。
1.精馏塔
精馏塔为筛板塔,全塔共八块塔板,塔身的结构尺寸为:塔径∮(57×3.5)mm,塔板间距80mm;溢流管截面积78.5mm2,溢流堰高12mm,底隙高度6mm;每块塔板开有43个直径为1.5mm的小孔,正三角形排列,孔间距为6mm。为了便于观察踏板上的汽-液接触情况,塔身设有一节玻璃视盅,在第1-6块塔板上均有液相取样口。
蒸馏釜尺寸为∮108mm×4mm×400mm.塔釜装有液位计、电加热器(1.5kw)、控温电热器(200w)、温度计接口、测压口和取样口,分别用于观测釜内液面高度,加热料液,控制电加热装置,测量塔釜温度,测量塔顶与塔釜的压差和塔釜液取样。由于本实验所取试样为塔釜液相物料,故塔釜内可视为一块理论板。塔顶冷凝器为一蛇管式换热器,换热面积为0.06m2,管外走冷却液。
图1 精馏装置和流程示意图
1.塔顶冷凝器 2.塔身3.视盅4.塔釜 5.控温棒 6.支座
7.加热棒 8.塔釜液冷却器 9.转子流量计 10.回流分配器
11.原料液罐 12.原料泵 13.缓冲罐 14.加料口 15.液位计
2.回流分配装置
回流分配装置由回流分配器与控制器组成。控制器由控制仪表和电磁线圈构成。回流分配器由玻璃制成,它由一个入口管、两个出口管及引流棒组成。两个出口管分别用于回流和采出。引流棒为一根∮4mm的玻璃棒,内部装有铁芯,塔顶冷凝器中的冷凝液顺着引流棒流下,在控制器的控制下实现塔顶冷凝器的回流或采出操作。即当控制器电路接通后,电磁圈将引流棒吸起,操作处于采出状态;当控制器电路断开时,电磁线圈不工作,引流棒自然下垂,操作处于回流状态。此回流分配器可通过控制器实现手动控制,也可通过计算机实现自动控制。
3.测控系统
在本实验中,利用人工智能仪表分别测定塔顶温度、塔釜温度、塔身伴热温度、塔釜加热温度、全塔压降、加热电压、进料温度及回流比等参数,该系统的引入,不仅使实验跟更为简便、快捷,又可实现计算机在线数据采集与控制。
4.物料浓度分析
本实验所用的体系为乙醇-正丙醇,由于这两种物质的折射率存在差异,且其混合物的质量分数与折射率有良好的线性关系,故可通过阿贝折光仪分析料液的折射率,从而得到浓度。这种测定方法的特点是方便快捷、操作简单,但精度稍低;若要实现高精度的测量,可利用气相色谱进行浓度分析。
混合料液的折射率与质量分数(以乙醇计)的关系如下。
?=58.9149—42.5532nD
式中 ?——料液的质量分数;
nD——料液的折射率(以上数据为由实验测得)。
四、操作要点
①对照流程图,先熟悉精馏过程中的流程,并搞清仪表上的按钮与各仪表相对应的设备与测控点。
②全回流操作时,在原料贮罐中配置乙醇含量20%~25%(摩尔分数)左右的乙醇-正丙醇料液,启动进料泵,向塔中供料至塔釜液面达250~300mm。
③启动塔釜加热及塔身伴热,观察塔釜、塔身t、塔顶温度及塔板上的气液接触状况(观察视镜),发现塔板上有料液时,打开塔顶冷凝器的水控制阀。
【精馏实验报告】相关文章:
精馏实验报告11-29
精馏实验报告范文06-02
精馏实验报告4篇11-29
精馏岗位职责04-17
实验报告实验报告11-16
科学实验报告-实验报告07-25
土壤实验报告范文_实验报告05-22
初中物理实验报告-实验报告08-17
科学实验报告实验报告范文05-26