函数的最大值和最小值说课稿

时间:2021-06-10 19:56:35 说课稿 我要投稿

函数的最大值和最小值说课稿

  【教材分析】

函数的最大值和最小值说课稿

  1.本节教材的地位与作用

  本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值” ,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义.

  2.教学重点

  会求闭区间上连续开区间上可导的函数的最值.

  3.教学难点

  高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法.

  4.教学关键

  本节课突破难点的'关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.

  【教学目标】

  根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:

  1.知识和技能目标

  (1)理解函数的最值与极值的区别和联系.

  (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值.

  (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.

  2.过程和方法目标

  (1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值.

  (2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处.

  (3)会求闭区间上连续,开区间内可导的函数的最大、最小值.

  3.情感和价值目标

  (1)认识事物之间的的区别和联系.

  (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题.

  (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.

  【教法选择】

  根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用.

  本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学.

  【学法指导】

  对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

  【教学过程】

  本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈回授”四个环节进行组织.

【函数的最大值和最小值说课稿】相关文章:

函数的最大值和最小值说课稿范文11-12

《函数的最大值和最小值》说课稿范文04-07

《函数最大值和最小值》说课稿范文11-03

高中数学《函数的最大值和最小值》说课稿范文10-19

高中数学《函数最大值和最小值》说课稿范文11-28

《函数的最大值和最小值》高中数学说课稿04-09

高中数学函数的最大值和最小值怎么求09-30

《最大值和最小值问题》教案设计08-28

正弦函数、余弦函数的图象和性质的说课稿07-12