《角的平分线的性质》新课标八年级数学上册说课稿

时间:2024-05-18 11:15:16 晓凤 说课稿 我要投稿
  • 相关推荐

《角的平分线的性质》新课标人教版八年级数学上册说课稿模板(通用12篇)

  在教学工作者实际的教学活动中,常常需要准备说课稿,说课稿有助于顺利而有效地开展教学活动。那要怎么写好说课稿呢?以下是小编为大家整理的《角的平分线的性质》新课标人教版八年级数学上册说课稿模板,欢迎大家分享。

《角的平分线的性质》新课标人教版八年级数学上册说课稿模板(通用12篇)

  《角的平分线的性质》新课标八年级数学上册说课稿 1

  今天,我说课的题目是《角的平分线的性质》第一课时,下面,我从教材分析、教学内容、教学目标、学情分析、教法与学法、教学过程的设计等六个方面对我的教学设计加以说明.

  一、教材分析

  本节课选自新人教版教材《数学》八年级上册第十一章第三节,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.角平分线的性质为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.

  二.教学内容

  本节课的教学内容包括角的平分线的作法、角的平分线的性质及初步应用.

  内容解析:

  教材通过充分利用现实生活中的实物原型,培养学生在实际问题中建立数学模型的能力.作角的平分线是几何作图中的基本作图.角的平分线的性质是全等三角形知识的延续,也是今后证明两个角相等或证明两条线段相等的重要依据.因此,本节内容在数学知识体系中起到了承上启下的作用.

  三、教学目标

  1、基本知识:了解尺规作图的原理及角的平分线的性质.

  2、基本技能

  (1)会用尺规作图作角的平分线。

  (2)会利用全等三角形证明角平分线的性质。

  (3)能运用角的平分线性质定理解决简单的几何问题

  3、数学思想方法:从特殊到一般

  4、基本活动经验:体验从操作、测量、猜想、验证的过程,获得验证几何命题正确性的一般过程的活动经验

  目标解析:

  通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力了解角的平分线的性质在生产,生活中的应用培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.

  四、学情分析

  刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学重点定为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用,难点是角平分线的性质的探究

  教学难点突破方法:

  (1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;

  (2)通过对比教学让学生选择简单的方法解决问题;

  (3)通过多媒体创设具有启发性的问题情境,使学生在积极的.思维状态中进行学习.

  五、教法和学法

  本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”.鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合.

  教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.

  六.教学过程的设计

  活动1.创设情景

  [教学内容1]

  生活中有很多数学问题:

  小明家居住在一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连.

  问题1:怎样修建管道最短?

  问题2:新修的两条管道长度有什么关系,画来看一看.

  [整合点1]利用多媒体渲染气氛,激发情感.

  教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。学生动手画图,猜测并说出观察到的结论.引导学生了解角的平分线有很多未知的性质需我们来解开,并板书课题.

  [设计意图]依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了点到直线的距离这一概念,为后续的学习作好知识上的储备.

  活动2.探究体验

  [教学内容2]

  要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线.出示仪器模型,介绍仪器特点(有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线.

  教师继续引导,用多媒体展示实验过程,学生口述,用三角形全等的方法证明AE是∠BAD的平分线.

  [设计意图]帮助学生体验从生产生活中分离,抽象出数学模型,并主动运用所学知识来解决问题.

  从上面的探究中可以得到作已知角的平分线的方法.

  [教学内容3]

  把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?

  教师提问,学生分组交流,归纳角的平分线的作法,口述证明角平分线的过程.

  [设计意图]根据画图过程,从实验操作中获得启示,明确几何作图的基本思路和方法,师生交流并归纳.

  教师先在黑板上示范作图,再利用多媒体演示作图过程及画法,加深印象,并强调尺规作图的规范性.

  利用三角形全等证明角平分线,进一步明确命题的题设与结论,熟悉几何证明过程.

  [教学内容4]

  作一个平角∠AOB的平分线OC,反向延长OC得到直线CD,请学生说出直线CD与AB的位置关系.并在此基础上再作出一个45的角.

  学生独立作图思考,发现直线AB与CD垂直.

  [设计意图]通过作特殊角的平分线,让学生掌握过直线上一点作已知直线的垂线及特殊角的方法,达到培养学生的发散思维的目的.

  《角的平分线的性质》新课标八年级数学上册说课稿 2

  一、说教材

  《角平分线性质》是北师大版八年级下册第一章第四节的内容,角平分线的性质在第一册的教材中已经介绍过,它的性质很重要,在几何里证明线段或角相等时常常用到它们,同时在做图中也运用广泛,运用HL定理来证明直角三角形全等的方法为证明角平分线的性质定理和逆定理创造了条件。性质定理和它的逆定理为证明线段相等、角相等开辟了新的途径,简化了证明过程。

  二、说学情

  接下来,我来谈谈我班学生情况。他们对于知识具有较好的理解能力和应用能力,喜欢合作探讨式学习,对数学学习有较浓厚的兴趣。在以往的学习中,学生的动手能力已经得到了一定的训练,本节课将进一步培养学生这些方面的能力。

  三、教学目标

  教学目标是教学活动实施的方向、和预期达到的结果、是一切教学活动的出发点和归宿,我精心设计了如下的教学目标:

  【知识与技能】

  进一步了解角平分线的性质和判定,能够证明角平分线的性质和判定定理并且会运用角平分线性质去解决问题。

  【过程与方法】

  通过对“角平分线性质”的探究,提析问题、解决问题的能力。

  【情感态度与价值观】

  通过一系列的证明过程,体验数学活动充满着探索性和创造性,增强学习数学的兴趣和勇于创新的精神。

  四、教学重难点

  本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:

  【重点】

  证明角平分线的性质和判定。

  【难点】

  灵活运用角平分线性质解决问题。

  五、教学方法

  根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。

  六、教学过程

  教学过程是师生积极参与、交往互动、共同发展的过程,具体教学过程如下:

  (一)导入新课

  问题: 习题1.8的第1题作三角形的三个内角的角平分线,你发现了什么?能证明自己发现的结论一定正确吗?

  于是,首先证明“三角形的三个内角的角平分线交于一点”

  当然学生可能会提到折纸证明、软件演示等方式证明,但最终,教师要引导学生进行逻辑上的证明。

  (设计意图:在这一环节,通过回顾上节课的知识来回顾三角形三个内角的角平分线的位置关系。进而引出本节课的内容,温故知新,让学生没有陌生感。)

  (二)新课讲授

  问题一:

  已知:如图,设△ABC的角

  平分线.BM、CN相交于点P,证明:P点在∠BAC的角平分线上.

  证明:过P点作PD⊥AB,PF⊥AC,PE⊥BC,其中D、E、F是垂足.

  ∵BM是△ABC的角平分线,点P在BM上,∴PD=PE(角平分线上的点到这个角的两边的距离相等).

  同理:PE=PF.

  ∴PD=PF.

  ∴点P在∠BAC的平分线上(在一个角的`内部,且到角两边距离相等的点,在这个角的平分线上).

  ∴△ABC的三条角平分线相交于点P.

  在证明过程中,我们除证明了三角形的三条角平分线相交于一点外,还有什么“附带”的成果呢?

  (PD=PE=PF,即这个交点到三角形三边的距离相等.)

  于是我们得出了有关三角形的三条角平分线的结论,即定理三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.

  下面我通过列表来比较三角形三边的垂直平分线和三条角平分线的性质定理

  问题二:

  如图:直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?你如何发现的?

  要求学生思考、交流。实况如下:

  [生]有一处.在三条公路的交点A、B、C组成的△ABC三条角平分线的交点处.因为三角形三条角平分线交于一点,且这一点到三边的距离相等.而现在要建的货物中转站要求它到三条公路的距离相等.这一点刚好符合.

  [生]我找到四处.(同学们很吃惊)

  除了刚才同学找到的三角形ABC内部的一点外,我认为在三角形外部还有三点.作∠ACB、∠ABC外角的平分线交于点P1(如下图所示),我们利用角平分线的性质定理和判定定理,可知点P1在∠CAB的角平分线上,且到l1、l2、l3的距离相等.同理还有∠BAC、∠BCA的外角的角平分线的交点P3;因此满足条件共4个,分别是P、P1、P2、P3

  教师讲评。

  (设计意图:学生容易混淆角平分线和垂直平分线定理,在这里以例题的方式讲解更易于学生接受和理解并且能够解决实际问题。)

  (三)例题讲解

  [例1]如图,在△ABC中.AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.

  (1)已知CD=4 cm,求AC的长;

  (2)求证:AB=AC+CD.

  分析:本例需要运用前面所学的多个定理,而且将计算和证明融合在一起,目的是使学生进一步理解、掌握这些知识和方法,并能综合运用它们解决问题.第(1)问中,求AC的长,需求出BC的长,而BC=CD+DB,CD=4 cIn,而BD在等腰直角三角形DBE中,根据角平分线的性质,DE=CD=4cm,再根据勾股定理便可求出DB的长.第(2)问中,求证AB=AC+CD.这是我们第一次遇到这种形式的证明,利用转化的思想AB=AE+BE,所以需证AC=AE,CD=BE.

  (1)解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AB.

  ∴DE=CD=4cm(角平分线上的点到这个角两边的距离相等).

  ∵∠AC=∠BC ∴∠B=∠BAC(等边对等角).

  ∵∠C=90°,∴∠B=2(1)×90°=45°.

  ∴∠BDE=90°—45°=45°.

  ∴BE=DE(等角对等边).

  在等腰直角三角形BDE中

  BD=2DE2.=4 2 cm(勾股定理),∴AC=BC=CD+BD=(4+42)cm.

  (2)证明:由(1)的求解过程可知,Rt△ACD≌Rt△AED(HL定理)

  ∴AC=AE.

  ∵BE=DE=CD,∴AB=AE+BE=AC+CD.

  [例2]已知:如图,P是么AOB平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C、D.

  求证:(1)OC=OD;(2)OP是CD的垂直平分线.

  证明:(1)P是∠AOB角平分线上的一点,PC⊥OA,PD⊥OB,∴PC=PD(角平分线上的点到角两边的距离相等).

  在Rt△OPC和Rt△OPD中,OP=OP,PC=PD,∴Rt△OPC≌Rt△OPD(HL定理).

  ∴OC=OD(全等三角形对应边相等).

  (2)又OP是∠AOB的角平分线,∴OP是CD的垂直平分线(等腰三角形“三线合一”定理).

  思考:图中还有哪些相等的线段和角呢?

  (设计意图:通过书本例题,巩固本节课关于角平分线性质的定理以及应用,学生能够通过例题来理解其定理的使用方法以及情况。)

  (四)课时小结

  本节课我们利用角平分线的性质和判定定理证明了三角形三条角平分线交于一点,且这一点到三角形各边的距离相等.并综合运用我们前面学过的性质定理等解决了几何中的计算和证明问题.

  (设计意图:通过小结,引导学生从知识内容和学习过程两个方面总结自己的收获,通过建立知识之间的联系,凸显将复杂图形转化为简单图形的基本单元的化归思想,强调从特殊到一般地研究问题的方法。)

  (五)课后作业

  习题1.9第1、2题并且有能力的同学预习下一节课内容。

  (设计意图:学生通过课前的预习,能对新知识有一个初步的理解,对新知识学习的顺利进行有着促进的作用。)

  七、板书设计

  为了体现教材中的知识点,以便于学生能够理解掌握,我采用图表式的板书,这就是我的板书设计。

  角平分线性质

  定理:角平分线上的点到这个角两边的距离相等。

  定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上。

  《角的平分线的性质》新课标八年级数学上册说课稿 3

  一、说教材

  1、教材的地位及作用:

  本节课是在学生学习了角平分线的概念和全等三角形的基础上进行教学的,它主要学习角平分线的作法和角平分线的性质定理。这节课的学习将为证明线段或角相等开辟了新的思路,并为今后对圆的内心的学习作好知识准备.因此它既是对前面所学知识的应用,又是为后续学习作铺垫,具有举足轻重的作用,因此本节课在教材中占有非常重要的地位。

  2、教学目标:

  根据《新课程》对本节课内容的要求,针对学生的一般性认知规律及学生个性品质发展的需要,确定教学目标如下:

  (1)知识与技能:

  掌握作已知角的平分线的方法和角平分线性质;

  能运用角平分线及其性质解决有关的数学问题。

  (2)过程与方法:

  在经历角平分线的性质定理的推导过程中,提高综合运用三角形的有关知识解决问题的能力,并初步了解角的平分线的性质在生活、生产中的应用;

  在学习过程中发展几何直觉,培养数学推理能力。

  (3)情感态度:

  培养学生探究问题的兴趣,增强解决问题的自信心。获得解决问题的成功体验,逐步发展培养学生的理性精神。

  3、教学重点、难点:

  根据教材的内容及作用确定本节课的教学

  重点:角平分线的性质的证明及运用,难点:角平分线的性质的探究

  二、学情分析

  学生具备基础的几何知识,有一定的推理能力,好奇心强,有探究的欲望,能在教师的引导下发现生活中的数学知识,并运用所学推出新知。

  三、说教法

  现代教学理论认为:在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我将借助多媒体,创设问题情景,采用“启发诱导—探索发现”以及“讲练结合”的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的引导下发现、分析和解决问题,给学生留出足够的思考时间和空间,从真正意义上完成对知识的自我建构。

  四、说学法

  在教学中,学生始终是主体,教师只是起引导作用。学生的学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。学习者在一定情境中对学习材料的亲身经验和发现,才是学习者最有价值的东西.在教授知识的同时,必须设法教给学生好的学习方法,让他们“会学习”.通过本节课的教学,让学生学会从生活实际中发现数学问题,探究原理并运用其解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力。让学生在观察、比较、分析、概括等活动中,体验知识的生成、发展与应用。

  五、教学过程:

  (一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

  (二)合作交流探究新知(活动一)探究角平分仪的原理。具体过程如下:

  播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;

  并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;

  并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

  设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。

  (活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.

  分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

  讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:

  已知:∠AOB.

  求作:∠AOB的平分线

  .作法:

  (1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

  (2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.

  (3)作射线OC,射线OC即为所求.设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

  议一议:

  1.在上面作法的第二步中,去掉“大于MN的`长”这个条件行吗?

  2.第二步中所作的两弧交点一定在∠AOB的内部吗?

  设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

  学生讨论结果总结:

  1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.

  2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

  3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.

  4.这种作法的可行性可以通过全等三角形来证明.(活动三)探究角平分线的性质思考:已知一角及其角平分线添加辅助线构成全等三角形;

  构成全等的直角三角形。这样的三角形有多少对?这样设计的目的是加深对全等的认识,自然引出性质的证明图形及方法,符合由已知推导新知教学原则,也为后面涉及角平分线题型作辅助线起了潜移默化的作用。证明过程学生完全能够自己完成。

  已知:如图,OC是∠AOB的平分线,P为OC上任意一点,PD⊥ OA于D,PE⊥ OB于E.求证:PD=PE.引导分析PD、PE就是角平分线上的点到角的两边的距离。由学生归纳角平分线的性质定理,由此得到:

  定理1在角平分线上的点,到这个角的两边的距离相等.

  (角平分线的性质定理)设计目的:培养学生的数学抽象概括能力及理性精神。

  表达方式:

  如图4,∵ P是∠AOB的平分线OC上一点,PD⊥OA于D,PE⊥OB于E,∴ PD=PE.图4设计目的:告诉学生运用性质定理的两个前提,使学生能够正确使用定理。

  练习(1)判断正误,并说明理由:

  ①如图5,②如图6,∵  P是∠AOB的平分线∵ PD⊥OA于D,OC上任意一点,PE⊥OB于E,∴ PD=PE.∴ PD=PE.图5图6(2)填空:如图7,△ABC中,∠C=90°,BD平分∠ABC,CD=3cm,则点D到AB的距离为cm.此设计旨在加深对性质的理解和学会初步的运用,突出本节重点。

  图7(三)、综合应用:

  例题已知:如图,∠1=∠2,CD⊥AB于D,BE⊥AC于E,BE、CD交于点O.求证:OC=OB.进一步提出:

  (1)思考不改变已知条件:

  ①图中还有哪些线段相等?

  ②图中有那些全等的三角形?

  ③若连结ED,则AO与ED有怎样的位置关系?设计意图:本例对学生来说更具挑战性,既含新知又有旧知,旨在培养学生的综合运用能力、推理能力和数学思维的周密性;

  另外对一题的引申变化能激发学生对数学知识的深入探究;

  使教学达到举一反三,事半功倍的效果。让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力;

  使他们认识学数学不是题海战术而是思维的革命。

  (2)思考

  在直角三角形中画出一个锐角的平分线,除前面的方法外,你还有其他方法吗?设计意图:探索画角平分线的新方法,培养创新精神。

  (四)巩固训练

  (1)已知:如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.

  (2)教材第22页练习题。

  让学生加深对角平分线性质的理解,提高运用知识的能力,为后面解决与角平分线有关的实际问题的打下基础。

  (五)小结(1、你学习了什么?2、你学会了什么?3、你有什么疑惑?)这样可以进一步培养学生的概括能力、语言表达能力,鼓励学生对本节知识归纳总结。既有知识的总结,又有方法的提炼,引导学生从多角度将本节知识归纳总结,感悟点滴,从而将知识系统化、条理化。

  点学生应按由差生再中等生最后优生的顺序,这样差生有话说,后来优生讲时,他们也有思考的时间和空间。

  (六)布置作业教材第22页习题第二题和第四题两题均能考查学生对角平分线的性质的理解和运用,突出本节课的主旨。第二题是角平分线性质与直角三角形全等的综合运用,可培养学生的推理思维能力。第四题可以发展学生的直觉---------证点到线的距离相等可先证这点在角平分线上。

  六、教学设计说明:

  本节课我是以观察为起点,以问题为主线,以培养能力为核心的宗旨;

  遵照教师为主导,学生为主体,训练为主线的教学原则。情景引入,激发兴趣,学习过程体现自主,知识结构循序渐进,转化思想有机渗透,注重了师生互动共同发展的过程,给学生构建自主探究、合作交流的舞台,使他们在自主探究的过程中理解角的平分线的性质,并获得数学活动的经验,提高探究、发现和创新能力。

  《角的平分线的性质》新课标八年级数学上册说课稿 4

  一、教学目标

  1、了解推理。证明的格式,掌握平行线判定公理和第一个判定定理。

  2、会用判定公理及第一个判定定理进行简单的推理论证。

  3、通过模型演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力。

  二、学法引导

  1、教师教法:启发式引导发现法。

  2、学生学法:独立思考,主动发现。

  三、重点、难点及解决办法

  (一)重点

  在观察实验的基础上进行公理的概括与定理的推导。

  (二)难点

  判定定理的形成过程中逻辑推理及书写格式。

  (三)解决办法

  1、通过观察实验,巧妙设问,解决重点。

  2、通过引导正确思维,严格展示推理书写格式,明确方法来解决难点。疑点。

  四、课时安排

  l课时

  五、教具学具准备

  三角板。投影胶片。投影仪。计算机。

  六、师生互动活动设计

  1、通过两组题,复习旧知,引入新知。

  2、通过实验观察,引导思维,概括出公理及定理的推导,并以练习进行巩固。

  3、通过教师提问,学生回答完成归纳小结。

  七、教学建议

  1、教材分析

  (1)知识结构:

  由平行线的画法,引出公理(同位角相等,两直线平行)。由公理推出:内错角相等,两直线平行。同旁内角互补,两条直线平行,这两个定理。

  (2)重点。难点分析:

  本节的重点是:公理及两个判定定理。一般的定义与第一个判定定理是等价的都可以做判定的方法。但平行线的定义不好用来判定两直线相交还是不相交。这样,有必要借助两条直线被第三条直线截成的角来判定。因此,这一个判定公理和两个判定定理就显得尤为重要了。它们是判断两直线平行的依据,也为下一节,学习好平行线的性质打下了基础。

  本节内容的难点是:理解由判定公理推出判定定理的证明过程。学生刚刚接触用演绎推理方法证明几何定理或图形的`性质,对几何证明的意义还不太理解。有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明。这些都使几何的入门教学困难重重。因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范。创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理。

  2、教学建议

  在平行线判定公理的教学中,应充分体现一条主线索:“充分实验—仔细观察—形成猜想—实践检验—明确条件和结论。”

  教师可演示教材中所示的教具,还可以让每个学生都用三角板和直尺画出平行线。在此过程中,注意角的变化情况。事实充分,学生可以理解,如果同位角相等,那么两直线一定会平行。

  公理后,有些同学可能会意识到“内错角相等,两直线也会平行”。教师可组织学生按所给图形进行讨论。如何利用已知和几何的公理。定理来证明这个显然成立的事实。也可多叫几个同学进行重复。逐步使学生欣赏到数学证明的严谨性。另一个定理的发现与证明过程也与此类似。

  《角的平分线的性质》新课标八年级数学上册说课稿 5

  教学目标

  1.了解角平分线的性质,并运用其解决一些实际问题。

  2.经历操作,推理等活动,探索角平分线的性质,发展空间观念,在解决问题的过程中进行有条理的思考和表达。

  教材分析

  重点:角平分线性质的探索。

  难点:角平分线性质的应用。

  教学方法:

  预学----探究----精导----提升

  教学过程

  一创设问题情境,预学角平分线的性质

  阅读课本P128-P129,并完成预学检测。

  二合作探究

  如图,OC为∠AOB的角平分线,P为OC上任意一点。

  提问:

  1.如何画出∠AOB的'平分线?

  2.若点P到角两边的距离分别为PD,PE,量一量,PD,PC是否相等?你能说明为什么吗?

  让学生活动起来,通过测量,比较,得出结论。

  教师鼓励学生大胆猜测,肯定它们的发现。

  归纳:角平分线上任意一点到角两边的距离相等。

  三想一想,巩固角平分线的性质

  三条公路两两相交,为更好的使公路得到维护,决定在三角区建立一个公路维护站,那么这个维护站应该建在哪里?才能使维护站到三条公路的距离都相等?

  三做一做,拓展课题

  如图,P为△ABC的外角平分线上一点,且PE⊥AB,PD⊥AC,E,D分别是垂足,试探索BE与PB+PD的大小关系。

  让学生充分讨论,鼓励学生自主完成。

  教师归纳:

  因为射线AP是△ABC的外角∠CAE平分线,

  所以PD=PE(角平分线上的点到角两边的距离相等)

  所以PB+PD=PB+PE

  又PB+PE>BE(三角形两边之和大于第三边)

  所以PB+PD>BE

  思考:若CP也平分△ABC中的∠ACB的外角,则射线BP有怎样的性质?点P又有怎样的位置?

  四课堂练习

  课本P130练习

  五小结

  本节课学习了角平分线的性质:角平分线上的点到这个角两边的距离相等,反过来,到一个角两边距离相等的点,在这个角的平分线上,三角形的三条角平分线交于一点,且这一点到三角形三边的距离相等。

  六作业

  1.课本P130习题A组T1,T2

  2.基础训练同步练习。

  3.选作拓展题。

  七课后反思:

  新旧教法对比:新教法更有利于培养学生合作学习的能力。

  学生对于角平分线的性质可以倒背如流,但就是容易把到角两边的距离看错,在以后的教学中要多加强对距离的认识。

  《角的平分线的性质》新课标八年级数学上册说课稿 6

  学习目标:

  1了解角平分线的性质。

  2并运用角平分线的性质解决一些实际问题。

  预学检测:

  1角平分线上任意一点到 相等。

  2⑴如图,已知∠1=∠2,DE⊥AB,

  DF⊥AC,垂足分别为E、F,则DE____DF.

  ⑵已知DE⊥AB,DF⊥AC,垂足分别

  为E、F,且DE=DF,则∠1_____∠2.

  学点训练:

  1.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D.下列结论中错误的是()

  A.PC=PDB.OC=OD

  C.∠CPO=∠DPOD.OC=PC

  2.如图,△ABC中,∠C=90°,AC=BC,

  AD是∠BAC的平分线,DE⊥AB于E,

  若AC=10cm,则△DBE的周长等于()

  A.10cmB.8cmC.6cmD.9cm

  巩固练习:

  已知:如图,在△ABC中,∠A=90°,AB=AC,

  BD平分∠ABC.求证:BC=AB+AD

  拓展提升:

  如图,P为△ABC的`外角平分线上一点,且PE⊥AB,PD⊥AC,E,D分别是垂足,试探索BE与PB+PD的大小关系。

  《角的平分线的性质》新课标八年级数学上册说课稿 7

  一、教学目标:

  (一)掌握的知识与技能:

  1、经历折纸。画图等操作过程认识三角形的高。中线。角平分线,结合图形,会用几何语言表述。

  2、会用工具准确地画出三角形的高。中线与角平分线。

  (二)经历的教学思考:

  经历折纸、画图、观察、思考、交流等活动,发展空间观念和表达能力

  (三)培养的情感态度和价值观:

  通过数学活动,让学生体验和理解三角形中的特殊线段,结合图形认识三角形的高。中线。角平分线所揭示的数量关系,学会发现问题,解决问题。

  二、教学重难点:

  1、重点:

  (1)了解三角形的高、中线。角平分线的概念,会用工具准确画出三角形高。中线。角平分线。

  (2)了解三角形的三条高,三条中线与三条角平分线分别交于一点。

  2、难点:

  (1)三角形平分线与角平分线的区别,三角形的高与垂线的区别。

  (2)钝角三角形高的画法。

  (3)不同的三角形三条高的.位置关系。

  三、教学方法:

  自主探究,合作交流

  四、教学工具:

  三角形纸片,三角板,直尺

  五、教学过程:

  1、各组组长检查预习作业完成情况。

  2、师生问好。

  3、情境导入:【大屏幕显示】白雪公主有一块三角形的煎饼,她打算把煎饼分成面积相等的七块给小矮人,想了很久也不知道怎么分,你能帮助她吗?

  4、展示本课学习目标【大屏幕显示】

  5、学生自学课本p65—66内容后,完成导学案。(小组共同完成,组长组织)教师巡视全班。(导学案附后)

  6、通过题目检查学生自学情况。【大屏幕显示】(学生抢答)

  7、将学生在自学过程中的疑难问题适当加以点拨。

  8、学生完成课堂练习,完成后交给组长评分。(课堂练习附后)

  9、共同完成拓展练习。

  10、共同完成课前设疑的问题。现在你能帮助白雪公主了吗?

  11、课堂小结:由学生总结,互相补充。

  12、布置课下作业。

  【导学案和课堂练习题附后】

  《角的平分线的性质》新课标八年级数学上册说课稿 8

  重点与难点分析:

  本节内容的重点是及其推论。等腰三角形两底角相等(等边对等角)是证明同一三角形中两角相等的重要依据;而在推论中提到的等腰三角形底边上的高。中线及顶角平分线三线合一这条重要性质也是证明两线段相等,两个角相等及两直线互相垂直的重要依据。为证明线段相等,角相等或垂直平提供了方法,在选择时注意灵活运用。

  本节内容的难点是文字题的证明。对文字题的证明,首先分析出命题的题设和结论,结合题意画出草图形,然后根据图形写出已知。求证,做到不重不漏,从而转化为一般证明题。这些环节是学生感到困难的。

  教法建议:

  数学教学的核心是学生的“再创造”。根据这一指导思想,本节课教学可通过精心设置的一个个问题链,激发学生的求知欲,最终在老师的指导下发现问题。解决问题。为了充分调动学生的积极性,使学生变被动学习为主动学习,本课教学拟用启发式问题教学法。具体说明如下:

  (1)发现问题

  本节课开始,先投影显示图形及问题,让学生观察并发现结论。提出问题让学生思考,创设问题情境,激发学生学习的欲望和要求。

  (2)解决问题

  对所得到的结论通过教师启发,让学生完成证明。指导学生归纳总结,从而顺其自然得到本节课的一个定理及其两个推论。多让学生亲自实践,参与探索发现,领略知识形成过程,这是课堂教学的基本思想和教学理念。

  (3)加深理解

  学生学习的过程是对知识的消化和理解的过程,通过例题的解决,提高和完善对定理及其推论理解。这一过程采用讲练结合。适时点拨的教学方法,把学生的注意力紧紧吸引在解决问题身上,让学生的思维活动在老师的引导下层层展开,让中国学习联盟胆参与课堂教学,使他们“听”有所“思”。“练”有所“获”,使传授知识与培养能力融为一体。一。教学目标:

  1、掌握定理的证明及这个定理的两个推论;

  2、会运用证明线段相等;

  3、使学生掌握一般文字题的证明;

  4、通过文字题的证明,提高学生几何三种语言的互译能力;

  5、逐步培养学生逻辑思维能力及分析实际问题解决问题的能力;

  6、渗透对称的数学思想,培养学生数学应用的观点;

  教学重点:

  及其推论

  教学难点:

  文字题的证明

  教学用具:

  直尺,微机

  教学方法:

  问题探究法

  教学过程:

  1、性质定理的发现与证明

  (1)投影显示:

  一般学生都能发现等腰三角形的两个底角相等(若有其它发现也要给予肯定),

  (2)提醒学生:凭观察作出的判断准确吗?怎样证明你的判断?

  师生讨论后,确定用全等三角形证明,学生亲自动手作出证明。证明略。

  教师指出:定理提示了三角形边与角的转化关系,由两边相等转化为两角相等,这是今后证明两角相等常用的依据,其功效不亚于利用全等三角形证明两角相等。

  2、推论1的发现与证明

  投影显示:

  由学生观察发现,等腰三角形顶角平分线平分底边并且垂直于底边。

  启发学生自己归纳得出:顶角平分线。底边上的中线。底边上的高互相重合。

  学生口述证明过程。

  教师指出:等腰三角形的顶角的平分线,底边上的中线。底边上的高这“三线合一”的性质有多重功能,可以证明两线段相等,两个角相等以及两条直线的互相垂直,也可证线段成角的倍分问题。

  3、推论2的发现与证明

  投影显示:

  一般学生都能发现等边三角形的三个内角都为。然后启发学生与等腰三角形的“三线合一”作类比,自己得出等边三角形的.“三线合一”。

  4、定理及其推论的应用

  小结:渗透分类思想,培养思维的严密性。

  例2。已知:如图,点D。E在△ABC的边BC上,AB=AC,AD=AE

  求证:BD=CE

  证明:作AF⊥BC,垂足为F,则AF⊥DE

  ∵AB=AC,AD=AE(已知)

  AF⊥BC,AF⊥DE(辅助线作法)

  ∴BF=CF,DF=EF(等腰三角形底边上的高与底边上的中线互相重合)

  ∴BD=CE

  强调说明:等腰三角形中的“三线合一”常常作为解决等腰三角形问题的辅助线,添加辅助线时,有时作顶角的平分线,有时作底边中线,有时作底边的高,有时作哪条线都可以,有时却不能,还要根据实际情况来定。

  例3、已知:如图,D是等边△ABC内一点,DB=DA,BP=AB,DBP= DBC

  求证:P=

  证明:连结OC

  在△BPD和△BCD中

  在△ADC和△BCD中

  因此,P=

  例4求证:等腰三角形两腰上中线的交点到底边两端点的距离相等

  已知:如图,AB=AC,BD。CE分别为AC边。AB边的中线,它们相交于F点

  求证:BF=CF

  证明:∵BD。CE是△ABC的两条中线,AB=AC

  ∴AD=AE,BE=CD

  在△ABD和△ACE中

  ∴△ABD≌△ACE

  ∴ 1= 2

  在△BEF和△CED中

  ∴△BEF≌△CED

  ∴BF=FC

  设想:例1到例4,由易到难地安排学生对新授内容的练习和巩固。在以上教学中,特别注意“一般解题方法”的运用。

  在四个例题的教学中,充分发挥学生与学生之间的互补性,从而提高认识,完善认知结构,使课堂成为学生发挥想象力和创造性的“学堂”

  5、反馈练习:

  出示图形及题目:

  将实际问题数学化,培养学生应用能力。

  6、课堂小结:

  教师引导学生小结

  (1)

  (2)等边三角形的性质

  (3)文字证明题的书写步骤

  7、布置作业:

  a、书面作业P96#1.2

  b、上交作业P96#4.7.8

  c、思考题:

  已知:如图:在△ABC中,AB=AC,E在CA的延长线上,∠AEF=∠AFE。

  求证:EF⊥BC

  证明:作BC边上的高AM,M为垂足

  ∵AM⊥BC

  ∴∠BAM=∠CAM

  又∵∠BAC为△AEF的外角

  ∴∠BAC =∠E+∠EFA

  即∠BAM+∠CAM=∠E=∠EFA

  ∵∠AEF=∠AFE

  ∴∠CAM=∠E

  ∴EF∥AM

  ∵AM⊥BC

  ∴EF⊥BC

  七、板书设计:

  (略)

  《角的平分线的性质》新课标八年级数学上册说课稿 9

  一、教学目标

  【知识与技能】了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明与计算。

  【过程与方法】在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力。

  【情感态度与价值观】在主动参与数学活动的过程中,增强探究问题的兴趣。有合作交流的意识。动手操作的能力与探索精神,获得解决问题的成功体验。

  二、教学重难点

  【重点】角的平分线的性质的证明及应用。

  【难点】角的平分线的性质的探究。

  三、教学过程

  (一)导入新课

  1、复习角平分线的画法

  2、利用PPT创设情景:

  如图是小明制作的`风筝,他根据AB=AD,BC=DC。不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?

  (二)生成新知

  探究做一做(学生独立完成,同组同学交流,找学生到黑板上板演。教师纠正答案)

  如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开。观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论。

  0011。jpg

  ∴△PDO≌△PEO(AAS)

  ∴PD=PE。

  (三)深化新知

  思考:角的平分线的性质在应用时应该注意什么问题?(由学生讨论汇报)

  (四)应用新知

  1、例题:解决导入中PPT的问题

  2、练一练:下面四个图中,点P都在∠AOB的平分线上,则图形_____中PD=PE。

  (五)小结作业

  小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?

  作业:必做题,选做题,思考题:角平分线性质的逆命题并证明。

  《角的平分线的性质》新课标八年级数学上册说课稿 10

  一、教学分析

  1、教学内容分析

  本节课是新人教版教材《数学》八年级上册第11.3节第一课时内容,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的内容包括角平分线的作法。角平分线的性质及初步应用。作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。因此,本节内容在数学知识体系中起到了承上启下的作用。同时教材的安排由浅入深。由易到难。知识结构合理,符合学生的心理特点和认知规律。

  2、教学对象分析

  刚进入初二的学生观察。操作。猜想能力较强,但归纳。运用数学意识的思想比较薄弱,思维的广阔性。敏捷性。灵活性比较欠缺,需要在课堂教学中进一步加强引导。根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础。

  二、教学目标

  1、知识与技能:

  (1)掌握用尺规作已知角的平分线的方法。

  (2)理解角的平分线的性质并能初步运用。

  2、数学思考:通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力。

  3、解决问题:

  (1)初步了解角的平分线的性质在生产。生活中的应用。

  (2)培养学生的数学建模能力。

  4、情感与态度:充分利用多媒体教学优势,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的.成功体验,激发学生应用数学的热情。

  三、教学重点。难点

  重点:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。

  难点:

  (1)对角平分线性质定理中点到角两边的距离的正确理解;

  (2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)

  四、教学过程

  教学环节设计

  1、提出问题,思考探究

  问题1:

  生活中有很多数学问题:

  小明家居住在某小区一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连。

  (1)怎样修建管道最短?

  (2)新修的两条管道长度有什么关系,画来看一看。

  [设计意图]

  依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了点到直线的距离这一概念,为后续的学习作好知识上的储备。

  问题2:

  要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用简易平分角的仪器来画角的平分线。出示仪器模型,介绍仪器特点(有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线。为什么?

  [设计意图]

  体验从生产生活中分离,抽象出数学模型,并主动运用所学知识来解决问题。从上面的探究中可以得到作已知角的平分线的方法。

  问题3:

  把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?

  [设计意图]

  从实验操作中获得启示,明确几何作图的基本思路和方法。

  问题4:

  作一个平角∠AOB的平分线OC,反向延长OC得到直线CD,请学生说出直线CD与AB的位置关系。并在此基础上再作出一个45度的角。

  [设计意图]

  通过作特殊角的平分线,让学生掌握过直线上一点作已知直线的垂线及特殊角的方法,达到培养学生的发散思维的目的

  问题5:

  让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕。

  (1)第一次的折痕和角有什么关系?为什么?

  (2)第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?

  [设计意图]

  培养学生的动手操作能力和观察能力,为下面进一步揭示角平分线的性质作好铺垫。

  2、教师点拨,归纳概括

  按照折纸的顺序画出角及折纸形成的三条折痕。让学生分组讨论。交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质。(角的平分线上的点到角两边的距离相等)结合图形写出已知,求证,分析后写出证明过程。教师归纳,强调定理的条件和作用。

  教师用文字语言叙述得到的结论。引导学生结合图形写出已知。求证,分析后写出证明过程,并利用实物投影展示。证明后,教师强调经过证明正确的命题可作为定理。同时强调文字命题的证明步骤。

  [设计意图]

  经历实践→猜想→证明→归纳的过程,符合学生的认知规律,尤其是对于结论的验证,信息技术在此体现其不可替代性,从而把学生的直观体验上升到理性思维。

  3、例题解析、应用新知

  例1在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,

  DF⊥AC,垂足分别是E,F。

  求证:EB=FC。

  [设计意图]

  为突出本节课重点。突破难点而设计的一项活动。让学生运用性质解决数学问题,通过利用多媒体对一些边进行变色,提醒学生直接运用定理,不要仍旧去找全等三角形。同时通过信息技术方便进行一题多解及一题多变研究,更好的拓展学生解题思路及形成知识运用能力。两道变题同时展示,符合高效课堂要求。通过学生观察识图。独立思考。小组讨论,培养学生合作交流的意识。

  例2已知:△ABC的角平分线BM。CN相交于点P。

  求证:点P到三边AB。BC。CA的距离相等。

  [教学方法手段]

  限时让学生独立思考分析,然后交流证题思路,再通过多媒体展示一般证明过程。

  [设计意图]

  通过问题的解决,帮助学生更好的理解角平分线的性质,并达到能熟练运用的程度。

  4、课堂练习,巩固提高

  课后练习1、2题。

  [设计意图]

  通过练习,巩固角平分线的性质。

  5、课堂小结,回顾反思

  (1)这节课你有哪些收获,还有什么困惑?

  (2)通过本节课你了解了哪些思考问题的方法?

  [设计意图]

  通过引导学生自主归纳,调动学生的主动参与意识,锻炼学生归纳概括与表达能力。

  6、布置作业,信息反馈

  [设计意图]

  通过课后动手练习作业,教师批改作业,检查学生本节课的学习效果,从中发现问题,及时调整教学策略。

  必做题:教材第22页第1。2。3题

  选做题:教材第23页第6题

  五、板书设计:

  (略)

  《角的平分线的性质》新课标八年级数学上册说课稿 11

  教学目标

  1、应用三角形全等的知识,解释角平分线的原理.

  2.会用尺规作一个已知角的平分线.

  教学重点

  利用尺规作已知角的平分线.

  教学难点

  角的平分线的作图方法的提炼.

  教学过程

  Ⅰ.提出问题,创设情境

  问题1:三角形中有哪些重要线段.

  问题2:你能作出这些线段吗?

  Ⅱ.导入新课

  在学直角三角形全等的条件时有这样一个题:

  在∠AOB的两边OA和OB上分别取OM=ON,MC⊥OA,NC⊥OB.MC与NC交于C点.

  求证:∠MOC=∠NOC.

  通过证明Rt△MOC≌Rt△NOC,即可证明∠MOC=∠NOC,所以射线OC就是∠AOB的平分线.

  受这个题的.启示,我们能不能这样做:

  在已知∠AOB的两边上分别截取OM=ON,再分别过M、N作MC⊥OA,NC⊥OB,MC与NC交于C点,连接OC,那么OC就是∠AOB的平分线了.

  思考:这个方案可行吗?(学生思考、讨论后,统一思想,认为可行)

  议一议:图中是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?

  要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB.

  ∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.

  看看条件够不够. 所以△ABC≌△ADC(SSS)

  《角的平分线的性质》新课标八年级数学上册说课稿 12

  【教学目标】

  1.使学生掌握角平分线的性质定理和判定定理,并会用两个定理解决有关简单问题.

  2.通过引导学生参与实验、观察、比较、猜想、论证的过程,使学生体验定理的发现及证明的过程,提高思维能力.

  3.通过师生互动以及交互性多媒体教学课件的使用,培养学生学习的自觉性,丰富想象力,激发学生探究新知的热情.

  【教学重点】

  角平分线的性质定理和判定定理的探索与应用.

  【教学难点】

  理解运用在角平分线上任意选取一点的方法证明角平分线性质定理以及两个定理的区别与联系.

  【教学方法

  启发探究式.

  【教学手段】

  多媒体(投影仪,计算机).

  【教学过程】

  一、复习引入:

  1.角平分线的'定义:

  一条射线把一个角分成两个相等的角,这条射线

  叫这个角的平分线.

  表达方式:

  如图1,∵ OC是∠AOB的平分线,

  ∴ ∠1=∠2(或∠AOB=2∠1=2∠2或∠1=∠2= ∠AOB).

  2.角平分线的画法:

  你能用什么方法作出∠AOB的平分线OC?(可由学生任选方法画出OC).

  可以用尺规作图,可以用折纸的方法,可以用TI图形计算器.

  3.创设探究角平分线性质的情境:

  用两个全等的30的直角三角板拼出一个图形,使这个图形中出现角平分线,并且平分出的两个角都是30.学生可能拼出的图形是:

  (拼法1)(拼法2)(拼法3)

  选择第三种拼法(如图2)提出问题:

  (1)P是∠DOE平分线上一点,PD、PE与∠DOE

  的边有怎样的位置关系?

  (2)点P到∠DOE两边的距离可以用哪些线段来表示?

  (3)PD、PE有怎样的数量关系?(投影)

  二、探究新知:

  (一)探索并证明角平分线的性质定理:

  1.实验与猜想:

  引导学生任意画出一个角的平分线,并在角平分线上任取一点,作出到角两边的距离.通过度量、观察并比较,猜想它们有怎样的数量关系?

  用TI图形计算器实验的结果:

  (教师用计算机演示:点P在角平分线上运动及改变∠AOB大小,引导学生观察PD与PE的数量关系).

  引导学生用语言阐述自己的观点,得出猜想:

  命题1在角平分线上的点,到这个角的两边的距离相等.

  2.证明与应用:

  (学生写在笔记本上)

  已知:如图3,OC是∠AOB的平分线,P为OC上任意一点,PD⊥OA于D,PE⊥OB于E.

  求证:PD=PE.(投影)

  证明:∵ OC是∠AOB的平分线,

  ∴ ∠1=∠2.

  ∵ PD⊥OA于D,PE⊥OB于E,

  ∴ ∠ODP=∠OEP=90.

  又∵ OP=OP,

  ∴ △ODP≌△OEP(AAS).

  ∴ PD=PE

  三、作业设计

  反思:

  一、重视情境创设,让学生经历求知过程。本节课引入问题教学的模式,其目的是引导学生积极参与课堂,积极投入到解题思路的探索过程中,通过合作学习引导学生深层次参与,倡导同学们要学会用大脑去思考,用耳朵去倾听,用眼睛去观察,用双手去操作,使学生言语与行动逐步起到自觉调控的作用,促进思维的“内化”,从而发展学生的独立思考能力。

  二、不足之处的反思:通过看自己的录像课,感觉自身的课堂教学还有很多地方有待于改进和完善。尤其是对课堂语言的锤炼,不仅仅是表达清楚,更要言简意赅,把更多的时间留给学生,让学生在课堂上有更多的时间去思考。还要注意,发挥学生的主体性不应停留在口头上,还要在实际操作时充分体现教师是学生学习的引导者,学生是学习的真正的主人。

【《角的平分线的性质》新课标八年级数学上册说课稿】相关文章:

八年级上册数学角平分线的性质说课稿09-25

《角的平分线的性质》新课标人教版八年级数学上册说课稿(精选10篇)01-13

新人教版八年级数学上册《角平分线的性质》的说课稿09-25

角的平分线的性质的教学设计09-28

角的平分线的性质教学反思04-09

角平分线的性质教学反思02-04

角的平分线的性质的教学设计(通用6篇)06-27

《角平分线的性质2》教学反思(精选10篇)11-06

初中数学角平分线的公式定理总结11-01