- 相关推荐
高一数学《等差数列》说课稿
一、教材分析。
1、教学目标:
(1)理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;
(2)培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
(3)通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
2、教学重点和难点:
(1)等差数列的概念。
(2)等差数列的通项公式的推导过程及应用。用不完全归纳法推导等差数列的通项公式。
二、教法分析。
采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、教学程序。
本节课的教学过程由:(一)复习引入;(二)新课探究;(三)应用例解;(四)反馈练习;(五)归纳小结;(六)布置作业,六个教学环节构成。
(一)复习引入:
1、全国统一鞋号中成年女鞋的各种尺码(表示鞋底长,单位是cm)分别是21,22,23,24,25。
2、某剧场前10排的座位数分别是:38,40,42,44,46,48,50,52,54,56。
3、某长跑运动员7天里每天的训练量(单位:m)是:7500,8000,8500,9000,9500,10000,10500。
共同特点:从第2项起,每一项与前一项的差都等于同一个常数。
(二) 新课探究。
1、给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:
(1)“从第二项起”满足条件;
(2)公差d一定是由后项减前项所得;
(3)公差可以是正数、负数,也可以是0。
2、推导等差数列的通项公式:若等差数列{an }的首项是 ,公差是d, 则据其定义可得:— =d 即: = +d;– =d 即: = +d = +2d;– =d 即: = +d = +3d……进而归纳出等差数列的通项公式:= +(n—1)d
此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:– =d;– =d;– =d……– =d。
将这(n—1)个等式左右两边分别相加,就可以得到 – = (n—1) d即 = +(n—1) d
当n=1时,上面等式两边均为 ,即等式也是成立的,这表明当n∈ 时上面公式都成立,因此它就是等差数列{an }的通项公式。
接着举例说明:若一个等差数列{ }的首项是1,公差是2,得出这个数列的通项公式是: =1+(n—1)×2 , 即 =2n—1 以此来巩固等差数列通项公式运用
(三)应用举例。
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的 、d、n、 这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。
例1 :
(1)求等差数列8,5,2,…的第20项;
(2)—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?
第二问实际上是求正整数解的问题,而关键是求出数列的通项公式。
例2:
在等差数列{an}中,已知 =10, =31,求首项 与公差d。
在前面例1的基础上将例2当作练习作为对通项公式的巩固。
例3:
梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
(四)反馈练习。
1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、若数列{ } 是等差数列,若 = k ,(k为常数)试证明:数列{ }是等差数列。
此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。
(五)归纳小结 。(由学生总结这节课的收获)
1、等差数列的概念及数学表达式。
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数
2、等差数列的通项公式 = +(n—1) d会知三求一
(六) 布置作业。
1、必做题:课本P114 习题3。2第2,6 题。
2、选做题:已知等差数列{ }的首项 = —24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
四、板书设计。
在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
【高一数学《等差数列》说课稿】相关文章:
高一数学:等差数列说课稿12-06
高一数学《等差数列》说课稿12-08
高一数学《等差数列》说课稿(精选10篇)06-28
高一等差数列说课稿12-13
高一等差数列说课稿12-13
高一数学:等差数列说课稿(通用10篇)12-18
等差数列的说课稿12-05
《等差数列》说课稿01-13
《等差数列》说课稿11-03
《等差数列》说课稿14篇12-06