小学六年级数学《抽屉原理》说课稿

时间:2021-02-12 18:04:09 说课稿 我要投稿

小学六年级数学《抽屉原理》说课稿

  一、说教材

小学六年级数学《抽屉原理》说课稿

  1、教学内容:我说课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2.

  2、教材地位及作用及学情分析

  本单元用直观的方法,介绍了“抽屉原理”的两种形式,并安排了很多具体问题和变式,帮助学生通过“说理”的方式来理解“抽屉原理”,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

  教材中,有三处孩子们不好理解的地方:1)“总有一个”、“至少”这两个关键词的解读;2)为了达到“至少”而进行“平均分”的思路,3)把什么看做物体,把什么看做抽屉,这样一个数学模型的建立。六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。于是我安排通过例1的直观操作教学,及例2的适当抽象建模,让全体学生真实地经历“抽屉原理”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法。

  3、本节课的教学目标

  根据《数学课程标准》和教材内容,我确定本节课学习目标如下:

  知识性目标:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

  能力性目标:经历抽屉原理的探究过程,通过实践操作,发现、归纳、总结原理。

  情感性目标:通过“抽屉原理”的`灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学的魅力。

  4、教学重、难点的确定

  教学重点:经历抽屉原理的探究过程,发现、总结并理解抽屉原理。

  教学难点:理解抽屉原理中“至少”的含义,并会用抽屉原理解决实际问题。

  二、说教法、学法

  六年级学生既好动又内敛,于是教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。课堂始终以设疑及观察思考讨论贯穿于整个教学环节中,采用师生互动的教学模式进行启发式教学。学法上主要采用了自主合作、探究交流的学习方式。体现数学知识的形成过程,感受数学学习的乐趣。

  三、说教学过程

  (一)、游戏激趣,初步体验。

  师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了2把椅子,请3个同学上来,谁愿来?

  1.游戏要求:你们3位同学围着椅子走动,等音乐定下来后请你们3个都坐在椅子上,每个人必须都坐下。

  2.师:老师不用看就知道总有一把椅子上至少坐着两名同学,是这样的吗?如果不相信咱们再做一次,好不好?

  引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。【设计意图:第一次与学生接触,在课前进行的游戏激趣,一使教师和学生进行自然的沟通交流;二激发学生的兴趣,引起探究的愿望;三为今天的探究埋下伏笔。】

  (二)、操作探究,发现规律。

  1、提出问题:把4支铅笔放进3个文具盒中,不管怎么放,总有一个文具盒至少放进 支铅笔。让学生猜测“至少会是”几支?

  2、验证结论:不管学生猜测的结论是什么,都要求学生借助实物进行操作,来验证结论。学生以小组为单位进行操作和交流时,教师深入了解学生操作情况,找出列举所有情况的学生。

  (1)先请列举所有情况的学生进行汇报,一说明列举的不同情况,二结合操作说明自己的结论。(教师根据学生的回答板书所有的情况)

  学生汇报完后,教师再利用枚举法的示意图,指出每种情况中都有几支铅笔被放进了同一个文具盒。

  【设计意图:抽屉原理对于学生来说,比较抽象,特别是“总有一个文具盒中至少放进2支铅笔”这句话的理解。所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的文具盒,理解“总有一个文具盒”以及“至少2支”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。】

  (2)提出问题:不用一一列举,想一想还有其它的方法来证明这个结论吗?

  学生汇报了自己的方法后,教师围绕假设法,组织学生展开讨论:为什么每个文具盒里都要放1支铅笔呢?请相互之间讨论一下。

  在讨论的基础上,教师小结:假如每个文具盒放入一支铅笔,剩下的一支还要放进一个文具盒,无论放在哪个文具盒里,一定能找到一个文具里至少有2支铅笔。只有平均分才能将铅笔尽可能的分散,保证“至少”的情况。

  【设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。】

  (3)初步观察规律。

  教师继续提问:6支铅笔放进5个文具盒里呢?你还用一一列举所有的摆法吗?7支铅笔放进6个文具盒里呢?100支铅笔放进99个文具盒呢?你发现了什么?

  【设计意图:让学生在这个连续的过程中初步感知方法的优劣,发展了学生的类推能力,形成比较抽象的数学思维。】

  3、运用抽屉原理解决问题。

  出示第70页做一做,让学生运用简单的抽屉原理解决问题。在说理的过程中重点关注“余下的2只鸽子”如何分配?

  【设计意图:从余数1到余数2,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。】

  4、发现规律,初步建模。

  我们将铅笔、鸽子看做物体,文具盒、鸽舍看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述,只要大概意思正确即可)

  小结:只要物体数量比抽屉的数量多,总有一个抽屉至少放进2个物体。这就叫做抽屉原理。现在你能解释为什么老师肯定前两排的同学中至少有2人的生日是同一个月份吗?

  【设计意图:通过对不同具体情况的判断,初步建立“物体”“抽屉”的模型,发现简单的抽屉原理。研究的问题来源于生活,还要还原到生活中去,所以请学生对课前的游戏的解释,也是一个建模的过程,让学生体会“抽屉”不一定是看得见,摸得着。】

  5、用有余数的除法算式表示假设法的思维过程。

  (1)教学例2,可以出示问题后,让学生说理,然后问:这个思考过程可以用算式表示出来吗?

  (2)做一做:8只鸽子飞回3个鸽舍,至少有3支鸽子飞进同一个鸽舍。为什么?

  【设计意图:在例1和做一做的基础上,相信学生会用平均分的方法解决“至少”的问题,将证明过程用有余数的除法算式表示,为下一步,学生发现结论与商和余数的关系做好铺垫。】

  (三)、巩固练习。

  扑克牌游戏

  ①师与生配合做

  教师洗牌学生抽其中的任意5张,教师猜其中至少有2张是同花色的。

  ②学生做游戏

  要求探寻规律并说明理由。

  【设计意图:用游戏的形式激发学生的兴趣,用抽屉原理解决具体问题进行建模,让学生体会抽屉的形式是多种多样的。】

  (四)、小结全课,激发热情

  1、今天的你有什么收获?

  我们将铅笔、鸽子、扑克看做物体数,文具盒、鸽舍、四种花色看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述,只要大概意思正确即可)

  小结:只要物体数量比抽屉的数量多,总有一个抽屉至少放进2个物体。这就叫做抽屉原理。

  2、介绍课外知识。

  介绍抽屉原理的发现者——数学家狄里克雷。

  【设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。】

【小学六年级数学《抽屉原理》说课稿】相关文章:

《抽屉原理》数学说课稿08-14

抽屉原理说课稿03-17

《抽屉原理》说课稿04-17

抽屉原理说课稿01-31

《抽屉原理》说课稿范文05-24

关于《抽屉原理》说课稿04-17

数学《抽屉原理》教学反思原理08-11

抽屉原理简要说课稿11-04

数学抽屉原理教学设计07-08