《圆柱的表面积》说课稿

时间:2022-03-12 16:28:44 说课稿 我要投稿

《圆柱的表面积》说课稿(精选12篇)

  在教学工作者开展教学活动前,时常会需要准备好说课稿,通过说课稿可以很好地改正讲课缺点。那么写说课稿需要注意哪些问题呢?下面是小编帮大家整理的《圆柱的表面积》说课稿,仅供参考,欢迎大家阅读。

《圆柱的表面积》说课稿(精选12篇)

  《圆柱的表面积》说课稿 篇1

  一、 教材与学情分析

  1、教材分析

  本节课的教学内容是在学生认识掌握圆柱基本的特征,进而在理解的基础上掌握圆柱的侧面积、表面积的计算方法。教材是在学生掌握长方形面积、圆的周长和面积计算方法的基础上安排的,因而要以上述知识为基础,运用转化、迁移的方法理解和掌握圆柱体的侧面积、表面积的计算方法,并且能运用这一知识解决一些简单的实际问题。另外学好这部分内容,可以进一步发展学生的空间观念,为以后学习其它几何形体打下坚实的基础。本课教材分圆柱表面积的含义,计算方法和表面积的实际应用三部分内容。

  2、学情分析:

  为了使教学设计更贴近学情,有效的完成教学目标,我在课前对学生的知识基础和学习经验进行了调研,这是课前调研的内容和统计的结果:从调研结果可以看出学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积指的是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过奥数的。由此可知,学生对圆柱的表面积了解的比较少,存在着一定的困难。

  二、教学目标

  因此,依据教材和学情,我制定了如下教学目标。

  知识目标:在探究活动中,使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  能力目标:培养学生观察、操作、概括的能力,以及利用知识合理灵活地分析、解决实际问题的能力。

  情感目标:培养学生初步的逻辑思维能力和空间观念,向学生渗透事物间的相互联系和相互转化的观点。

  三、教学重点:能应用圆柱体侧面积、表面积的计算方法解决实际问题。

  四、教学难点:探究圆柱体侧面积、表面积的计算方法。

  五、教具准备:每组一套学具(包括能组成圆柱体的长方形、正方形、平行四边形和多个圆及其他图形)

  六、教学主要环节:

  为有效的落实教学目标,突破教学重、难点,在本节课中,我共设计了四个环节。

  (一)激趣导入,初步感受

  (二)动手操作,探求新知

  (三)巩固应用,拓展提高

  (四)回顾整理,总结收获

  第一环节:激趣导入,初步感受

  平面图形的面积学生已经会求了,而圆柱的侧面是个“曲面”,怎么样才能求出这个“曲面”的面积就成了圆柱表面积教学过程中的难点。于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。

  课前,我发给每组学生一份材料袋,并对他们说:“同学们你们想不想亲手制作一个圆柱体?老师为你们准备了一些材料,请你们四人合作,制作一个圆柱。柱体部分的接缝可用胶条粘好,上下两个底直接搭在柱体上下就可以了,不用粘上。在制作的过程中思考一个问题:你们是如何选择材料的?你有什么新的发现?

  这样一来,把学生理解上的难点“由曲变直”,转化为“由直变曲”,根据学生的生活经验,“由直变曲”会容易的多。通过他们自己制作圆柱,直观了解曲面和平面之间的关系,有利于突破教学难点。同时提高了学生的学习兴趣。

  学生带着兴趣,开始尝试,兴趣有了,自主探究的欲望自然也就强烈了。

  第二环节:动手操作,探求新知:这是本节课的核心,也是重、难点所在,我主要通过4个层次来完成,使学生在小组探究的活动中,归纳圆柱体表面积的计算方法。

  第一层次:小组探究,自主发现

  学生在操作过程中很容易想到用长方形或正方形卷起来做成圆柱的侧面,然后选择合适的圆作为两个底,但对于学生能否想到利用平行四边形做侧面,学生的认识可能仍不清晰。因此,在小组探究时,我会到小组中巡视了解学生制作情况,及时对学生进行适时的启发引导,在这样的小组活动中,学生不仅对圆柱体有了更加准确的认识,也提高了合作、探究的能力及观察、概括的能力。

  第二层次:小组汇报,总结归纳

  在小组探究的基础上,分组汇报讨论结果,共分三种情况

  分别选择长方形、正方形、平行四边形作为圆柱体的侧面把它卷成圆筒,再选正好能和圆筒对上的同样大小的两个圆。

  在学生汇报完后,我让学生思考一个问题,为什么上下两个底面的圆必须是大小相等的两个圆?不相等行不行?

  通过动手操作,让学生从感官上加深对表面积的认识,为总结圆柱表面积公式打下基础。

  然后,我直接提出问题:你会求它的侧面积吗?你是怎么推导出来的?这里还是让学生自主探究,学生很有可能无从下手去思考,我及时点拨学生引导他们发现长方形的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系。这样抓住新旧知识内在联系,安排学生动手操作,引导学生在发现问题后及时动脑思考,不仅激发学生兴趣,同时也促进了学生思维能力的发展。通过老师的点拨,学生能够找到这两者的内在关系,学生汇报时,由课件配合,让学生从视觉上进一步感受到长方形的长就是圆柱的底面周长,宽是圆柱的高。如果展开是平行四边形,平行四边形的底就是圆柱的底面周长,高是圆柱的高;如果展开的是正方形,正方形的一个边长就是圆柱的底面周长,另一个边长就是圆柱的高。从而推导出圆柱的侧面积公式就是底面周长×高。这一教学过程学生亲自参与知识的获取中,真正理解了公式的由来,感受到重新创造数学的乐趣,增强了学好数学的信心。

  在研究完圆柱侧面积的推导后,我又让学生来摸摸这个圆柱的表面,然后小结:我们摸过的所有这些面的面积和就是这个圆柱体的表面积。这里让学生摸的过程就是学生对表面积的认识过程,由于前面已经做了足够的铺垫,在学生理解了侧面积计算方法的基础上,我让学生独立想办法求出圆柱体的表面积。在学生活动的过程中,我巡视、指导,帮助有困难的学生。

  在本环节中,在学生的眼、手、脑等多种感官参与感知活动中,探究的精神得到了张扬,自主学习的能力得到了实在的体现与培养。教学的重点、难点在学生的亲历探究实践中得到了突破。

  第三层次:及时巩固,内化知识

  在教学重难点基本突破后,让学生根据材料中给出的信息,计算本组制作的圆柱体的表面积,然后全班交流,因为学生利用的材料不同,因此涉及到的信息比较全面,侧面展开图有长方形,有正方形,还有平行四边形。这样就使学生巩固了对圆柱体表面积的理解。

  第四层次:尝试应用,解决问题

  由于本课的教学重点是能应用圆柱体侧面积、表面积的计算方法来解决实际问题,生活中不仅有不缺面的圆柱体,而且还有只有侧面的圆柱体和只有一个底面的圆柱体。能够准确的判断所求圆柱的表面积共几个面对于学生来说是个难点。因此我利用学生手中的圆柱体进行了一系列的拓展练习,首先我拿出一个学生做好的圆柱,把其中一个底拿走,引导学生思考怎样求这个圆柱的表面积?为什么?通过观察,学生很容易发现这个圆柱体的表面积就用侧面积加一个底面积就可以了。接着再引导学生思考生活中哪些物体跟这个圆柱类似?(如水桶、圆柱体的笔筒)在这里我安排的一道求水桶表面积的练习。

  这样一来,使学生在丰富的感性认识的基础上,自主解决了只有一个底面的圆柱体类型的实际问题。

  然后用同样的方法,解决只有侧面的圆柱体这一类型的实际问题。同样还是拿出一个学生做好的圆柱,把其中两个底都拿走,问学生求这个圆柱的表面积怎么求?生活中哪些物体跟这个圆柱类似?(烟囱,钢管内、外部的表面积)我也安排了一道求烟囱表面积的练习。

  在前面的学习中,学生经历了自主观察并解决了生活中的一些实际问题,为了便于学生更好的区分他们,于是我引导学生按照圆柱体的面给圆柱体分分类:第一类是不缺面的圆柱体、第二类是缺一个底面的圆柱体、第三类是缺两个底面的圆柱体。为了更好区分,更好记忆,我又引导学生分别给它们起个名字:不缺面的就叫它全面圆柱体,缺一个底面的最典型物体就是水桶,我们就叫他水桶圆柱体,缺两面的最典型物体是烟囱,我们就叫他烟囱圆柱体。最后引导学生归纳出这三种圆柱体的表面积的求法:

  在这一系列的总结、概括、归纳中,学生完善了认识,全面了解了各类圆柱体的区别及表面积的计算方法,进而提高学生的总结、归纳的能力。

  第三环节:巩固应用,拓展提高

  根据以上内容,我准备在实践练习中安排四个层次的内容。

  1.一组已知底面半径、直径、周长和高求侧面积、表面积的对比习题,加深学生对圆柱表面积的理解,提高求表面积的技能。

  2.一道求烟囱圆柱体表面积的习题。学生进行练习后,追问:为什么只求侧面积就可以了。

  3.求一个用塑料薄膜覆盖的蔬菜大棚表面积的习题,追问:为什么求完全面圆柱体表面积后还要除以2。使学生养成灵活计算圆柱的表面积的习惯,培养实际应用的能力。

  4最后安排的是一个拓展题,求帽子的表面积。这个表面积是由一个水桶型的圆柱体和一个环形的表面积组成的。把圆柱体表面积和我们以前学过的环形面积及组合图形的知识揉和在一起,培养了学生多角度思考问题的能力。

  第四环节:回顾整理,总结收获

  在一节课即将结束时,我引导学生回顾整个学习的过程,学习时运用的数学思想,使学生在一节课的学习中不仅有知识上的积累,还能在学习方法上有所收获,使学生感受到学习数学的快乐和价值。

  以上就是我对这一部分内容的理解与分析,谢谢各位老师!

  《圆柱的表面积》说课稿 篇2

  一、教材

  (一)教材分析

  《圆柱体的表面积》是九年义务教育六年制小学数学第十二册第二单元的学习内容,它是在学生掌握长方形以及圆的面积计算的基础上进行教学的,为今后进一步学习立体几何知识及培养学生的空间观念打下基础。是一节数学探讨课,与生活密切联系。

  (二)教学目标知识目标:通过多种形式的感知,认识圆柱体,理解圆柱体的表面积概念,初步形成空间观念。

  能力目标:培养学生观察、想象、分析的能力,掌握圆柱体的表面积计算。

  情感目标:通过探究合作学习,激发学生学习热情以及培养学生的合作探究意识,渗透数学来源于生活。

  (三)重点、难点重点:圆柱体表面积的概念。难点:圆柱体表面积的计算。

  (四)教学具准备: 圆柱体实物

  二、教法与学法

  《新课标》指出:数学教学应联系现实生活,使学生从中获得学习数学的情感体验,感受数学的力量。同时,通过教学实践,使学生学会自主学习和小组合作,培养学生的创新精神和小组合作精神。因此,在本节课中,我认为运用活动教学形式,采取“引导-合作-自主探究”的教学方法,使每个学生都能参与到学习中,感受学习的乐趣。

  现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按小学认知规律从“具体感知-形成表象-进行抽象”的过程,让学生通过自己摸一摸、剪一剪、拼一拼等系列活动认识形式,采用小组合作,自主探究的学习。

  三、教学过程

  (一)开门见山,由面到体

  1、新课导入:同学们,请大家回忆一下以前学过的平面图形;你还记得怎么样计算它们的面积吗?(出示长方形、正方形、平行四边形和圆)

  2、实物出示茶叶筒、易拉罐等立体图形,从而得出立体图形概念。

  3、板书揭题:圆柱体的表面积,从研究平面图形到立体图形,是学生空间形成发展中的一次飞跃。因此,在引入前,首先让学生对以前平面图形知识进行系统性回顾。然后,再出示立体图形实物,在学生头脑上建立立体图形表象,并得出立体图形概念,从而点明本节课学习内容和目标,激发学生的强烈的求知欲和学习兴趣。

  (二)教师引导、自主探究

  本节课教学内容主要分为三个层次:

  (1)“面”的特征。

  (2)“面”的形状。

  (3)“面积”的计算。不靠传统说教式和灌输式就难以达到预期效果。因此,教学上我以学生的主体参与为基本原则,6人一组,采用“引导-合作-自主探究”的学习方法,给每个学生提供自主学习的空间,让每个学生的思维和认识都“活”起来。鉴于上述,我首先引导学生认识的圆柱体表面积,然后将剩余学习任务制订成表格,派发给每个小组,以比赛的形式,参照实物,鼓励学生在数一数、摸一摸、剪一剪、比一比、议一议的学习活动中,得到圆柱体各部分的理解和认识

  1、引导学生认识圆柱体各个“面”的形状和面积计算。(小组合作完成)

  (1)摸一摸,数一数;圆柱体它有几个面?(引导学生按顺序观察,可按方位给每个面标上名称。如:上面、下面和侧面。)

  (2)看一看,议一议;圆柱体每个面是什么形状?

  (3)剪一剪,比一比;剪开后的每个面的面积应如何计算?有哪些面的面积是完全相等的?

  (4)指一指,说一说;从不同位置展开圆柱体的侧面,不断变换,引导学生认识。

  《圆柱的表面积》说课稿 篇3

  一、教材分析:

  圆柱表面积的计算是九年义务教育六年制小学数学第十二册第二单元的学习内容,应当在学生掌握了长方形以及圆的面积计算的基础上进行教学。这部分内容的学习为后面学习一些立体几何知识打下基础。

  二、教学目标:

  根据《数学课程标准》的理念学生的学习目标应将知识与技能、过程与方法、情感态度与价值观这三方面融为一体,为了落实这几点,本节课我们的教学目标制定如下:

  1、知识与技能。

  通过想象和操作等活动,加深对圆柱特征的认识,理解圆柱表面积的的含义,知道圆柱的侧面展开后可以是一个长方形。

  2、过程与方法。

  学生通过触摸、观察、操作等多种方法提高分析、概括的能力,理解空间观念,并能利用知识合理灵活地分析、解决实际问题。结合具体的情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  3、情感态度与价值观

  让学生亲身体验到数学活动充满着探索性和挑战性,通过自主探索和合作交流,使他们敢于发表自己的见解,能够从交流中获益。通过学生们自己的认识来制定教学目标符合学生学习数学的认知规律,让他们亲身经历问题的解决过程,提高他们对问题的感性认识,经过一系列的实践和计算,提高他们对问题的理性认识。能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中的一些简单的实际问题,体会数学与生活的联系;培养学生的观察、操作、想象能力,发展学生的空间观念,渗透转化的思想。也可以培养学生良好的个性品质,包括大胆猜想勇于探索的创新精神,顽强的学习毅力等。

  三、教学重点与难点:

  圆柱体的侧面积和表面积在本课教材中占重要地位,它们是学习其它几何知识的基础。所以本课的重点是:探索圆柱体侧面积、表面积的计算方法,并能运用圆柱侧面积和表面积的计算方法解决生活中的一些简单的实际问题。

  由于圆柱体的侧面积计算较为抽象,加之学生的空间想象力不够丰富,所以本课的难点是:理解圆柱侧面展开的多样性,将展开图与圆柱的各部分联系起来,并推导出圆柱体侧面积和表面积的计算公式。而解决这一难点的关键是:把圆柱体的侧面展开后所得到的长方形各部分同圆柱体各部分间的关系。

  四、教学目标:

  为了更好的突出重点突破难点并遵循学生为主体,教师为主导的教学原则,要按照学生从感性认识到理性认识、从特殊到一般的认识规律,遵循启发式引导学生展开思维、探究证明思路、循序渐进的教学方法,最大限度提高学生的参与率。这样的教学方法主要是让学生主动、自觉地学习,让他们在学习中学会学习,这实际上式交给了学生自由飞翔的翅膀,交给了他们点石成金的金指头。

  五、学习方法:

  在本课的学习活动中注重培养学生的空间观念、想象力、动手操作能力、探索能力和推理概括能力。所以学生的学法以学生自备的圆柱形纸盒、长方形纸、剪刀等学具为载体,在老师的引导下进行学习活动。学习活动以小组共同探索、交流讨论、合作学习为主要形式,教师适时进行点拨,创设平等、自主、和谐的教学环境,通过学生的动手操作、观察、比较、推理、概括等充分调动学生多种感官的参与,让学生全面参与新知的发生、发展和形成过程,并学会操作、观察、比较、分析和概括,学会想象,学会与人交往。在活动中获得成功的体验,从而培养学生学习数学的兴趣,得到人人学有价值的数学这个目的。

  六、教学过程:

  在我们的课堂教学中我们应以学生的发展为本,以学生的活动为主线,让学生充分的参与到课堂活动中来,为了落实这几点,我按以下四个阶段完成本课。

  (一)温故而引新,巧妙入境。

  这个过程我展示3个方面的复习内容:

  (1)我知道圆柱的特征是

  (2)圆的周长怎样计算?圆的面积又是怎样计算的呢?说一说,并用字母表示出来。

  (3)你知道长方形的面积怎样计算吗?

  以上设计让学生逐题完成,通过个人汇报集体评价的形式来进行。让学生在复习中进一步掌握圆柱的特征,回顾圆的周长和面积的计算方法及长方形的面积的计算方法。这些知识完全与圆柱的侧面积和表面积的计算有关,为下一步探索圆柱的侧面积和表面积计算方法作好铺垫,同时也让学生领会到新旧知识之间的联系,充分体现数学知识的前后连贯性。

  (二)设置悬念,创设探究情境,激发学生的探究欲望,引出本课的探究主题。

  在此我用富有激励性的语言来引导学生:

  请你拿出自己准备的圆柱形纸盒,这是我给大家准备的一个模型,现在我请大家帮助我设计一个你手中的模型一样的圆柱形纸盒,你能告诉我你需要多大面积的纸吗?(让学生沉思一会儿后请学生起来汇报,发表自己的意见,根据学生的回答,慢慢引导学生理解这实际上是求圆柱的表面积,然后引导学生分别说一说自己对圆柱表面积的认识。)

  你知道圆柱的表面积指的是什么吗?(这样通过说一说让学生理解圆柱的表面积的含义,进而引出新课,揭示课题。)

  这就是我们今天研究的主题《圆柱的表面积》。

  这样设计让学生明白探究的必要性,让学生明确探究目的和探究方向,同时又具有挑战性,能激发学生的探究兴趣。

  (三)动手操作,合作研究,汇报交流,发现联系,总结方法。

  1、动手操作。

  你知道圆柱的侧面是个什么面吗?你能想办法让它成为我们认识的图形吗?请你用手中的长方形纸、剪刀动手做一做,试试看。

  让学生自己动手进行尝试,教师进行巡视、引导和点拨,通过学生动手将圆柱的侧面展开成平面图形的过程(比如让学生想办法把圆柱的侧面展开,或者用长方形纸卷成一个圆柱的侧面,或用大卷的塑料胶带做演示),来感受化曲为直的思想,获得直观的感受。

  2、合作研究。

  如果沿着圆柱的一条高把圆柱的侧面展开,会得到什么图形呢?请你和你的同伴说说看。

  3、汇报交流。

  让学生把自己的展开结果展示给大家看。

  4、进行推理,总结方法。

  引导学生通过测量圆柱底面周长和侧面展开后得到的长方形的长或用彩色笔做记号的方法,让学生自己分析出圆柱的底面周长和侧面展开成的长方形的长之间的关系。然后引导学生进行概括总结:你知道长方形的面积怎样计算吗?那么圆柱的侧面积又是怎样计算的呢?

  因为有了上述的探究过程,学生很自然而然的就会概括出圆柱的侧面积的计算方法:底面周长乘高,也就是圆的周长乘高。学生概括出公式以后让学生写下来,并读一读,用黑板展示出来。然后让学生思考:要求圆柱的侧面积需要知道哪些条件呢?

  引出例1:已知一个圆柱的底面直径是0.5m,高是1.8m,求它的侧面积。(得数保留两位小数)

  5、归纳新知。

  你现在知道怎样求圆柱的表面积了吗?先自己写出你的研究结果,再和同伴交流交流,然后向大家展示你的成果,让大家分享你的成功

  通过独立思考同伴交流全班汇报总结公式来完成。(这一环节,使学生动手、动口、动脑等多种感官参与活动,做到了在动手操作中发现,在合作中学习,在交流中成长,这样能够更好的突破难点。)完成后让学生动手根据自己探究的结果完成例2、

  6、联系生活,巩固练习,培养能力。

  这一环节是巩固内化空间基础知识,培养拓展空间思维,形成学生对空间的感受能力,学习关于空间几何一些简单知识点的重要环节。因而我设计的练习题在注重知识运用的前提下,注意联系学生的生活实际,使学生能够把所学的知识运用于解决生活中的实际问题中。让他们感受到数学与生活的紧密联系数学来源于生活又作用于生活。这一过程我安排了课本上例3.让学生学会用数学知识解决生活中的实际问题,同时让学生明白在实际生活中计算圆柱的表面积时要具体问题具体分析,要结合实际进行计算,讲解进一法的意义和使用范围。

  (四)全课总结,促进构建。

  这是作为新课必要的一个环节,通过学生自己总结和评价,既加深了学生对新知识的理解和消化,又让学生体验到学习数学的价值和兴趣。结合板书,让学生说说本课学到的知识,并说出是怎样学到的。

  这一环节的目的是让学生对本课所学的知识有系统的认识,培养学生整理知识的能力,引导学生总结学习方法,达到学会学习的目的。

  《圆柱的表面积》说课稿 篇4

  教学内容:

  九年义务教育六年制小学数学第12册33~34页例1、例2、例3的“做一做”及练习七的第2~5题。

  教学目标:

  1、知识目标:理解圆柱的侧面积和表面积的含义;掌握圆柱的侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。

  2、能力目标:能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

  3、德育目标:渗透事物之间联系的辩证唯物主义观点,使学生感悟到数学知识内在联系的逻辑之美,增强审美意识。

  教学重点:理解求表面积、侧面积的计算方法,并能正确进行计算。

  教学难点:能灵活运用表面积、侧面积的有关知识解决实际问题。

  教学设想:

  本课是在学生认识了圆柱,学习了圆、长方形等几何图形的基础上进行的。通过学习可以发展学生的观念,提高学生解决实际问题的能力。并为以后学习圆柱的体积计算打下良好的基础。本节课由于学生缺乏空间想象能力,计算繁琐,易使学生感到枯燥无味。因此,我在教学中充分调动学生的积极主动性,让学生在自主动手操作中发现问题,自主探索解决问题的途径以解决所遇到的数学问题。

  遵循学生的认知规律,组织合理有效的教学程序

  (1)抓住关键,动手操作,突破难点

  圆柱的表面积等于侧面积加两个底面积的和,圆柱的底面是两个相等的圆。对于圆面积的计算是学生已有的知识,学生以前学过的面都是“平面”而圆柱的侧面却是个“曲面”。怎么样才能求出这个“曲面”的面积就成了圆柱表面积教学过程中的难点。于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。通过教具演示,把侧面展开可以使侧面“由曲变直”,但学生缺乏这方面的生活经验,接受起来思维障碍较大。所以我反其道而行之,采用实验法,让学生卷一卷、分一分,把一张长方形的纸卷成一个尽可能粗的圆柱形的纸筒。使学生在操作的过程中感知:在一定的条件下,平面也可以“由直变曲”,那么反过来曲面当然也可以“由曲变直”。又经过引导学生观察、比较,讨论长方形纸的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系,学生认识圆柱的侧面已经水到渠成,得到圆柱的侧面积等于底面周长乘以高。

  这样抓住新旧知识内在联系,安排学生动手操作,引导学生在发现问题后及时动脑思考,不仅激发学生兴趣,同时也促进了学生思维能力的发展。

  (2)及时练习,巩固提高,形成能力

  学生的能力主要表现在获取知识和应用知识的过程中。求圆柱

  侧面积,由于已知条件的不同,有多种不同的计算方法,但用圆柱的底面周长乘以高是最直接的方法,通过练习处理好新知识与旧知识的结合,解决好已有技能在新情况下的运用,将对培养学生分析综合的能力,减轻学生的记忆负担起重要作用。因此,我在引导学生推导出圆柱侧面积的计算方法之后,及时安排了练习,使学生通过练习牢固掌握求圆柱侧面积的基本方法。对于题中没有直接告诉底面周长的,并没有一一进行方法的指导,只需把基本方法加以推广,知道如果没有直接告诉底面周长时,应用已知底面直径(或半径)求周长的方法,先求出底面周长,然后再求侧面积就可以了。这样就提高了学生运用基本数学知识灵活解决实际问题的能力,并减轻了学生学习中不必要的记忆负担。这一点既减轻学生过重负担又提高课堂教学效率。

  (3)通过讨论,多向交流,培养独立思考能力

  为提高课堂教学效率,培养学生能力,我在教学中注意研究如

  何引导学生独立钻研问题。对于课本上的例题,可以提供给学生作为讨论和思考的材料,都尽量让学生独立去探讨。因此,教学时提出了“除了侧面外圆柱还有几个面?”“什么叫做圆柱的表面积?”“怎么样求圆柱的表面积?”等三个问题让学生分组讨论,进行独立的探索。在“怎么样求圆柱的表面积?”这个问题时,有的同学得出圆柱的表面积等于侧面积加上两个底面积;有的同学则会联系圆的面积公式推导过程,把圆柱的两个底面分成若干个小扇形后拼成一个与侧面同长的长方形,然后与侧面再拼成一个大长方形,那么整个圆柱的表面积=底面周长×(圆柱的高+底面半径),用字母表示即S=2лr×(h+r)。这样学生不仅亲自参与了对新知的探索使知识掌握得更加牢固,还对旧知进行再创造并萌发了创新意识,培养了学生的创新思维和创新能力。

  (4)联系生活,迁移知识,感悟生活数学乐趣

  小学数学的教学内容绝大多数可以联系学生的生活实际,教师应找准每节教材内容与学生生活实际的“切入点”,调动学生学习数学的兴趣和参与的积极性。所以在教完例2后,我让学生举例说出日常生活中,哪些物体是没有两个底面的圆柱体。出示例3让学生认真审题,并说水桶有几个面,再计算出用了多少材料,学生计算完后,要求得数保留整百平方厘米。启发学生看书发现新问题,讨论计算使用材料取近似值时,要用“四舍五入”法还是用“进一法”。从而使学生理解“进一法”的意义。接着出示拓展延伸练习:制作一个高1.5米,直径0.2米的圆柱形烟囱,需要多少平方米铁皮?最后让每一位学生小组合作制作一个圆柱体水桶并评选出最佳作品展示。

  课堂小结后,我提出“大家想一想,还有什么办法能求出计算圆柱体的表面积?”(例如,可以把圆柱切开,拼成近似的长方体,由长方体的表面积计算公式推导出圆柱的表面积计算公式)这个问题让学生知道了解决问题的方法是多种的,也有利于挖掘优生的潜能,还能为求圆柱的体积埋下伏笔。

  总而言之,这节课充分调动了学生的手、眼、口、脑,借助学具让学生动手去实践,动脑去想,发现问题,解决问题。

  《圆柱的表面积》说课稿 篇5

  一、说教材

  (一)教学内容

  《圆柱的表面积》是九年义务教育小学数学六年级下册(人教版)第21~22页例3例4,第22页“练一练”,练习六第1~3题的教学内容。

  (二)教材分析

  这部分内容是在学生已经探索并掌握圆柱的基本特征的基础上教学的。同时,此前对圆面积公式的探索以及对长方体特征和表面积计算方法的探索也为了学习本课内容奠定了知识的基础。通过本节课的学习,有利于学生进一步完善关于几何形体的知识结构,丰富学生“空间与图形”的学习经验,形成初步的空间观念,为今后进一步学习形体知识打下基础。

  教材设置了两个例题。例3主要引导学生通过动手操作探索圆柱侧面积的计算方法。然后,通过相应的“练一练”对圆柱侧面积的计算方法进行巩固。例4是引导学生在例3的基础上探索圆柱表面积的计算方法。

  教材这样安排,意在让学生经历圆柱侧面积、表面积计算方法的推导过程,理解这些方法的来源,便于学生在理解的基础上记忆,并从中学到一些数学方法。

  (三)教学重、难点本节课的教学重点是掌握圆柱的侧面积、表面积的计算方法,难点是理解圆柱侧面积的含义。

  (四)教学目标根据本节课教学内容以及学生的特点,我制定了本课节的教学目标如下:

  1、知识目标:理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积、表面积的计算方法,能利用所学知识解决相关的一些简单实际问题。

  2、能力目标:初步学会运用“观察、比较、分析、抽象、判断、概括、推理”等方法获得知识的能力。

  3、情感目标:让学生通过自己的操作,观察、比较、推理、归纳等经历知识形成的过程,从而获得成功的喜悦,增强学生的学习兴趣和自信心。

  二、说教法和学法

  小学生知识的形成总是经历由感性认识到理情认识的过程,因此教师在教学新知识时,应尽量为学生提供充足的、较为完整的感性材料,通过让学生操作、观察、演算等途径,调动眼、口、手、脑、耳等多种感官参与知识活动。基于这样的认识,这节课我采用演示法、操作实验法、引导发现法、练习法等教学方法,让学生通过操作、观察、概括、归纳、演算、交流等多种方法进行学习,掌握求圆柱表面积的计算方法及应用计算方法解决实际问题。

  三、说教学过程

  (一)操作导入,建立新旧知识联系点。

  学生以前学的面都是“平面”,而圆柱的侧面是“曲面”,是本课教学难点,为了突破这个难点,这个环节我分3步进行教学。

  1、卷一卷,感知“由直变曲”。

  首先,我让学生拿出事先准备好的长方形纸片,引导他们卷成尽可能粗的圆柱纸简。

  其次,提问:原来长方形纸片是一个平面;现在卷成圆柱纸简后,它还是平面吗?让学生感知“由直变曲”。

  然后,我根据学生回答谈话:在一定的条件下平面是可以“由直变曲”的

  2、展一展,感知“由曲变直”。

  首先,我让学生展开卷好的圆柱简。

  其次,提问:这个尽可能粗的圆柱纸简展开后是什么形状?让学生感知“由曲变直”。

  然后,谈话:同样,在一定条件下曲面也可以“由曲变直”变为平面。

  3、谈话引入:今天我们将运用这个知识来计算圆柱的侧面积与表面积。(板书课题:圆柱的表面积)

  通过这个环节的卷、展操作,让学生感知圆柱的侧面“由曲变直”的过程,使得“圆柱侧面积”的新知识与“求长方形面积”的旧知识联系起,突破了教学的难点。

  (二)观察对比,推导圆柱侧面积计算公式。

  这个环节,我将分两步进行教学

  1、观察对比,理解圆柱侧面积含义

  首先,我让学生再次卷出尽可能粗的圆柱纸简。

  其次,提问引导学生观察对比。

  (1)原来长方形纸片的长现在在么地方?宽呢?现在长方形纸片卷成圆柱简后变成圆柱的什么面?

  并且根据学生回答板书。

  长方形 长 宽

  圆柱侧面 表面周长 高

  (2)谁能指出这个圆柱简的两个表面?(现在是空的)

  《圆柱的表面积》说课稿 篇6

  一、检查复习,引入新课

  1、复习圆柱体的特征

  师:圆柱是由平面和曲面围成的立体图形。圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?(学生回答后课件动画闪烁各部分名称)

  2、拿出圆柱体茶叶罐:想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)请大家猜一猜圆柱侧面是怎样做成的呢?

  引入:今天这节课,我们就一起来学习圆柱的表面积。

  【设计意图:通过复习,再次让学生明白圆柱的特征,同时创设“制作圆柱体茶叶罐怎样下料的问题”,激发学生的求知欲,也体现出学数学的价值。】

  二、引导探究,学习新知

  (一)教学圆柱表面积的意义。

  设疑:长方体6个面的总面积,叫做它的表面积。什么是圆柱体的表面积呢?(学生回答,教师板书:侧面积+底面积×2 =表面积)

  要求圆柱的`表面积,首先应该计算出它的底面积和侧面积。

  (二)测量直径,计算圆柱的底面积。

  圆柱的底面是圆形,怎样计算它的面积吗?(S=∏r2)需要知道什么条件? 现场测量茶叶桶的底面直径。(注意方法指导:量出底面最长的线段即直径的长度。课件动画展示测量方法)

  学生口答算式和结果

  (三)教学圆柱体侧面积的计算

  1、引导探究圆柱体侧面积的计算方法。

  (1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?

  想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?

  (2)学生动手操作。(剪圆柱形纸筒)

  (3)汇报交流研究结果。(随着学生回答课件展示)

  百度图片:

  小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

  2、计算圆柱体茶叶罐的侧面包装纸的面积

  师:(课件呈现圆柱茶叶罐侧面包装图片)

  求圆柱体茶叶罐的侧面包装纸的面积实际是求圆柱的什么?(侧面积) 再次测量茶叶桶的高,并把结果记录下来,独立计算。

  (四)教学求圆柱的表面积。

  1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

  2、学生根据数据进行计算。

  3、汇报计算方法及结果,强调单位的使用

  小结:求茶叶桶的表面积是为工人师傅下材料提供了基本数据,但是在准备材料时往往会比计算结果多一些,因为在具体操作时,尤其是在剪圆的时候会产生浪费现象,这是不可避免的。

  【设计意图:教师抓住圆柱表面积中的侧面积是学生学习的难点这一问题,通过四个层次的学习,有详有略,凸显本节课的重难点。教师让学生动手操作,经历圆柱侧面展开的过程,通过小组交流讨论,推导出了圆柱侧面面积的计算方法,有效的培养了学生的动手操作能力,适时渗透“转化”思想,学生的空间观念和思维能力得到锻炼。】

  三、解决问题,强化认知。

  (一)(多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图)引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?通过回答让学生感知圆柱表面积在实际生活中应用的意义。

  (二)根据要求练习。

  1、一个圆柱形油桶,底面直径是8分米,高是12分米,它的占地面积有多大?(只列式不计算)

  2、一台压路机的滚筒宽1.2米,直径为8分米。如果它滚动1周,压路的面积是多少平方米?(只列式不计算)(课件呈现压路机压路情景)

  3、做一个无盖的圆柱形铁皮水桶,高是5分米。底面直径4分米,至少需要多大面积的铁皮?(结果保留整数)

  根据学生的计算结果,教学用“进一法”取近似值。

  小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。

  (三)操作练习。

  根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。 讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?

  测量:借助工具测量出需要的数据(取整厘米数),并做好记录。

  计算:根据量得的数据,列出相应的算式并算出结果。

  【设计意图:数学源于生活,又用于生活。教师设计不同层次的练习题,一方面是检查学生对知识的掌握情况,另一方面也是培养学生运用知识解决实际问题的能力。】

  四、课堂回顾,总结提升

  1、本节课你有何收获?

  2、教师小结:在解答实际问题前一定要先进行分析,看它们求的是哪部分面积,再选择解答的方法。求用料多少,一般采用进一法取近似值,以保证原材料够用。

  【设计意图:不仅对本节课的知识要点进行回顾整理,更重要的是提醒学生在解决问题时要具体情况具体分析。】

  《圆柱的表面积》说课稿 篇7

  教学目标

  1.认识掌握圆柱各部分名称,建立圆柱体空间概念;

  2.掌握圆柱体侧面积、表面积的计算方法,并能具体应用。

  教学重点和难点

  1.教学重点:推导圆柱体侧面积的计算方法。

  2.教学难点:圆柱体侧面积公式的推导过程。

  教学过程设计

  (一)复习准备

  师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?

  生:长方形。

  师把长方形贴在黑板上。

  师:面积如何求?

  生:长方形面积=长×宽。(师板书)

  师又拿出正方形,问相同的问题,然后把这个正方形贴在长方形旁边。再拿出圆形。

  师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?

  然后把圆形贴在长方形上面。再出一些练习题进行圆面积和周长的计算。强调计量单位。

  师又拿出长方体、正方体。当拿出圆柱体时,同学们都能回答是圆柱体。接着让他们举一些日常生活中经常见到的圆柱形物体。再让他们拿出自己事先准备的圆柱体(如果提出似是而非的问题时,先不要进行讨论。)这时老师也拿出一些实物:手电筒里的反光罩、罐头盒、小鼓、印章、烟囱的半个拐脖,问这些实物叫不叫圆柱体?为什么不叫圆柱体?

  师:今天我们就来学习一种新的形体——圆柱体。(板书课题——圆柱)

  (二)学习新课

  1.圆柱体的认识。

  师:现在找一个同学到前面摸一摸圆柱体有哪几个面。(指名上前摸。)

  生:上、下两个面和周围一个面。

  师:上、下两个面是什么形状?它们的面积大小怎样?

  生:上、下两个面是圆形,面积相等。

  师:我们把圆柱上、下两个面叫做底面。(板书:底面)

  师:周围的这个面是个曲面。我们把周围的这个面叫做侧面。(板书:侧面)

  师:我们把一个圆在平面上滚动一周,痕迹是一条线段。如果把这个圆柱在平面上滚动一周,它的侧面留下的痕迹将是一个什么形状?同学们可以自己用手中的学具动手滚一下,能体会出是一个什么形状?

  生:是一个长方形。

  师演示:将圆柱体侧面展开得到一个长方形。(与黑板贴的长方形一样大。)

  师接着拿出两个高矮不一样的圆柱体。

  师问:为什么有高有矮呢?由什么决定的?

  生:由高决定的。

  师:什么是圆柱的高呢?(板书:高。写在长方形宽处。)看看书上是怎么讲的。(看书第50页,找同学回答。)老师在圆柱侧面上画一条垂直于底面的线段,这条线段就是这个圆柱的高。

  师出示投影,让学生指出高。

  师:圆柱的高有多少条?

  生:无数条。

  师:高都相等吗?

  生:都相等。

  师:现在我们来回答刚才举的一些物体不是圆柱体的原因。(先让同学们说自己手中的,最好让本人说,然后再说老师手中的实物。)

  师:我们讲的圆柱体都是直圆柱。

  2.圆柱的侧面积。

  (1)推导公式。

  师:圆柱侧面图是一个长方形。下面同学们四人一组对照手中的圆柱体学具进行讨论。

  讨论题目是:

  a:这个长方形与圆柱体有哪些关系?

  b:你能推导出圆柱体侧面积计算方法吗?

  然后学生汇报讨论结果。

  生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。

  老师板书公式。

  (2)利用公式计算。

  例1 一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)

  老师在黑板上板演。

  下面同学们进行练习。投影练习题:

  ①一圆柱底面半径是5厘米,高5厘米,求侧面积。

  ②一圆柱底面半径是2分米,高是直径的2倍,求它的侧面积。

  ③一圆柱底面周长是12厘米,高12厘米,求它的侧面积。

  师:你能知道第③题圆柱侧面展开图是什么图形吗?

  3.圆柱的表面积。

  师在课题“圆柱”后面接着写“的表面积”。

  (1)推导公式。

  师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体平面展开图,让同学们进行讨论。)

  生汇报讨论结果,老师板书公式:

  S表=S侧+2S圆

  (2)利用公式计算。

  (投影出示)

  例2 计算圆柱体的表面积(见下图)。(单位:厘米)

  同学说思路,老师板书,注意每一步结果写计量单位。

  解 ①侧面积:2×314×5×15=471(平方厘米)

  ②底面积:314×52=785(平方厘米)

  ③表面积:471+785×2=628(平方厘米)

  答:它的表面积是628平方厘米。

  例3 一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)

  同学说思路,列式。老师把正确的解答用投影打出来。

  (1)水桶的侧面积

  314×20×24=15072(平方厘米)

  (2)水桶的底面积

  314×(20÷2)2

  =314×102

  =314×100

  =314(平方厘米)

  (3)需要铁皮

  15072+314=18212≈1900(平方厘米)

  答:做这个水桶要用铁皮1900平方厘米。

  小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?

  (三)巩固反馈

  (1)看书第54页第1题。

  (2)投影,指出下面圆柱体的高是几?

  (3)有一节直径10厘米的烟囱,长3米。这节烟囱用铁皮多少平方米?(只列式)

  (4)一种轧道机,后轮直径132米,长127米。如果后轮每分钟转动6周,每分钟可轧路面多少平方米?(只列式)

  (5)做一对无盖水桶,要求底面半径15厘米,高4分米。至少需用铁皮多少平方分米?(结果保留一位小数。)

  (6)一种圆柱形小油漆桶,底面周长5024厘米,高20厘米。每个桶用铁皮多少平方分米?(四人讨论后口头回答。)

  学生做,老师巡视,找几个同学把题写在玻璃片上,然后全体订正。

  思考题:

  (1)你要做一个圆柱体,先确定什么条件?你是怎样做的?

  (2)我们在学习圆面积时,用两个完全一样的圆拼成一个近似长方形的方法推导出圆面积的公式,你能用这种方法推导出求圆柱体的表面积的另外一种计算方法吗?并用此方法做第(6)题,比较哪种方法简便?

  《圆柱的表面积》说课稿 篇8

  教学目标

  知识与技能:

  1.能根据具体情境,灵活运用圆面积和长方形面积理解圆柱体的表面积。

  2.通过想象、动手操作等活动,理解圆柱侧面展开图是一个长方形,加深对圆柱特征的认识,发展空间观念。

  3.探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  1.2过程与方法:

  讲解圆柱体表面积的过程中,培养学生初步的观察能力以及想象、概括能力。

  1.3情感态度与价值观:

  引导学生进一步体会立体图形的平面化,感受数学探索活动本身的乐趣,增强学好数学的信心。

  教学重难点

  教学重点:

  让同学们理解圆柱的表面积计算方法。

  教学难点:

  能够分清侧面积和表面积的区别,合理应用到日常生活中.

  教学工具

  课件、多媒体设备等

  教学过程

  一、情境导入

  师:同学们,在如常生活中我们经常会遇到一些圆柱体,比如我手里面拿的水杯,你们知道他有哪些东西组成的吗?

  生:同学们举手进行回答。

  师:这个水杯有哪些面组成呢?

  生:上底面、下底面、侧面

  师:多媒体出示动画

  师:我们可以看出它有三部分组成。

  师:现在想一下这三部分都是什么图形?

  生:上下底面(圆形),侧面(长方形)

  师:把这三个面积加起来,就是我们今天要学习的圆柱的表面积。

  生:举手口述连线答案。

  师:课件出示答案

  圆柱的侧面积=底面周长×高

  师:现在,我们来看一些数量关系:

  ①柱体上下底面面积相等;

  ②圆柱体侧面长=底面圆周长

  ③圆柱体侧面宽=圆柱体高

  二、探究新知

  (一)、侧面积

  师:我们现在来看看圆柱体的侧面积是怎样计算的。

  学生:举手发言

  在回答问题的过程中教师要用鼓励性的语言激发学生探求知识的能力。

  师:多媒体出示答案

  圆柱侧面积=长×宽=底面圆周长x高

  师:现在我们看看在实际应用中是如何计算的。(多媒体出示问题)

  1、已知圆柱体的底面圆半径为50px,高为125px,求一下这个圆柱体的侧面及时多少?

  生:举手回答

  师:多媒体出示答案

  解:周长=2πr=2×2π=4π

  侧面积=周长×高=4π×5=20πcm?

  师:同学们要认真观察书写步骤。

  (二)、表面积

  师:现在我们来看看圆柱体的表面积是怎么计算的。

  生:举手回答问题

  师:多媒体出示答案

  圆柱表面积=侧面积+底面积=侧面积+上底面积+下底面积

  师:下面我们再来做一个练习吧!

  2、现在要制作一个底面半径为2dm,高为10dm的圆柱形铁桶,需要多少铁皮?

  师:同学们可以先算出侧面积和底面积,然后再算表面积。

  生:通过同学们互相竞争,增强了同学们学习数学的兴趣。

  解析:

  解:周长=2πr=2×2π=4π

  侧面积=周长×高=4π×10=40π

  底面圆面积=πr?=4π

  圆柱表面积=侧面积+2底面积=40π+2x4π=40π+8π=48π

  答:需要48πdm?铁皮

  三、巩固练习

  师:现在请大家看屏幕上面的这道题,能不能分小组解决问题。(课件出示题目)

  1、天气冷了,农村学生就要生火了,烟囱使用铁皮做的,一节烟囱长为2000px,烟囱的半径为100px,求制作这样的烟囱一节需要多少铁皮。

  师:要找出题目的关键,理清思路,细心解题。

  生:学生互相探讨交流,完成整个题目,培养学生独立思考的能力。

  解析:

  解:周长=2πr=2×4π=8π

  表面积=侧面积=8π×10=80π

  答:制作这样的烟囱一节需要80πcm?铁皮

  师:接下来,再看一个题目,这次也要分组进行,看看哪个组做得又快又好。(课件出示题目)

  2.现在要砌一个圆柱形的水窖,预计水窖深3米,水窖底的底面直径为1.5米,现在求一下整个水窖需要抹去多少平方米的混凝土。

  生:各小组在竞争中享受获取知识的乐趣。

  解析:周长=πd=1.5π

  表面积=侧面积+下底面积=1.5π×3+2.25π=6.75π

  答:整个水窖需要抹去6.75π平方米的混凝土

  师:现在大家独立完成下面的题目(出示题目)。

  3、已知一个圆柱体的表面积是15700px?,其中圆柱体的底面半径50px,求圆柱体的高。

  解:设圆柱体的高为h

  根据:表面积=侧面积+2底面积

  628=2×2πh+2×π2?

  628=4πh+8π

  628=4×3.14h+8×3.14

  20=4h+8

  h=4

  答:圆柱体的高4米

  7作业布置

  师:在作业本上面完成下面的2个题目。

  1、一个圆柱体,如果底面半径为5,圆柱体高为10,那么,求一下圆柱体的侧面积和表面积?

  解:周长=2πr=2×5π=10π

  侧面积=周长×高=10π×10=100π

  底面积=πr?=25π

  表面积=侧面积+2底面积=100π+2×25π=150π

  2、现在要给一个圆柱形的纸质品涂上颜色,现在知道该艺术品的底面圆半径为50px,圆柱体高为125px,请同学们求出圆柱体的表面积。

  解:周长=2πr=2×2π=4π

  侧面积=周长×高=4π×5=20π

  底面积=πr?=4π

  表面积=侧面积+2底面积=20π+4π=24π

  课后小结

  这堂课大家通过学习圆柱体的表面积,使同学们能用学过的知识去解决一些实际的图形面积问题。主要为了让同学们能够建立丰富的想象,把立体图形转化为平面图形的能力,在教学中涉及了学生互动,分组学习等教学模式,真正体现了学生的主体地位。让学生在课堂上动起来,寻找知识、体会知识,并通过练习提高学生的想象能力和抽象思维能力。

  《圆柱的表面积》说课稿 篇9

  一、学习目标:

  1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

  2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

  二、学习重点:

  掌握圆柱侧面积和表面积的计算方法。

  三、学习难点:

  运用所学的知识解决简单的实际问题。

  四、学习过程:

  (一)、旧知复习

  1、圆柱有几个面?分别是 、 和 。

  2、底面是 形,它的面积= 。

  3、侧面是一个曲面,沿着它的高剪开,展开后得到一个 形。它的长等于圆柱的 ,宽等于圆柱的 。

  4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

  (二)列式为

  1、圆柱的侧面积

  (1)圆柱的侧面积指的是什么?

  (2)圆柱的侧面积的计算方法:

  圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积= ,所以圆柱的侧面积= 。

  (3)侧面积的练习

  求下面各圆柱的侧面积。

  ①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。

  小结:要计算圆柱的侧面积,必须知道圆柱的 和 这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  2、圆柱的表面积

  (1)圆柱的表面是由 和 组成。

  (2)圆柱的表面积的计算方法:

  圆柱的表面积=

  (3)圆柱的表面积练习题

  一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  分析,理解题意:求需要用多少面料,就是求帽子的 。需要注意的是厨师帽没有下底面,说明它只有 个底面。

  列式计算:

  ① 帽子的侧面积=

  ② 帽顶的面积=

  ③ 这顶帽子需要用面料=

  小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

  3、巩固练习

  一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

  4、总结:通过这节课的学习,你掌握了什么知识?

  圆柱的侧面积

  圆柱的表面积

  五、教学结束:

  布置学生课下复习本节课内容。

  《圆柱的表面积》说课稿 篇10

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:

  圆柱形物体、学具、多媒体课件

  教学重点:

  圆柱侧面积的计算方法推导。

  教学过程:

  一、猜测面积大小,激发情趣导入

  1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)

  2、这两个圆柱谁的侧面积谁大?为什么?

  3、复习:圆柱的侧面积=底面周长×高

  刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

  二、组织动手实践,探究圆柱表面积

  1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)

  2、你们觉得这两个圆柱谁的表面积大?为什么?

  生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。

  3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

  生:计算的方法

  师:怎么计算圆柱的表面积呢?

  圆柱的表面积=侧面积+两个底面的面积 (板书)

  4、那现在你们就算算这两个圆柱的表面积是多少?

  生:(不知所措)没有数字怎么算啊?

  师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

  生1:我想知道圆柱体的底面半径和高。

  生2:我想知道圆柱体的底面直径和高。

  生3:我想知道圆柱体的底面周长和高。

  ………

  师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

  5、汇报展示:

  情况一:半径:31.4÷3.14÷2=5(cm)

  底面积:3.14×5×5=78.5(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+78.5×2=748.576(平方厘米)

  情况二:半径:18.84÷3.14÷2=3(cm)

  底面积:3.14×3×3=28.26(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+28.26×2=648.096(平方厘米)

  师:通过我们计算验证了我们刚才的判断是正确的。

  接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

  生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

  生2:这样做挺麻烦的有没有更简单一点的方法呢?

  6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)

  教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

  问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)

  所以圆柱体表面积=长方形面积=底面周长×(高+半径)

  用字母表示:S=C×(h+r)

  我们用这个方法来验证一下我们的例2看是不是比原来简单?

  汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)

  《圆柱的表面积》说课稿 篇11

  教学内容:《圆柱的表面积》是小学数学第十二册的教学内容。

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:圆柱形物体、学具、多媒体课件

  教学重点:圆柱侧面积的计算方法推导。

  准备:课前布置学生用纸片试做一个圆柱体。

  教学过程:

  一、交流做圆柱体的情况。

  师:昨天老师布置你们做一个圆柱体,做起来了吗?谁来介绍一下你是怎样做的。

  生1:我是先找一个圆柱体的茶叶罐,贴着底面剪了2个圆,然后再紧贴着侧面剪下了一个长方形,最后用透明胶粘起来。

  生2:我也先剪出两个一样大的圆,然后剪出一个长方形,开始怎么也做不出来,不是圆太大了就是太小了,后来不断修整,总算做起来。

  生3:我发现两个圆要一样大,长方形纸片的长与圆周长相等时很快就做起来。

  师:这说明什么呢?

  一生抢着说:“原来底面圆的周长等于长方形的长”。

  二、探索圆柱表面积的计算方法。

  (1)引入

  师:这节课我们要研究怎样计算圆柱的表面积。下面我们先来回顾一下圆的面积计算公式是怎样推导出来的?

  生:把圆切割拼成一个近似的长方形。(师用电脑演示过程)

  师:圆面积公式的推导方法,对圆柱的表面积公式推导有没有启示呢?你们打算怎么做?

  生:把圆柱剪开,变成我们学过的图形。

  师:下面分小组探索圆柱的表面积的计算方法。

  (2)小组汇报

  生1:我们小组把做的圆柱体展开后,发现圆柱体由2个相同的底面,和一个侧面组成。侧面展开是长方形,侧面积=底面周长×高。2个底面面积=兀r2×2。所以,圆柱表面积=底面周长×高+兀r2×2

  生2:我们小组同意他们的方法,我们还能用一个字母公式来表示:s圆柱=2兀r×h+兀r2×2 。

  师:还有不同方法吗?

  生3:我的方法是,s圆柱=2兀r×(h+r)不知道行不行。我是从第2个同学公式中,运用乘法分配律转化过来的。

  师:这样做的结果是一样的,有什么道理呢?

  (生陷入思考)

  师:从公式看2个底面圆跑到哪去了呢?

  一个学生恍然大悟,激动地说我知道,转化成长方形了。大多数学生还没领悟过来,他马上到黑板画草图,在老师协助下完成。一画完教室里就响起了热烈的掌声。

  师:太不简单了,这种方法可以说是数学上的一项伟大发现。连书本上都没有,我要向更多的同学和老师介绍。

  师:现在我们有两种方法来计算圆柱的表面积,那么计算一个圆柱的表面积至少要知道什么条件呢?

  生1:半径或直径和高。

  生2:有周长和高也行。

  生3:我发现已知周长和高,用第二种方法计算比较快。

  师:在我们实际生活中有很多特殊情况,同学们要根据具体情况,灵活处理。

  三、自学例3

  师:注意思考:

  (1)这个圆柱形水桶,有什么不一样,计算时要注意什么?

  (2)什么叫“进一法”?什么情况下要运用进一法?

  生1:这个水桶只有一个底面,不能多算成2个。

  生2:“进一法”书上告诉我们,就是计算结果在求近似数时,没满4也要向前一位进一,就像昨天我们做圆柱体时,要留点“接头”用胶水粘,接头不能舍去。

  师:在一些用料问题上,我们要根据实际情况来考虑。

  四、 计算练习(出了3道题)

  由于计算繁杂时间略显不足,正确率不高,不能全面反馈学生的掌握情况。

  反思:

  这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。

  一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。

  二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。

  三、我也体验到了怎么教数学。

  (1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。

  (2)立足发展学生的能力,设计课堂教学的策略。

  (3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。

  四、不足改进。

  在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。

  《圆柱的表面积》说课稿 篇12

  一、设计理念及设计思路。

  建立促进学生全面发展的数学课程体系是新课程改革的重要任务。数学要从以获取知识为着重目标转变为首先关注学生的发展,创造一个有利于学生活泼发展的教育环境,提供给学生一个充分探究、创新发展的空间。在学习中,学生是学习的主体,教师是教学活动的组织者、引导者和合作者。在这一教学理念的指导下,我在设计本节课时,重点和难点之处都是安排学生进行动手操作,讨论交流,学生参与到知识获取中,真正理解了圆柱的侧面积为什么是底面周长×高,并能运用公式灵活计算。

  数学学习活动不单是单纯的接受与记忆,而是让学生亲身经历和体验富有个性的探究过程。因此设计剪一剪、看一看、找一找、议一议等教学活动。

  二、教学目标。

  知识与技能:

  1、理解表面积的含义;

  2、掌握圆柱的侧面积,表面积的计算方法,会运用公式计算表面积,解决有关的简单实际问题。

  过程与方法:

  经历圆柱的侧面积、表面积的公式的发现过程,体验利用旧知识迁移学习的方法。

  情感态度与价值观:

  感悟数学知识的能力,体会数学知识之间的相互联系。

  重点:理解求圆柱的侧面积、表面积的计算方法并能正确计算。

  难点:灵活运用侧面积、表面积的有关知识解决实际问题。

  教学准备:投影仪,圆柱模型、小剪刀。

  三、教学过程。

  (一)、复习引入。(投影出示)

  (1)口答下列各题:

  ①圆的半径是1厘米,圆的周长是多少?面积是多少?

  ②长方体、正方体的表面积如何计算。(单位:厘米)

  3 3

  4 3

  5 3

  你能算出它们的表面积吗?

  (2)引入新课:我们已经掌握了长方体、正方体的表面积的计算方法,今天我们要来探讨圆柱表面积该如何计算。

  板书课题:圆柱的表面积

  (二)、探究新知。

  (1)圆柱的表面积的含义。

  师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?(讨论、交流)

  学生得出结论:圆柱的表面积=圆柱的侧面积+两个底面积

  (2)计算圆柱的表面积。

  ①组织学生将自制的圆柱模型展开分组学习。

  ②侧面展开可能会出现以下几种情况:长方形、正方形、平行四边形。

  ③以长方形为例,指导学生观察联系。

  长方形的长等于圆柱底面的周长,宽等于圆柱的高。

  得出结论:长方形的面积= 长 × 宽

  圆柱的侧面积=底面周长 × 高

  师:圆柱的两个底面是圆形,我们早就会计算它的面积了,现在我们又推导出圆柱的侧面积计算公式,那么你们知道计算圆柱的表面积吗?

  (3)解决实际问题。

  ①投影出示例4:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(复数保留整十平方厘米)

  ②组织学生读题,找出条件,说说实际是求什么问题。分组学习

  ③学生独立完成计算。

  ④反馈订正。

  订正时让学生讲解题思路和步骤及计算结果取近似值的方法。

  强调:这里不能用“四舍五入”法取近似值。在实际中,使用的材料都要比计算得到的结果多一些,因此要用“进一法”取近似值。

  三、课堂小结:圆柱的表面积怎样计算?

  四、应用反馈。(独立完成计算)

  1、一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

  2、广告公司制作了一个底面直径是1.5m,高2.5m的圆柱形灯箱,它的侧面最多可以张贴多大面积的海报?

  板书设计:

  圆柱的表面积

  圆柱的表面积= 圆 柱 侧 面 积 + 两 个 底 面 积

  宽(圆柱的高)

  长(底面圆的周长)

  圆柱侧面积=底面周长×高

【《圆柱的表面积》说课稿(精选12篇)】相关文章:

圆柱的表面积说课稿11-04

圆柱的表面积精品说课稿11-04

圆柱的体积说课稿11-08

《圆柱的体积一》说课稿12-01

表面积的变化说课稿11-04

圆柱的体积说课稿8篇11-08

圆柱的体积说课稿(7篇)11-08

圆柱的体积说课稿8篇11-08

圆柱的体积说课稿(7篇)11-08

圆柱体体积说课稿01-11