- 相关推荐
高二数学《平面向量的坐标表示》说课稿
作为一位杰出的老师,往往需要进行说课稿编写工作,说课稿有助于学生理解并掌握系统的知识。那么说课稿应该怎么写才合适呢?下面是小编为大家收集的高二数学《平面向量的坐标表示》说课稿,欢迎阅读与收藏。
高二数学《平面向量的坐标表示》说课稿 1
各位老师好:
我是户县二中的李敏,今天讲的课题是《平面向量的坐标的表示》,本节课是高中数学北师大版必修4第二章第4节的内容,下面我将从四个方面对本节课的教学设计来加以说明。
一、学情分析
本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。
二、高考的考点分析:
在历年高考试题中,平面向量占有重要地位,近几年更是有所加强。这些试题不仅平面向量的相关概念等基本知识,而且常考平面向量的运算;平面向量共线的条件;用坐标表示两个向量的夹角等知识的解题技能。考查学生在数学学习和研究过程中知识的迁移、融会,进而考查学生的学习潜能和数学素养,为考生展现其创新意识和发挥创造能力提高广阔的空间,相关题型经常在高考试卷里出现,而且经常以选择、填空、解答题的形式出现。
三、复习目标
1.会用坐标表示平面向量的加法、减法与数乘运算.
2.理解用坐标表示的`平面向量共线的条件.
3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.
4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.
教学重难点的确定与突破:
根据《20xx高考大纲》和对近几年高考试题的分析,我确定本节的教学重点为:平面向量的坐标表示及运算。难点为:平面向量坐标运算与表示的理解。我将引导学生通过复习指导,归纳概念与运算规律,模仿例题解决习题等过程来达到突破重难点。
四、说教法
根据本节课是复习课,我采用了“自学、指导、练习”的教学方法,即通过对知识点、考点的复习,围绕教学目标和重难点提出一系列精心设计的问题,在教师的指导下,用做题来复习和巩固旧知识点。
五、说学法
根据平时作业中的问题来看,学生会本节课遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算等方面。根据学情,所以我将指导通过“自学,探究,模仿”等过程完成本节课的学习。
六、说过程
(一) 知识梳理:
1.向量坐标的求法
(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.
(2)设A(x1,y1),B(x2,y2),则
=_________________
||=_______________
(二)平面向量坐标运算
1.向量加法、减法、数乘向量
设 =(x1,y1), =(x2,y2),则
+ = - = λ = .
2.向量平行的坐标表示
设 =(x1,y1), =(x2,y2),则 ∥ ________________.
(三)核心考点习题演练
考点1.平面向量的坐标运算
例1.已知A(-2,4),B(3,-1),C(-3,-4).设 (1)求3 + -3 ;
(2)求满足 =m +n 的实数m,n;
练:(20xx江苏,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)
(m,n∈R),则m-n的值为 .
考点2平面向量共线的坐标表示
例2:平面内给定三个向量 =(3,2), =(-1,2), =(4,1)
若( +k )∥(2 - ),求实数k的值;
练:(20xx,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ为实数,( +λ )∥ ,则λ= ( )
思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?
考点3平面向量数量积的坐标运算
例3“已知正方形ABCD的边长为1,点E是AB边上的动点,
则的值为 ; 的最大值为 .
【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.
练:(20xx,安徽,13)设 =(1,2), =(1,1), = +k .若 ⊥ ,则实数k的值等于( )
【思考】两非零向量 ⊥ 的充要条件: =0 .
考点4:平面向量模的坐标表示
例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的最大值为( )
A.6 B.7 C.8 D.9
练:(20xx,上海,12)
在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则 的取值范围是?
高二数学《平面向量的坐标表示》说课稿 2
尊敬的各位专家、评委:
上午好!
今天我说课的课题是人教A版必修4第二章第三节《平面向量的基本定理及其坐标表示》。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析
教材的地位和作用
1、向量在数学中的地位
向量在近代数学中重要和基本的数学概念,是沟通代数,几何与三角函数的一种工具,它有着极其丰富的实际背景,又有着广泛的实际应用,具有很高的教育价值。
2、本节在全章的地位
平面向量基本定理揭示了平面向量的基本关系和基本结构,足以进一步研究向量问题的基础,是进行向量运算的基本工具,是解决向量或利用向量解决问题的基本手段。
3、平面向量基本定理具有十分广阔的应用空间
平面向量基本定理蕴含一种十分重要的数学思想——转化思想。
二、目标分析
(一)、教学目标
1、知识与技能目标
了解平面向量基本定理的条件和结论,会用它来表示平面上的任意向量,为向量坐标化打下基础。
2、过程与方法目标
通过对平面向量基本定理的学习过程。让学生体验数学定理的产生,形成过程,体验定理所蕴含的数学思想方法。
3、情感,态度和价值观目标
通过对平面向量基本定理的运用,增强学生向量的应用意识,让学生进一步体会向量是处理几何问题有力的工具之一。
(二)、教学的重点和难点
1、重点:对平面向量定理夫人探究
2、难点:对平面向量基本定理的理解及运用
三、教法、学法分析
(一)、教法
在教法上采取三主教学法:教师主导,学生主体,思维主线
1、教学手段
使用多媒体辅助教学,使书本的图形动起来,加强了教学的主观性
2、学情分析
前几节课已经学习了向量的基本概念和基本运算,学生对向量的物理背景有了初步的了解,都为学习这节课做了充分的准备。
(二)学法
教师通过启发,激励来体现教师的主导作用,引导学生全员,全过程参与。
四、教学过程分析
(一)教学过程设计
创设情境,提出问题
数形几何,探究规律
揭示内涵,理解定理
例题练习,变式演练
归纳小结,深化认知
布置作业,巩固提高
1、创设情境,提出问题
如果e1,e2是同一平面内的两个不共线的向量,a是这一平面内的任意向量,那么a与e1,e2之间有什么关系呢?怎探求这种关系呢?
2、数形几何,探究规律
平面向量基本定理
如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量,a,存在一对实数R1,R2使得a=R1e1+R2e2
3、揭示内涵,理解定理
(1)、为什么基底e1,e2必须不共线?
(2)、基底e1,e2是否可以选择?
(3)、定理中R1,R2的值是否唯一?
(4)、定理的价值何在?
4、例题练习,变式演练
如图4,在□ABCD中,AB=a,AD=b
试用a,b分别表示AC,BD
如图5,如果E,F分别是BC,DC的中点,试用a,b分别表示BF,DE
如图6,如果O是AC,BD的交点,G是DO的中点,试用a,b表示AG
5、小结归纳,回顾反思。
小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。
(1)、课堂小结
①、向量的坐标表示
a、对于向量a=(x,y)的理解
a=xe1+ye2(e1,e2分别是x轴,y轴正方向上的单位向量);
若向量a的起点是原点,则(x,y)就是其终点的坐标。
b、向量AB的坐标
一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标。即如果A(x1,y1),B(x2,y2),则有AB=(x2—x1,y2—y1)。
c、注意要把点的坐标与向量的坐标区别开来。相等的向量坐标是相同的',单起点和终点的坐标却可以不同。
②、平面向量共线的坐标表示
a、a=(x1,y1),b=(x2,y2),其中(b≠0),a//b的充要条件a=与x1y2—x2y1=0在本质上市相同的,只是形式上的差异。
b、要记准公式坐标特点,不要用错公式。
c、三点共线的判断方法
判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判断。
(2)、反思
我设计了三个问题
①、通过本节课的学习,你学到了哪些知识?
②、通过本节课的学习,你最大的体验是什么?
③、通过本节课的学习,你掌握了哪些技能?
(二)、作业设计
作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。
我设计了以下作业:
必做题:课本97页第二题,98页第六题
——巩固作业的设计是保证了全体学生对平面向量基本定理的巩固应用。
选做题:用向量法证明三角形的中位线平行于第三边切等于第三边的一半
——创新作业的设计,体现了向量的工具性,使得学生对于用向量的方法证明几何命题有了初步的体验。
(三)、板书设计
板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
五、评价分析
学生学习的结果评价虽然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
谢谢!
高二数学《平面向量的坐标表示》说课稿 3
各位评委各位老师你们好!今天我要说的课题是:平面向量数量积的坐标表示
首先我从这次课的设计思想来谈一谈:
一、 设计思想
在新一轮中专课程标准中要求“教师不仅是课程的实施者,而且也是课程的研究、建设和资源开发的重要力量。教师不仅是知识的传授者,而且也是学生学习的引导者、组织者和合作者”。本节课的教学设计能遵循新课程标准,在设计中考虑了数学学科的特点,中专单招学生的学习心理,以及本校学生的实际学习水平,运用不同的教学手段和方法,引导学生积极主动的学习,掌握数学的基础知识和基本技能以及它们所体现出来的数学思想方法,从而为形成积极的情感学习态度,提高数学素养做好准备。
二、 教材简析
平面向量的数量积是两向量之间的一种运算,前面两节课已经研究过。而通过建立直角坐标系,给出了向量的另一种表示式——坐标表示式后,这样就使得向量与它的坐标建立起了一一对应的关系,而平面向量的坐标表示把向量之间的运算转化为数之间的运算,这就为用“数”的运算处理“形”的问题搭起了桥梁。
本节内容是在平面向量的直角坐标以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。由于向量的数量积体现了向量的长度和三角函数之间的一种关系,特别用向量的数量积能有效地解决线段垂直的问题。把向量的数量积应用到三角形中,还能解决三角形边角之间的有关问题。所以向量的数量积的坐标表示为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。
三、 学习目标和要求
(一)、三维目标
知识与技能:
(1)、掌握平面向量数量积的坐标表示
(2)、了解用平面数量积可以处理有关长度、角度和垂直的问题
(3)、掌握向量垂直的条件
过程与方法:通过对现实生活情境的探究过程,感知应用数学解决实际问题的方法,理解数形结合的数学思想和逻辑推理能力。
情感态度与价值观:通过向量用坐标表示体现了代数与几何的完美结合,说明世间事物可以相互联系与相互转化。
(二)、重、难点解析
重点:掌握平面向量数量积的坐标表示,并能用坐标形式处理有关长度、角度和垂直的问题
难点:向量垂直的条件的理解与掌握
关键:在掌握向量数量积概念的基础上,通过建立坐标系,将向量的数量积运算转化为坐标的运算,即数之间的运算。
四、 学情分析
本节课是在学生充分理解向量的概念,掌握向量的坐标表示,并已经掌握了向量的数量积的概念和运算律的基础上进行学习的,应该说,从知识的接受上学生并不困难,也能理解各个公式的坐标表示,但学生的心理接受的程度上,还不能保证运用的得心应手,数学思想方法的体会可能也不能到位,更重要的是学生对计算能力的薄弱,将制约学生对本节课内容的理解与接受。
五、 教法和学法
在教学过程中,我主要采用了以下几种教学方法:
(1) 启发式教学法(分为课前启发和课堂启发以及课后启发式)
①所谓课前启发无非就是在课前的预习中,让学生主动问问题。我是将全班40人分成8组,每组5人,每组每天必须有一个代表问一个数学问题,但是是在第一次月考过后,我发现学生大部分解答题失分很严重,很多基本上就是空白,所以我感觉之前问法不行,很多学生就抄个题目来问,一点没考虑。后来我要求每次来问题目,必须自己先完成1/3,再来问,我想这样不经意间会启发学生独立思考问题的能力。
②因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我启发学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。
③所谓课后启发式就是启发学生对做错和不会做的题目,课后专门准备一个本子,将它认真的再记下来,再详细认真的写一遍,把易错的地方用红笔标注,这也就是我们说的“错题集”,因为我在高中的时候就写过,我把我当年的本子拿给他们看,对他们很有触动,起到的效果很好。
(2) 讲解式教学法
主要是讲清概念,解除学生在概念理解上的疑惑感,例题讲解时,演示解题过程。主要辅助教学的ppt手段.
(3) 主体式教学法
学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。我始终记得一句话“眼看十遍,不如手写一遍”,所以每次课我都会提前给每位学生准备一份“学生工作页,提前发下去,先预习。目的就是让学生把本次课讲过的公式和重要的结论以及课堂上所讲的例题,习题全部亲手写一遍,下课前全部交上来,并填写后面的评价表,让我及时发现教学中存在的问题。
接下来,我再具体谈谈教学设计过程:
六、 教学过程设计
(一)情景创设
问题1:回忆一下,如何用向量的长度、夹角反映数量积?又如何用数量积、长度来反映夹角?向量的运算律有哪些?
(复习旧知、引入新知)
问题2:已知两个非零向量,怎么样用与的坐标表示数量积呢?
(让学生能快速将所学的向量的坐标表示知识用到刚学的向量的数量积的问题上,能引起共鸣)
(二)学生活动
问题3:设是 x轴上的单位向量,是y轴上的单位向量,则①②③④
(通过问题3的练习,巩固向量数量积的概念,并为下面的问题做铺垫)
问题4:若你能推导出的结果?
在学生得到结果的基础上,引导学生知道与的等价性,从而得到向量数量积的坐标表示
(三)建构数学,则让学生用自己的语言表达,教师归纳得:两个向量的数量积等于它们对应坐标的乘积的和
问题5:向量的数量积的性质如何用坐标表示?
(1),则/ /怎么表示?
(2)若则/又如何表示?
(该问题安排在例题讲解完后,启发、引导学生自己总结出来)
问题6:你能写出向量夹角公式的坐标表示式,以及向量平行和垂直的坐标表示式,(仍然在帮助学生回忆有关知识点的过程中,引导他们用坐标的形式表示,通过两向量的两种特殊位置关系,体会向量的坐标表示,感受向量的数量积的作用,并帮助学生记住这些结论)
(四)数学应用
例1:①设
②
(直接应用)
接着问:例2
例3、证明以A(-1,-4),B(5,2)、C(3,4)为顶点的三角形是直角三角形:
分析:题中没有明确哪个角是直角,所以要分类讨论
(启发学生分类讨论后,让学生完成,并提醒、督促学生的计算,确保计算的正确)
课堂练习:课本P124 2
(学生板演:上数学课我认为学生上黑板训练这个环节还是非常有必要的,我是这样引导的,上黑板的学生做完,下面任何学生都有权力随便(不需要得到我同意)的可以上去改错,哪怕漏了写“解”,只要能改出一点,我都会当场给予表扬,给予加平时分,一方面强调平时解数学题的规范性。另方面充分做到以学生为本,抓住每时每刻调动全班学生学习的积极性和主动性。)
(五)回顾小结
两个方面对本节课进行小结
1、本节课的内容:有关公式、结论(由学生归纳、总结)
2、本节课的思想方法:
(1)、两个向量的数量积是否为零,是判断相应的两条直线是否垂直的重要方法之一。(注意:垂直的'坐标表示,共线的坐标表示
(2)、引入数量积的坐标表示后,可以用坐标将距离、角度及垂直关系用坐标表示出来,从而解决有关这些方面的几何问题。
(3)、数形结合思想、分类讨论思想、方程思想等。
(六)、布置作业
课本 p124习题3、4
(七)、板书设计
知识点归纳: 例题与练习
1、数量积:
2、夹角: 给出公式的字母幻灯投影
3、垂直:表示和坐标表示
4、平行
板书设计力求简明清楚,重点突出,并借助彩色粉笔显现重点内容,加深学生对向量数量积的坐标表示以及一些重要结论记忆,有利于提高课堂教学的有效性和45分钟的教学效果。
七、教学反思
1、注意培养学生的思维能力:
注意对学生思维能力的培养,对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力。在平面数量积的坐标形式的引入、产生、运用过程中,通过设问,不断引起学生思考。
2、注意数学思想方法的渗透:
具体内容渗透数学思想方法。例如,在确定直角三角形中的直角时,运用分类的思想;在求解向量坐标的过程中的方程思想;理解、分析向量时的数形结合思想。
由于向量具有两个明显特点-----“形”的特点和“数”的特点,这就使得向量成了数形结合的桥梁和典范。向量的坐标实际是把点与数联系了起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题,因此这部分知识还渗透了数形结合的解析几何思想。学习向量的数量积的坐标表示这一节内容时,能进一步促进学生对代数几何思想,运用代数几何化,几何代数化的方法从多角度思维,对于培养学生正确的数学观有着重要的作用。
3、突出知识的应用
学以致用,向量是解决问题的有效的思想方法,它为教材增加了新鲜的血液,使得教材体系更加富有活力,更有利于学生思维的发展。由于向量的模就是线段的长度,因此用向量可以解决很多数专业问题,有时会起到意想不到的神奇效果,充分体现了向量解决问题的优越性。
以上是我对说学情,说教材,说教法,说学法,说教学设计程序,说板书,教学反思上说明了“教什么”“如何教”和“为什么这样教”。如有不当之处,恳请各位专家批评指正。谢谢!
高二数学《平面向量的坐标表示》说课稿 4
各位评委、各位老师,大家好。今天,我说课的内容是:人教A版必修四第二章第三节《平面向量的基本定理及坐标表示》第一课时,下面,我将从教材分析、教法分析、学法指导、教学过程以及设计说明五个方面来阐述一下我对本节课的设计。
一、教材分析:
1、教材的地位和作用:
向量是沟通代数、几何与三角函数x的一种工具,有着极其丰富的实际背景。本课时内容包含“平面向量基本定理”和“平面向量的正交分解及坐标表示”。此前的教学内容由实际问题引入向量概念,研究了向量的线性运算,集中反映了向量的几何特征,而本课时之后的内容主要是研究向量的坐标运算,更多的是向量的代数形态。平面向量基本定理是坐标表示的基础,坐标表示使平面中的向量与它的坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭起了桥梁,也决定了本课内容在向量知识体系中的核心地位.
2、教学目标:根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。
(1)知识与技能
了解向量夹角的概念,了解平面向量基本定理及其意义,掌握平面向量的正交 分解及其坐标表示。
(2)过程与方法
通过对平面向量基本定理的探究,以及平面向量坐标建立的过程,让学生体验数学定理的产生、形成过程,体验由一般到特殊、类比以及数形结合的数学思想,从而实现向量的“量化”表示。
(3)情感、态度与价值观
引导学生从生活中挖掘数学内容,培养学生的发现意识和应用意识,提高学习数学的兴趣,感受数学的魅力。
3、教学重点和难点:根据教材特点及教学目标的要求,我将教学重点确定为———平面向量基本定理的探究,以及平面向量的坐标表示
教学难点:对平面向量基本定理的理解及其应用
二、教法分析:
针对本节课的教学目标和学生的'实际情况,根据“先学后教,以学定教”原则,本节课采用由“自学—探究—点拨—建构—拓展”五个环节构成的诱导式学案导学方法。
三、学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。由于学生已经掌握了向量的概念和简单的线性运算,并且对向量的物理背景有初步的了解,我引导学生采用问题探究式学法。让学生借助学案,在教师创设的情境下,根据已有的知识和经验,主动探索,积极交流,从而建立新的认知结构。
四、重点说明本节课的教学过程:
本节课共设计了五个环节:发放学案,依案自学;分组探究 ,信息反馈;精讲点拨,解难释疑 ;归纳总结,建构网络 ;当堂达标,迁移拓展 。
1、发放学案,依案自学
学习并非学生对教师授予知识的被动接受,而是学习者以自身已有的知识和经验为基础的主动建构。根据这一理念,我在课前下发“导学学案”,让学生以学案为依据,以学习目标、学习重点难点为主攻方向,主动查阅教材、工具书,思考问题,分析解决问题,在尝试中获取知识,发展能力。这是我编制学案的纲要。
经过学生的自学,在课堂上,我采用提问的方式,让学生对知识点进行简单概述,并阐述自己的学习方法和体会。其中,向量的夹角概念,学生基本上能独立解决,我会引导学生归纳出求两个向量夹角的要点:(1)两个向量要共起点,(2)两个向量的正方向所成的角。然后,通过学案上的练习题目1,检查学生的掌握程度。对本节课的重点和难点:平面向量基本定理的探究及坐标表示,我准备通过分组探究,精讲点拨,归纳总结三个方面来突破。
2、分组探究 ,信息反馈
这一环节,我先把学生分组,让其对定理及坐标表示,进行讨论、探究、交流,先组内互相启发,消化个体疑点,然后以组为单位提出疑问。如果某个问题,某个组已经解决,其它组仍是疑点,我让已解决问题的小组做一次"教师",面向全体学生讲解,教师可以适当补充点拨,这也可以说是讨论的继续。对于难度较大的倾向性问题,我准备
3、精讲点拨,解难释疑
本节课的目的是要帮助学生建立向量的坐标.要求先运用已有的知识去研究平面向量的基本定理,然后以这个定理为基础建立向量的坐标。对于定理的探究,有些学生只是从形式上加以记忆,缺乏对问题本质的理解,为了帮助学生改进学习方法,提升数学能力,我先提问学生如何把平面上任一向量分解成两个不共线向量的线性组合,学生会通过作图来说明这一问题。我们要强调的是,这里的向量是自由向量,其起点是可以移动的,将三个向量的起点放在一起可便于研究问题.类比物理上力的分解,利用平行四边形法则,我们把向量 分解成 ,根据向量共线定理 ,存在一对实数λ1,λ2 ,使 , 从而 =λ1 +λ2 ,教师再引导学生自主归纳,从而得出平面向量基本定理。为了加深对定理的理解,我设计了如下的几个问题,学生思考回答后,教师再利用几何画板作进一步的演示。当 , 共线时,与它们不共线的向量 不能用 , 当线性表示,所以共线向量不能作为基底;当不共线向量 , ,任意 确定后,λ1,λ2是唯一确定的;我们改变向量 的大小和方向,发现 仍然可以用 , 线性表示,说明了任意向量 能分解成两个不共线向量的线性组合;改变基底 , 的大小和方向,保持向量 不变,刚才的结论仍然成立,说明了同一个向量 能用不同的基底线性表示,由此说明基底不唯一,具有可选择性。
对于向量的坐标表示,我先用火箭速度的分解引入正交分解,然后提问:根据平面向量基本定理,基底是可以选择的,为了研究的方便,我们应该选取什么样的基底呢?引导学生由一般到特殊,选择平面直角坐标系中 轴和 轴上,且方向与轴的正方向同向的单位向量 做基底,那么根据刚刚得出的定理,任一向量 =x +y ,由于x,y是唯一的,于是存在数对(x,y)与向量a一一对应,从而得到平面向量的坐标表示。需要说明的两点是:第一,向量的坐标表示与其分解形式是等价的,可以互相转化。第二点说明:求向量坐标的关键是构造平行四边形,确定实数x、y。学生在理解起点不在坐标原点的向量的坐标表示时会出现障碍,其原因是在直角坐标系中点和点的坐标是一一对应的,到了向量时,向量的坐标只是和从原点出发的向量一一对应,必须使学生在这种特定的场合中明白:要求点 的坐标就是要求向量 的坐标.只要结合向量相等的条件学生应该容易克服这一难点。随后,通过学案上的练习2,让学生巩固所学知识。
4、第四个环节,归纳总结,建构网络
建构主义教学理论认为,知识是主体在与情境的交互作用中、在解决问题的过程中能动地构建起来的,学生应在教师指导下自主归纳出新旧知识点之间的内在联系,构建知识网络,从而培养学生的分析能力和综合能力。为此,我设计了如下的问题:
通过本节课的学习,你收获了什么?……
在学生回答的过程中,我及时反馈,评价学生课堂表现,起导向作用。
学生完成个人新知建构之后,为了帮助学生检验自己的学习过程,我设计了
5、第五个环节,当堂达标,迁移拓展
本部分检测题,紧扣目标,当堂训练,而为了尊重学生的个体差异,满足多样化学习的需要,我又分必做和选做两部分来布置题目,允许学生根据个人情况来完成。
五、我说课的最后一部分是教学设计说明:
1、贯彻了学生主体、教师主导的原则
“学案导学”要求学生主动试一试,并给予学生充分自由思考的时间。学生在尝试中遇到问题就会主动地去自学课本和接受教师的指导。这样,学习就变成了学生自身的需要,使他们产生了“我要学”的愿望,在这种动机支配下学生就会依靠自己的力量积极主动地去学习。
教师通过启发、激励,诱导学生全员、全过程参与教学过程,体现教师的主导作用。
2、培养了自主探索,合作交流的能力
新的课程理念,要求学生的学习不仅仅是在理解基础上掌握和记忆知识,还要学习探索和解决问题的方法和途径。
本节课采用诱导式教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学知识、形成数学能力,培养探索精神和团队意识。
我相信,通过本节课的学习,学生获取的将不仅仅是知识,获取知识的手段、途径和方法,以及勇于探索、合作交流的能力,才是他们最大的收获。
【高二数学《平面向量的坐标表示》说课稿】相关文章:
平面向量的基本定理及其坐标表示说课稿11-02
高中数学《平面向量数量积的坐标表示、模、夹角》说课稿04-20
向量的直角坐标运算说课稿06-13
坐标表示平移说课稿07-10
《平面向量》说课稿07-19
用坐标表示平移说课稿12-15
平面向量的概念说课稿01-11
关于高二数学《向量》说课稿范分享06-12
高二数学平面向量知识点总结12-06