最新函数说课稿范文
作为一名辛苦耕耘的教育工作者,总不可避免地需要编写说课稿,借助说课稿可以有效提升自己的教学能力。我们应该怎么写说课稿呢?下面是小编整理的最新函数说课稿范文,欢迎阅读,希望大家能够喜欢。
函数说课稿1
我今天说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位老师批评指正。
一、说教材
1、教材的地位、作用及编写意图
《对数函数》出现在职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。
2、教学目标的确定及依据。
依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:
(1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。
(2)能力目标:培养学生自主学习、综合归纳、数形结合的能力。
(3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。
(4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。
3、教学重点、难点及关键
重点:对数函数的概念、图象和性质;
难点:利用指数函数的图象和性质得到对数函数的图象和性质;
关键:抓住对数函数是指数函数的反函数这一要领。
二、说教法
大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。
三、说学法
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)对照比较学习法:学习对数函数,处处与指数函数相对照。
(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。
(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。
(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。
这样可发挥学生的主观能动性,有利于提高学生的各种能力。
四、说教学程序
1、复习导入
(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。
设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知识清除了障碍,有意识地培养学生分析问题的能力。
(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?
设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。
2、认定目标(出示教学目标)
3、导学达标
按"教师为主导,学生为主体,训练为主线"的原则,安排师生互动活动。
(1)对数函数的概念
引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。
设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。
(2)对数函数的图象
提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?
让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。
教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。
方法一(描点法)首先列出x,y(y=log2x,y=logx)值的对应表,因为对数函数的定义域为x>0,因此可取x=···,1,2,4,8···,请计算对应的y值,然后在坐标系内描点、画出它们的图象。
方法二(图象变换法)因为对数函数和指数函数互为反函数,图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax。的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x的图象画出y=logx的图象,再出示课件,教师加以解释。
设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样可以充分调动学生自主学习的积极性。
(3)对数函数的性质
在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a>1与0 设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。 由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件) 设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。 4、巩固达标(见课件) 这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现"数形结合"和"分类讨论"的思想。 5、反馈练习(见课件) 习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。 6、归纳总结(见课件) 引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。 7、课外作业: (1)完成P782、3题 (2)当底数a>1与0 五、说板书 板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。 尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《函数的概念》。 新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。 一、说教材 首先谈谈我对教材的理解,本节课的内容是函数概念。函数内容是初中数学学习的一条主线,它贯穿整个初中数学学习中。又是沟通代数、方程、、不等式、数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。函数学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。 二、说学情 接下来谈谈学生的实际情况。新课标指出学生是教学主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定分析能力,以及逻辑推理能力。所以,学生对本节课的学习是相对比较容易的。 三、说教学目标 根据以上对教材分析以及对学情的把握,我制定了如下三维教学目标: (一)知识与技能 理解函数概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。 (二)过程与方法 通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。 (三)情感态度价值观 在自主探索中感受到成功的喜悦,激发学习数学的兴趣。 四、说教学重难点 我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:函数的模型化思想,函数的三要素。本节课的教学难点是:符号“y=f(x)”的含义,函数定义域、值域的区间表示,从具体实例中抽象出函数概念。 五、说教法和学法 现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的心理特征与认知规律以问题为主线,我采用启发法、讲授法、小组合作、自主探究等教学方法。 六、说教学过程 下面我将重点谈谈我对教学过程的设计。 (一)新课导入 首先是导入环节,提问:关于函数你知道什么?在初中阶段对函数是如何下定义的?你能否举一个例子。从而引出本节课的课题《函数概念》。 利用初中的函数概念进行导入,拉近学生与新知识之间的距离,帮助学生进一步完善知识框架行程知识体系。 (二)新知探索 接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、自主探究法等。 首先利用多媒体展示生活实例 (1)某山的海拔高度与气温的变化关系; (2)汽车匀速行驶,路程和时间的变化关系; (3)沸点和气压的变化关系。 引导学生分析归纳以上三个实例,他们之间有什么共同点,并根据初中所学函数的概念,判断各个实例中的两个变量之间的关系是否为函数关系。 预设:①都有两个非空数集A、B;②两个数集之间都有一种确定的对应关系;③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应。 接下来引导学生思考通过对上述实例的共同点并结合课本归纳函数的概念。组织学生阅读课本,在阅读过程中注意思考以下问题 问题1:函数的概念是什么?初中与初中对函数概念的定义的异同点是什么?符号“xx”的含义是什么? 问题2:构成函数的三要素是什么? 问题3:区间的概念是什么?区间与集合的关系是什么?在数轴上如何表示区间? 十分钟过后,组织学生进行全班交流。 预设:函数的概念:给定两个非空数集A和B,如果按照某个对应关系f,对于集合A中任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应,那么就把这对应关系f叫作定义在几何A上的函数,记作f:A→B,或y=f(x),x∈A。此时,x叫做自变量,集合A叫做函数的定义域,集合{f(x)▏x∈A}叫作函数的值域。 函数的三要素包括:定义域、值域、对应法则。 区间: 为了使得学生对函数概念的本质了解的更加深入此时进行追问 追问1:初中的函数概念与初中的函数概念有什么异同点? 讲解过程中注意强调,函数的本质为两个数集之间都有一种确定的对应关系,而且是一对一,或者多对一,不能一对多。 追问2:符号“y=f(x)”的含义是什么?“y=g(x)”可以表示函数吗? 讲解过程中注意强调,符号“y=f(x)”是函数符号,可以用任意的字母表示,f(x)表示与x对应的函数值,一个数不是f与x相乘。 追问3:对应关系f可以是什么形式? 讲解过程中注意强调,对应关系f可以是解析式、图象、表格。 追问4:函数的三要素可以缺失吗?指出三个实例中的三要素分别是什么。 讲解过程中注意强调,函数的三要素缺一不可。 追问5:用区间表示三个实例的定义域和值域。 设计意图:在这个过程当中我将课堂完全交给学生,教师发挥组织者,引导者的作用,在运用启发性的原则,学生能够独立思考问题,动手操作,还能在这个过程中和同学之间讨论,加强了学生们之间的交流,这样有利于培养学生们的合作意识和探究能力。 (三)课堂练习 接下来是巩固提高环节。 组织学生自己列举几个生活中有关函数的例子,并用定义加以描述,指出函数的定义域和值域并用区间表示。 这样的问题的设置,让学生对知识进一步巩固,让学生逐渐熟练掌握。 (四)小结作业 在课程的最后我会提问:今天有什么收获? 引导学生回顾:函数的概念、函数的三要素、区间的表示。 一、说教材 1、地位与重要性 “反函数”一节课是《高中代数》第一册的重要内容。这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。 2、教学目标 (1)使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数; (2)使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系; (3)培养学生发现问题、观察问题、解决问题的能力; (4)使学生树立对立统一的辩证思维观点。 3、教学重难点 重点是反函数的概念及反函数的求法。理解反函数概念并求出函数的反函数是高一代数教学的重要内容,这建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。 难点是反函数概念的接受与理解。学生对于反函数的来历、反函数与原函数间的关系都容易产生错误的认识,必须使学生认清反函数的实质就是函数这一本质问题,才能使学生接受概念并对反函数的存在有正确的认识。教学中复习函数概念,进而引出反函数概念,就是为突破难点做准备。 二、说教法 根据本节课的内容及学生的实际水平,我采取引导发现式教学方法并充分发挥电脑多媒体的辅助教学作用。 引导发现法作为一种启发式教学方法,体现了认知心理学的基本理论。教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。课堂不再成为“一言堂”,学生也不会变成教师注入知识的“容器”。 电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。 三、说学法 “授人以鱼,不如授人以渔”,在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿“怀疑”——“思索”——“发现”——“解惑”四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。 四、说过程 在新课导入、新课讲授及终结阶段的教学中,我力求发挥学生自我发现的能力,突出学生的教学主体地位,以启发、引导为教师的责任。 一、新课导入 首先,在导入阶段的教学中,抓住反函数也是函数这一实质,以对函数概念的复习来引出反函数。指明函数是一种映射的实质,分析原函数中映射的具体情况,进而引导学生考虑,若将定义域、值域互换,此时映射还是不是一个函数呢? 首先提问学生函数基本概念,使学生明白函数是一种单值对应,即映射。再出示电脑动画,以函数y=2x来具体分析,结合图象引导学生注意:在定义域内所有自变量,都能在值域内找到唯一确定的一个函数值,即存在x→y的单值对应,例如:1→2,2→4,3→6,……若将定义域与值域互换,则对应变为2→1,4→2,6→3,…这种对应是否构成单值对应,即映射呢?这种对应是否构成函数呢?至此,引出反函数的概念,为概念的新授做好准备。 这样的引入方式,抓住了反函数概念的实质,确保学生不会产生概念上的偏差。此外,可以使学生明白新知识来源于旧知识,促使学生主动运用函数的研究方法去学习反函数,为顺利完成教学任务做好思维上的准备。 二、新课讲授 在导入的基础上,给出反函数的具体概念。 给出概念后,必须防止学生对于反函数f—1(y)形式的误解(以为是1/f(x))。此外,还要学生理解:最终的表达形式写为y=f—1(x)是顺应习惯,并且也为后面的图象研究提供方便,y实际上是原函数中的x,x是原函数中的y。对于这一问题可以引导学生从图象观察得出。 进一步深化对概念的理解,出示电脑幻灯,设置疑问:(1)反函数是不是函数;(2)反函数有没有三要素?如何确定? 引导学生思索,学生逐渐会认识到:反函数也是函数,其定义域是原函数的值域,对应法则可由原函数得到,值域则是原函数的定义域。 这时,给出电脑动画,指明反函数与原函数的关系。澄清学生对于概念的认识,抓住问题的关键。 但是,具体怎样求一个函数的'反函数呢? 这些问题,必须通过实例解决,于是进入例题解答过程。 例1、求下列函数的反函数。 (1)y=3x—1(x∈R);(2)y=x3+1; (3)y=(2x+3)/(x—1)(x∈R且x≠1) 通过例1,要使学生明白具体求反函数的过程。以达到突出重点、突破难点的目的。 启发学生:既然反函数也存在三要素,那如何一一求出,得到具体的反函数呢?这时结合第(1)小题,让学生思考问题。引导学生找出关键通过解关于x的方程,将x用y表达,以得到反函数的表达式。这个表达式中的x、y表示什么?这和我们通常的函数表达式有什么区别?进而引导学生想到交换x、y得到我们习惯使用的函数表达式。再考虑:反函数的定义域、值域怎么求?是怎样来的?学生思考后,可得出通过求原函数值域来得到反函数的定义域的方法。 教师板书第(1)小题,学生完成后两题。 此时,引导学生比较三道小题的解题步骤,师生共同小结出求反函数的三部曲:反解(把解析式看作x的方程,求出反函数的解析式)——→互换(求出所给函数的值域并把它改换成反函数的定义域)——→改写(将函数写成y=f—1(x)的形式)。 教师在这一部分教学中,抓住反函数是函数这一本质问题,突出了反函数与原函数之间的联系,给出了具体求解的过程,使学生掌握了重点问题的解决方法。教师以一个个问题来引导学生逐步“发现”解决问题的方法,符合学生的认知水平。在教师创设的问题情境中,学生的认识达到了第一次平衡。 “反函数的概念已经理解,反函数也会求了,任务已基本完成,该休息了”,有的学生会这样想。这时,出示第二道例题,打破平衡,激起学生的疑难。 例2、(1)y=x2(x∈R)的反函数 (2)y=x2(x≥0)的反函数是 (3)y=x2(x<0)的反函数是 相当一部分同学会按部就班求出第(1)小题的“反函数”y=(x∈R)。这对不对呢?出示电脑动画,引导学生观察图象,从函数的概念出发,必须存在x→y的单值对应,但反过来呢?y→x存不存在单值对应呢?适当的引导提问,使学生抓住了问题的关键:在原函数的定义域内必须存在y→x的单值对应,这是反函数存在的前提。认清这一问题后,引导学生进一步分析,y=x2(x∈R)不存在反函数,在定义域的局部存不存在反函数呢?让学生借助图形发现答案,并且进一步得出y=x2(x≥0),y=x2(x<0)两个函数的反函数。这样,就突破了主要难点,澄清了概念,并为以后反正弦函数的教学做好理论准备。 这样设计的好处是:(1)通过函数图像来研究问题,直观形象,符合学生的认识水平,并且为后续的互为反函数的函数图像关系问题做好铺垫。(2)对于反函数的存在性问题,不能回避,必须使学生理解其内在含义,由具体的二次函数结合图像解决这一问题,可以澄清的学生的疑问,达到教学目标。$_:7au%X 此时,趁学生对于概念有了一个比较清晰的认识,出示幻灯,从函数概念、反函数的存在性、反函数的求法三方面进行简单的归纳,突出重点,突破难点。 三、终结阶段Z7 (一)课堂练习 出示电脑幻灯,让学生完成以下练习: (1)函数y=2|x|在下列哪个定义区间内不存在反函数?() (A)[2,4];(B)[—4,4](C)(0,+∞](D)(—∞,0] (2)求反函数:y=x/(2x+5),(x∈R且x≠—5/3) (3)已知y=,x∈[0,5/2],求出它的反函数,并指明定义域。 第一道题是概念题,使学生对于反函数的概念有更清晰的认识,使学生对于反函数的存在条件认识更深刻。第二道题使学生熟悉反函数的求法,突出重点。第三道题使学生加深对于概念的理解,弄清反函数与原函数的内在关系。 (二)小结归纳 通过对反函数概念和性质的小结,使学生理清这节课的重难点,并使终结阶段的教学更为完整,达到本堂课的教学目标。 让学生做课本P65习题六2、3、5,通过作业反馈学生掌握知识的效果,以利课后解决学生尚有疑难的地方。 布置一道发散性的练习(已知函数y=f(x),(x∈A)是增函数,问:反函数y=f—1(x)单调性如何?图象中如何反映?),进一步深化教学。 总之,在整个教学过程中,我抓住学生的“主体”作用作文章,不浪费任何一个促使学生“自省”的机会,以积极的双边活动使学生主动自觉地发现结果、发现方法。培养了学生的观察分析能力和思维的全面性。具体教学中,教师创设问题情境,学生在这一情境中去讨论分析、探究发现,以符合学生思维的形式发展了学生的能力,达到了教学目标,优化了整个教学。 【最新函数说课稿范文】相关文章: 余弦函数的性质说课稿11-06 对数函数说课稿11-04 二次函数说课稿02-17 正比例函数说课稿12-20 二次函数的图像说课稿11-04 二次函数说课稿(11篇)02-17 二次函数说课稿11篇11-15 对数函数的图像与性质说课稿11-04 锐角三角函数_正弦说课稿11-03 函数说课稿2
函数说课稿3