关于八年级数学说课稿模板锦集七篇
作为一名无私奉献的老师,常常要写一份优秀的说课稿,编写说课稿是提高业务素质的有效途径。优秀的说课稿都具备一些什么特点呢?以下是小编整理的八年级数学说课稿7篇,欢迎阅读,希望大家能够喜欢。
八年级数学说课稿 篇1
尊敬的各位领导,各位老师:
大家好!今天我说课的内容是初中八年级数学人教版教材第十八章第一节《勾股定理》(第一课时),下面我分五部分来汇报我这节课的教学设计,这就是"教材分析"、"学情分析"、"教法选择"、"学法指导"、"教学过程"。
一、教材分析
(一) 教材地位和作用
勾股定理是几何中的重要定理之一,它揭示的是直角三角形中三边的数量关系,将几何图形与数字联系起来。它在数学的发展中起过重要的作用,在生产生活中有着广泛的应用。而且它在其它自然学科中也常常用到。因此,这节课有着举足轻重的地位。
(二)教学目标
根据新课程标准的要求和本课的特点,结合学生的实际情况,我确定了本课的教学目标:
1、知识与技能方面
了解勾股定理的文化背景,经历探索勾股定理的过程,掌握直角三角形三边之间的数量关系, 并能简单应用。
2、过程与方法方面
经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,能感受到数学思考过程的条理性,发展数学的说理和简单的推理的意识,和语言表达的能力,并体会数形结合和特殊到一般的思想方法。
3、情感态度与价值观方面
(1)通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(2) 通过研究一系列富有探 究性的问题,培养学生与他人交流、合作的意识和品质。
(三)教学重点难点
教学重点:掌握勾股定理,并能用它来解决一些简单的问题。
教学难点:勾股定理的证明。
二、学情分析
我们班日常经常使用多媒体辅助教学。经过一年多的几何学习,学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确 归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。 现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和表现自己才华的机会;更希望教师满足他 们的创造愿望。
三、教法选择
根据本节课的教学目标、教学内容以及学生的认知特点,结合我校的“当堂达标”教学模式,我在教法上采用引导发现法为主,并以分析法、讨论法相结合。设计" 观察——讨论—归纳"的教学方法,意在帮助学生通过自己动手实验和直观情景观察,从实践中获取知识,并通过讨论来深化对知识的理解。本节课采用了多媒体辅 助教学,能够直观、生动的反应图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学形象性,更好的提高课堂效率。
四、学法指导:
为了充分体现《新课标》的要求,培养学生的观察分析能力,逻辑思维能力,积累丰富的数学学习经验,这节课主要采用观察分析,自主探索与合作交流的学习方 法,使学生积极参与教学过程。在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步体会观察、类比、分析、从特殊到一般等数学思 想。借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主人。
五、教学过程
根据《新课标》中"要引导学生投入到探索与交流的学习活动中"的教学要求,本节课的教学过程我是这样设计的:
(一)创设情境,引入新课
一个设计合理的情境引入可以说在一定程度上决定着学生能否带着兴趣积极投入到本节课的学习中。为了体现数学源于生活,数学是从人的需要中产生的,学习数学的目的是为了用数学解决实际问题。我设计了以下题目:
星期日老师带领全班同学去某山风景区游玩,同学们看到山势险峻,查看景区示意图得知:这座山主峰高约为900米,如图:为了方便游人,此景区从主峰A处向地面B处架了一条缆车线路,已知山底端C处与地面B处相距1200米,
∠ACB=90° ,你能用所学知识算出缆车路线AB长应为多少?
答案是不能的。然后教师指出,通过这节课的学习,问题将迎刃而解。
设计意图:以趣味性题目引入。从而设置悬念,激发学生的学习兴趣。 教师引导学生把实际问题转化为数学问题,这其中渗透了一种数学思想,对于学生也是一种挑战,能激发学生探究的欲望,自然引出下面的环节。
紧接着出示本节课的学习目标:
1、了解勾股定理的文化背景,体验勾股定理的探索过程。
2、掌握勾股定理的内容,并会简单应用。
(二)勾股定理的探索
1、猜想结论
(1)探究一:等腰直角三角形三边关系。
由课本64页毕达哥拉斯的故事,探究等腰直角三角形三边关系。结合课件中格点图形的面积,学生自主探究,通过计算、讨论、总结,得出结论:等腰直角三角形的斜边的平方等于两直角边的平方和。
在此过程中,给学生充分的时间、观察、比较、交流,最后通过活动让学生用语言概括总结。
提问:等腰直角三角形有这样的性质,其他的直角三角形也有这样的性质吗?
(2、)探究二:一般的直角三角形三边关系。
在课件中的格点图形中,利用面积,再次探究直角三角形的三边关系。学生自主探究,通过计算、讨论、总结,得出结论:在直角三角形中,两直角边的平方和等于斜边的平方。
设 计意图:组织学生进行讨论,在此基础上教师引导学生从三边的平方有何大小关系入手进行观察。教师在多媒体课件上直观地演示。通过学生自己探索、讨论,由学 生自己得出结论。这样,让学生参与定理的再发现过程,他们通过自己观察、计算所得出的定理,在心理产生自豪感,从而增强学生的学习数学的自信心。
2、证明猜想
目前世界上证明该勾股定理的方法有很多种,而我国古代数学家利用拼接、割补图形,计算面积的思路提供了很多种证明方法,下面我们通过古人赵爽的方法进行证 明。学生分组活动,根据图形的面积进行计算,推导出勾股定理的一般形式:a + b = c。即直角三角形两直角边的平方和等于斜边的平方、
设计意图:通过利用多媒体课件的演示,更直观、形象的向学生介绍用拼接、割补图形,计算面积的证明方法,使学生认识到证明的必要性、结论的确定性,感受到前人的伟大和智慧。
3、简要介绍勾股定理命名的由来
我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中、我国称这个结论为"勾股定理",西方毕达哥拉斯于公元前五世纪发现了勾股定理, 但他比商高晚出生五百多年。
设计意图:对比以上事实对学生进行爱国主义教育,激励他们奋发向上。
(三)勾股定理的应用
1、利用勾股定理,解决引入中的问题。体会数学在实际生活中的应用。
2、教学例1:课本66页探究1
师生讨论、分析: 木板的宽2、2米大于1米,所以横着不能从门框内通过.
木板的宽2、2米大于2米,所以竖着不能从门框内通过.
因为对角线AC的长度最大,所以只能试试斜着 能否通过.
从而将实际问题转化为数学问题.
提示:
(1)在图中构造出一个直角三角形。(连接AC)
(2)知道直角△ABC的那条边?
(3)知道直角三角形两条边长求第三边用什么方法呢?
设计意图:此题是将实际为题转化为数学问题,从中抽象出Rt△ABC,并求出斜边A C的长。本例意在渗透实际问题和勾股定理的知识联系。通过系列问题的设置和解决,旨在降低难度,分散难点,使难点予以突破,让学生掌握勾股定理在具体问题中的应用,使学生获得新知,体验成功,从而增加学习兴趣。
(四)、课堂练习 习题18、1 1、5。 学生板演,师生点评。
设计意图:通过练习使学生加深对勾股定理的理解,让学生比较练习题和例题中条件的异同,进一步让学生理解勾股定理的运用。
(五)课堂小结
对学生提问:"通过这节课的学习有什么收获?"
学生同桌间畅谈自己的学习感受和体会,并请个别学生发言。
设计意图:让学生自己小结,活跃了气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。
(六)达标训练与反馈
设计意图:必做题较为简单,要求全体学生完成;选作题有一点的难度,基础较好的学生能够完成,体现分层教学。
以上内容,我仅从"说教材","说学情"、"说教法"、"说学法"、"说教学过程"五个方面来说明这堂课"教什么"和"怎么教",也阐述了"为什么这样 教",让学生人人参与,注重对学生活动的评价, 探索过程中,会为学生创设一个和谐、宽松的情境。希望得到各位专家领导的指导与指正,谢谢!
八年级数学说课稿 篇2
一、教材分析
“两角差的余弦公式”是课标教材人教版必修4第三章《三角恒等变换》第一节第一课时的内容。学生已经学习了三角函数的基本关系和诱导公式以及平面向量,在此基础上,本章将学习任意两个角和、差的三角函数式的变换。作为本章的第一节课,重点是引导学生通过合作、交流,探索两角差的余弦公式,为后续简单的恒等变换的学习打好基础。由于两角差的余弦公式推导方法有很多,书本上出现两种证明方法——三角函数线法和向量法。课本中丰富的生活实例为学生用数学的眼光看待生活,体验用数学知识解决实际问题,有助于增强学生的数学应用意识。
二、学情分析
学生在第一章已经学习了三角函数的基本关系和诱导公式以及平面向量,但只对有特殊关系的两个角的三角函数关系通过诱导公式变换有一定的了解。对任意两角和、差的三角函数知之甚少。本课时面对的学生是高一年级的学生,学生对探索未知世界有主动意识,对新知识充满探求的渴望,但应用已有知识解决问题的能力还处在初期,需进一步提高。
三、教法学法分析
(一)、说教法
基于新课标的理念中“学生主体性和教师主导性”的原则以及本班学生的实际情况,我采取如下教学方法:
1、通过学生熟悉的实际生活问题引入课题,为公式学习创设情境,拉近数学与现实的距离,激发学生的求知欲,调动学生的主体参与的积极性。
2、突破教材,引导学生利用较为简洁的两种方法——两点间距离公式和向量法,在鼓励学生主体参与、乐于探究、勤于思考公式推导的同时,充分发挥教师的主导作用。
3、采用投影仪、多媒体等现代教学手段,增强教学简易性和直观性。
4、通过有梯度的练习、变式训练、分层作业,学生对知识掌握逐步提高。
(二)、说学法
从学生已有的认知水平、认知能力出发,经过观察分析、自主探究、推导证明、归纳总结等环节,理解公式的推导过程,通过有梯度的练习、变式训练、分层作业,学生逐步提高对知识掌握。
四、教学目标
(根据新课程标准和本节知识的特点,以及本班学生的实际情况,确立以下教学目标)
(一)、知识目标
1、理解两角差的余弦公式的推导过程,并会利用两角差的余弦公式解决简单问题。
(二)、能力目标
通过利用同角三角函数变换及向量推导两角差的余弦公式,学生体会利用已有知识解决问题的一般方法,提高学生分析问题和解决问题的能力。
(三)、情感目标
使学生经历数学知识的发现、探索和证明的过程,体验成功探索新知的乐趣,激发学生提出问题的意识以及努力分析问题、解决问题的激情。
五、教学重难点
(由于本节课主要内容是公式的推导,所以教学重难点如下:)
教学重点:两角差的余弦公式的推导过程及简单应用;
教学难点:两角差的余弦公式的推导。
六、教学流程
七、教学过程
(一)创设情境,导入新课
问题1:任意角的三角函数是如何定义的?
旧知,角的终边与单位圆交于是两角差的余弦公式推导的基础)
(从实际问题出发,引导学生思考,从任意角的三角函数定义考虑能否求出,,从而引入本节课的课题----两角差的余弦公式)
问题2:我们在初中时就知道一些特殊角的三角函数值。那么大家验证一下,=吗?,下面我们就一起探究两角差的余弦公式。
(引导学生利用特殊角检验,产生认知冲突,从而激发学生探究两角差的余弦公式的兴趣。)
(二)探索公式,建构新知
(由于两角差的余弦公式推导方法有很多,本节课突破教材,引导学生利用较为简洁的两种方法——两点间距离公式和向量法,书本上出现三角函数线法留给学生参照书本课下探究。公式得出后,生成点的动画,让学生进一步感知两角差的余弦公式对任意角均成立,并启发学生观察公式的特征。)
方法一(两点间距离公式):如图,角的终边与单位圆交于;角的终边与单位圆交于;角的终边与单位圆交于;则:
所以:。
方法二(向量法):在平面直角坐标系xOy内作单位圆O,,它们的终边与单位圆O的交点分别为A,B,则由向量数量积的坐标表示,有:向量的夹角就是,由数量积的定义,有于是
由于我们前面的推导均是在,且的条件下进行的,因此(1)式还不具备一般性。
若(1)式是否依然成立呢?
当时,设与的夹角为,则
另一方面于是所以
也有
方法三(学生自主探究三角函数线法)
(三)例题讲解,知识迁移
例1化简求值:
(通过例1中有梯度的练习,学生能够实现对公式的正向和逆向的简单应用.求同时求出引例中桥的长度,培养学生应用数学的能力)
(变式的教学中引导学生使用两种方法:
方法一:从公式本身思考
方法二:引导学生发现
提高学生应用知识的能力和逻辑思维能力)
(四)开放小结,归纳提升
小结:本节课你学到了那些知识,有什么样的心得体会?
口诀:余余正正异相连
(引导学生从公式内容和推导方法两个方面进行小结,不仅使学生对本节课的知识结构有一个清晰的认识,而且对所用到的数学方法和涉及的数学思想也得以领会,这样既可以使学生完成知识建构,又可以培养其能力。开放式小结,启发灵活,以问促思,能够较全面的帮助学生归纳知识,形成技能。)
(五)分层作业,巩固提高(必做题)P127,练习1,3,4
(选做题同学可以思考:能否用直角三角形中的三角函数关系证明两角差的余弦公式?课后作业设置有必做题和选做题,使不同程度的学生都得到能力的提升,符合因材施教的教学规律)
八、 板书设计
九、教后反思
八年级数学说课稿 篇3
一、说教材
1。本课在在教材中的地位和作用 《分式的加减》这节课是代数运算的基础,分两课时完成,我所设计的是第一课时的教学,主要内容是同 分母的分式相加减及简单的异分母的分式相加减。学生已掌握了分数的加减法运算,同时也学习过分式的基本性质, 这为本节课的学习打下了基础,而掌握好本节课的知识,将为《分式的加减》第二课时以及《分式方程》的学习做好 必备的知识储备。
2。教学目标
①知识与技能:会进行简单的分式加减运算,具有一定的代数化归能力,能解决一些简单的实际问题;
②过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;
3。情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。
(3)重点、难点
①重点:掌握分式的加减运算
②难点:异分母的分式加减运算及简单的分式混合运算
二、说教法
本课我主要以“创设情景——引导探究——类比归纳——拓展延伸”为主线,启发和引导贯穿教学始终, 通过师生共同研究探讨,体现以教为主导、学为主体、练为主线的教学过程。
三、说学法
根据学生的认知水平,我设计了“自主探索、合作交流、猜想归纳和巩固提高”四个层次的学法。 四、说教学过程
(一)创设情境,导入新知
第一环节:提出问题
问题 1: 甲工程队完成一项工程需 n 天,乙工程队要比甲队多用 3 天才能完成这项工程,两队共同工作一天完 成这项工程的几分之几?
问题 2:20xx 年,20xx 年,20xx 年某地的森林面积(单位:公顷)分别是 S1,S2,S3,20xx 年与 20xx 年相比, 森林面积增长率提高了多少?
老师活动:组织学生分组讨论,再共同研究 学生活动:小组讨论、探究、发言 设计意图:通过创设这两个问题情境,引入分式的加减运算,既体现了分式加减运算的意义,又让学生经 历从实际问题建立分式模型的过程,并在此基础上激发学生寻求解决问题的方法。
第二环节:同分母分式相加减
想一想:(1)同分母的分数如何加减?如:2/3+5/3=(2+5)/3,:2/3—5/3=(2—5)/3; (2)思考:类比分数的加减法则,你能归纳出分式的加减法则吗? 老师活动:鼓励学生通过类比、探究并大胆猜想分式的加减运算法则 学生活动:分组进行讨论、交流,并多举类似例子进行类比,而后,小组发表意见,说明自己的推测。 在学生通过交流得到猜想的基础上出示做一做: 做一做:(1)1/a+2/a=_____________ 2 (2)x /(x—2) – 4/(x—2)=___________ (3)(x+2)/(x+1) –(x—1)/(x+1)+(x—3)/(x+1)=___________ 教师通过让学生练习“做一做”的题目,加以验证和领悟,法则的形成打下基础,并导出分式加减运算法 则:同分母的分式相加减,分母不变,把分子相加减 老师活动:引入习题“做一做”,适当纠正学生的语言,并板书法则 学生活动:通过个体练习,领悟规律,再小组交流,形成法则 设计意图:引导学生通过类比分数运算方法,大胆猜想分式的加减法则
(二)主动探究,拓展延伸
第三环节:异分母的分式相加减 想一想:(1)异分母的分数如何相加减?如:1/2+2/3=?:1/2—2/3=?。 (2)你认为异分母的分式应该如何加减?如:1/a+2/b=? 老师活动:提出问题,引导、启发学生通过异分母分数相加减的方法类比得到异分母分式相加减的方法 学生活动:参与交流、讨论、归纳异分母分式加减的方法 设计意图:进一步锻炼学生的类比思想;同时通过讨论解决分式的通分,使学生掌握异分母分式转化为同 分母分式的方法,培养学生的转化思想,为下节课做好准备
(三)例题教学
第四环节:解决问题
(1)回到开始提出的两个问题: s3 ? s 2 s 2 ? s1 1 1 ? 问题一: ( ? ) s2 s1 n n ?3 问题二:
(2)例题 1:计算(课本 P81 页) 老师活动:出示习题,巡视、引导、纠正 学生活动:自主完成
设计意图:进一步提高学生对异分母分式的加减运算能力
(四)随堂练习
第五环节:巩固深化
老师活动:巡视、引导 学生活动:个体练习、板演 设计意图:检验学生是否掌握分式的加减运算方法 (五)课堂小结 第六环节:提高认识 老师活动:本节课我们学了哪些知识?在运用过程中需要注意些什么?你有什么收获? 学生活动
归纳总结
(1)同分母分式加减法则
(2)简单异分母分式的加减 设计意图:锻炼学生及时总结的良好习惯和归纳能力 (六)作业布置 第七环节:反思提炼 课本 P27 第 1、2 题 五、板书设计
八年级数学说课稿 篇4
一、教材分析
1、教材的地位及作用
“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。
2、教学重点、难点分析:
教学重点:理解并掌握分式的基本性质
教学难点:灵活运用分式的基本性质进行分式化简、变形
3教材的处理
学习是学生主动构建知识的过程。学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。让学生自我构建新知识。通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用. 最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。
二、目标分析:
数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:
1、知识技能:1)了解分式的基本性质
2)能灵活运用分式的基本性质进行分式变形
2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
3、解决问题:通过探索分数的基本性质,积累数学活动的经验。
4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。
三、教法分析
1、教学方法
数学是一门培养人的思维,发展人的思维的重要学科。在新课程理念下,获得数学知识的过程比获得知识更为重要。基于本节课的特点,课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
2、学法指导
现代新教育理念认为,学习数学不应只是单调刻板,简单模仿,机械背诵与操练,而应该采用设置现实问题情境,有意义富有挑战性的学习内容来引发学习者的兴趣。,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究,主动总结,主动提高,突出学生是学习主体,他们在感知识知识的过程中无疑提高了探索、发现、实践、总结的能力。
3、教学手段
我所采用的教学手段是多媒体辅助教学法。
四、程序分析
活动1 创设情境,引入课题
教师提出问题,下列分数是否相等?可以进行变形的依据是什么?需要注意的是什么?类比分数的基本性质,你能猜想出分工有什么性质吗?学生思考、交流,回答问题。在活动中教师要关注:(1)学生对学过的知识是否掌握得较好;(2)学生对新知识的探索是否有深厚的兴趣。
设计意图:通过具体例子,引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。这样安排,首先激活了学生原有的知识,为学习分式的基本性质做好铺垫。体现了学生的学习是在原有知识上自我生成的过程。
活动2 类比联想,探究交流
教师提出问题:如何用语言和式子表示分式的基本性质?学生独立思考、分组讨论、全班交流。
设计意图:教师引导学生用语言和式子表示分式的基本性质,体现了学生的学习是在原有知识上自我生成的过程。这样安排,学生的知识不是从老师那里直接复制或灌输到头脑中来的,而是让学生自己去类比发现、过程让学生自己去感受、结论让学生自己去总结,实现了学生主动参与、探究新知的目的。
活动3 例题分析 运用新知
教师提出问题进行分式变形。学生先独立思考问题,然后分小组讨论。教师参与并指导学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行分式的恒等变形。在活动中教师要关注:(1)学生能否紧扣“性质”进行分析思考;(2)学生能否逐步领会分式的恒等变形依据。(3)学生是否能认真听取他人的意见。
活动4 练习巩固 拓展训练
教师出示问题训练单。学生先独立思考完成,并安排三名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。在活动中教师要关注:(1)大部分学生能否准确、熟练完成任务;(2)学生能否用数学语言表述发现的规律;(3)学生在运算中表现出来的情感与态度是否积极。
设计意图:通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。第二个问题指明了分式的变号法则。
活动5 小结评价 布置作业
学生思考在教师的引导下整理知识、理顺思维。在活动中教师要关注:(1)学生对本节课的学习内容是否理解;(2)学生能否从获取新知的过程中领悟到其中的数学方法。
设计意图:学生对学习情况进行反思,主要包括:对自己的思考过程进行反思;对学习活动涉及的思想方法进行反思;对解题思路、过程和语言表述进行反思;等等。帮助学生获得成功的体验和失败的感受,积累学习经验。对所学内容进一步系统化,使学生的知识结构更合理,更完善。
八年级数学说课稿 篇5
各位领导、老师们:
大家好!
今天我说课的内容是义务教育课程标准实验教科书《数学》八年级上册第十二章12.3.1等腰三角形性质第一课时。下面,我从教材分析、教法分析、学法分析、教学过程、教学反思五个方面来汇报我对这节课的教学设想。
一、教材分析
1、教材的地位与作用:
本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
2、教学目标:
知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。
过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。
解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。
情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)
3、教学重点与难点:
重点:等腰三角形的性质的探索和应用。
难点:等腰三角形性质的推理证明。
二、教法设计:
教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,组织学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。
三、学法设计:
在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。
四、教学过程:
根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程:
1、创设情景:
首先向同学们出示精美的建筑物图片,并提出问题串:(1)什么是轴对称图形?这些图片中有轴对称图形吗? (2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:(3)a.等腰三角形是轴对称图形吗?b.等腰三角形具备哪些性质呢?引出本节课的课题-我们这节课来探究等腰三角形的性质。--板书课题。
2、动手操作,大胆猜想:
①拿出课下制作的等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)
③分组讨论。(看哪一组气氛最活跃,结论又对又多.)
然后小组代表发言,交流讨论结果。
④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?
(教师引导学生进行总结归纳得出性质1,2)
性质1:等腰三角形的两底角相等。(简写成“等边对等角”)
性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)
(设计意图:由学生自己动手折纸活动,根据等腰三角形轴对称性,大胆猜测等腰三角形的性质,培养学生的观察分析、概括总结能力。也发展了学生的几何直观。教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2。培养了学生进行合情推理的能力。)
3、证明猜想,形成定理:
你能证明等腰三角形的性质吗?
对于这种几何命题的证明需要三大步骤:分析题设结论,画出图形写出已知和求证,最后进行推理证明。这对于八年级学段的学生难度较大,为了突破难点,我决定设计以下三个阶梯问题:
(1)找出“性质1”的题设和结论,画出的图形,写出已知和求证。
(2)证明角和角相等有哪些方法?(学生可能会想到平行线的性质,全等三角形的性质)
(3)通过折叠等腰三角形纸片,你认为本题用什么方法证明∠B=∠C,写出证明过程。
问题1的设计使得学生顺利地将文字语言转化为符号语言,帮助学生顺利地写出已知和求证;
问题2提供给学生了解题思路,引导学生用旧的知识解决新的问题,体现了数学的转化思想。找到新知识的生长点,就是三角形的全等。
问题3的设计目的:因为辅助线的添加是本题中的又一难点,因此让学生对折等腰三角形纸片,使两腰重合,使学生在形成感性认识的同时,意识到要证明∠B=∠C,关键是将∠B和∠C放在两三角形中去,构造全等三角形,老师再及时设问:你认为可以通过什么方法可以将∠B和∠C放在两个三角形中去呢?再次让学生思考,由于对知识的发生,发展有了充分的了解,学生探讨以后可能会得出以下三种方法:
(1)作顶角∠BAC的平分线,
(2)作底边BC的中线,
(3)作底边BC的高。以作顶角平分线为例,让一生板演,其他学生在练习本上写出完整的证明过程。以达到规范学生的解题步骤的目的。其他两种证法,让学生课下证明。这样,学生就证明了性质1,同时由于△BAD≌△CAD,也很容易得出等腰三角形的顶角平分线平分底边,并垂直于底边。用类似的方法还可以证明等腰三角形底边的中线平分顶角且垂直于底边,等腰三角形底边上的高平分顶角且平分底边,这也就证明了性质2。
(设计意图:教师精心设计问题串引导学生通过动手,观察,猜想,归纳,猜测出等腰三角形的性质,发展了学生的合情推理能力,同时也让学生明确,结论的正确性需要通过演绎推理加以证明。这样把对性质的证明作为探索活动的自然延续和必要发展,使学生感受到合情推理与演绎推理是相辅相成的两种形式,同时感受到探索证明同一个问题的不同思路和方法,发展了学生思维的广阔性和灵活性。)
(4)你能用符号语言表示性质1和性质2吗?
(设计意图:把文字语言转换为符号语言,让学生建立符号意识,这有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。——
4、性质的应用:
例一:在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______
变式练习:
1、在等腰中,∠A=50°,则 ∠B=___,∠C=___
2、在等腰中,∠A=100°,则∠B=___,∠C=___
设计意图:此例题的重点是运用等腰三角形“等边对等角”这一性质和三角形的内角和,突出顶角和底角的关系,如
例一,学生就比较容易得出正确结果,对变式练习(1)、(2)学生得出正确的结果就有困难,容易漏解,让学生把变式题与例一进行比较两题的条件,让学生认识等腰三角形在没有明确顶角和底角时,应分类讨论:变式1(如图)①当∠A=50°为顶角时,则∠B=65°,∠C=65°。②当∠A=50°为底角时,则∠B=50°,∠C=80°;或∠B=80°,∠C=50°。变式2①当∠A=100°为顶角时,则∠B=40°,∠C=40°。②当∠A=100°为底角时,则△ABC不存在。由此得出,等腰三角形中已知一个角可以求出另两个角(顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°)。
例二:在等腰△ABC中,AB=5,AC=6,则△ABC的周长=_______
变式练习:在等腰△ABC中,AB=5,AC=12,则 △ABC的周长=______
(设计意图:此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,并强调在没有明确腰和底边时,应该分两种情况讨论。如例二,①当AB=5为腰时,则三边为5,5,6;②当AB=5为底时,则三边为6,6,5。变式练习①:当AB=5为腰时,三边为5,5,12;②当AB=5为底时,三边为12,12,5。此时同学们就会毫不犹豫地得出三角形的周长,这时老师就可以提出质疑,让同学们之间讨论(学生容易忽视三角形三边关系,看能否构成一个三角形)。
例三、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。
(例3是课本例题,有一定难度,让学生展开讨论,老师参与讨论,认真听取学生分析,引导学生找出角之间的关系,利用方程的思想解决问题,并书写出解答过程。本题运用了等腰三角形性质1,并体现了利用方程解决几何问题的思想。)
例四:
在△ABC中,点D在BC上,给出4个条件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2个条件作题设,另外2个条件作结论,你能写出一个正确的命题吗?看谁写得多。(分组讨论抢答)
5、巩固提高
(1)等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为度。
(2)如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30。求∠1和∠ADC的度数。
(3)课本本章数学活动三“等腰三角形中相等的线段”
设计意图:
(1)题运用等腰三角形的性质1及等腰三角形一腰上的高的画法,由于题目没有图,要用到分类讨论的数学思想,学生能正确画出锐角和钝角三角形两种图形就容易得出结果,也渗透了一题多解。
(2)题同时运用了等腰三角形的性质1,性质2,还有三角形的内角和这三个知识点,培养学生对于知识的灵活运用,“讨论”是本章的数学活动3“等腰三角形中相等的线段”。与等腰性质的证明思路类似,先通过等腰三角形的对称性猜想距离是相等的,然后通过做辅助线构造全等三角形来进行严密的推理。更加说明了合情推理和演绎推理是相辅相成的。
6、课堂小结:不仅仅说你收获了什么,而是让学生从知识上,思想方法上,以及辅助线的做法上等方面具体总结一下。然后教师结合学生的回答完善本节知识结构。学生对于自己的疑惑提出小组内交流,还没解决则全班交流。
7、布置作业:
P55练习1、2、3题
P56习题1、4、6,(选做7,8题)
八年级数学说课稿 篇6
下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。
一、说教材
1、 教材内容:我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的.简单的实际问题。
2、 教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。
3、 教学目标
知识目标:(1)、理解分式的乘除运算法则
(2)、会进行简单的分式的乘除法运算
能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。
(2)、能解决一些与分式有关的简单的实际问题。
情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。
(2)、培养学生的创新意识和应用意识。
(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。
4、教学重点:分式乘除法的法则及应用.
5、教学难点:分子、分母是多项式的分式的乘除法的运算。
二、说教法
教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。
2、合作式教学,在师生平等的交流中评价学习。
三、说学法
学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。
1、类比学习的方法。通过与分数的乘除法运算类比。
2、合作学习。
四、说教学程序
1、类比学习,探索法则。(约3分钟)
让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)
复习:分数的乘除法法则(抽一学生口答)
猜一猜: ; (a、b、c、d表示整数且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零)
类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零,a、c中含有字母)
活动目的:
让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。
教学效果:
通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。
2、理解法则:(约2分钟)(1)文字叙述:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
(2)符号表述
× = ;
÷ = × = .
活动目的:
两种形式巩固对法则的理解。
教学效果:
理解法则,进一步发展学生的符号感。
3、应用:(约20分钟)
(1)牛刀小试
教材74页到76页的例1、做一做、例2.我准备把例1和例2先学习了。再学习做一做。
例1 计算
(1) ;
(2)
活动目的:
抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。
教学效果:
有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生理解一步的算理。
例2.计算:
(1)3xy2÷ ;
(2) ÷
活动目的:
让学生进一步理解类比的学习方法,分式的除法先转化为乘法。
教学效果:
因式分解在分式约分中起到重要作用,对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以使运算简化。
(2)“西瓜问题”
活动目的:
能解决一些与分式有关的简单的实际问题。能有条理的进行表达。
教学效果:
通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)
4、随堂练习。(约5分钟)
76页第一题,共3个小题。
教学效果:
在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。 分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。
5、数学理解(约5分钟)
教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。
补充例3 计算(xy-x2)÷
教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。
6、课堂小结(约3分钟)
先学生分组小结,在全班交流,最后老师总结。
7、作业布置,凝固新知。(约2分钟)
教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)
五.说板书设计
主板书采用纲要式,一目了然。
一、 分式的基本性质
1、 文字叙述
2、 符号表述
二、应用
最后,谈谈我的体会。课堂上平等对话,让学生自主掌握数学,发现问题,及时改正。教学是让学生丰富认识。
八年级数学说课稿 篇7
一、教学目标
1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算.
2.会进行简单的二次根式的乘法运算.
3.使学生能联系几何课中学习的勾股定理解决实际问题.
二、教学重点和难点
1.重点:会利用积的算术平方根的性质化简二次根式.
2.难点:二次根式的乘法与积的算术平方根的关系及应用.
重点难点分析:
本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简.积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础.二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起.
本节难点是二次根式的乘法与积的算术平方根的关系及应用.积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识.要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满足.
三、教学方法
从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法.
1. 由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开.在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。
2. 积的算术平方根的性质和 ( )及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要
的作用,所以在教学中对于培养的思维品质有着重要的作用。
四、教学手段
利用投影仪.
五、教学过程
(一)引入新课 观察例子得到结果
类似地可以得到:
由上一节知道一般地,有=(a,b)
通过上面的例子,大家会发现 =(a,b) 也成立
(二)新课
积的算术平方根.
由前面所举特殊的例子,引导学生总结出:一般地,有 (a≥0,b≥0). 积的算术平方根,等于积中各因式的算术平方根的积.
要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0.在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积.根据这个性质可以对二次根式进行恒等变形。 化简,使被开方数不含完全平方的因数(或因式):
1、 2、 3、
说明:1、当所得二次根式的被开方数的因数(式)中,有一些幂的指数不小于2,即含有完全平方的因式(数),我们就可利用积的算术平方根的性质,并用=a(a)来化简二次根式。
2、 (a≥0,b≥0)可以推广为 (a≥0,b≥0,c≥0)
化简二次根式的步骤
1、将被开方数尽可能分解出平方数;
2、应用=(a,b)
3、将平方项利用=化简
小结:1、积的算术平方根与二次根式的乘法的互逆性;
2、灵活应用他们进行二次根式的乘法运算及化简二次根式
作业;由于本节课后习题较少,可适当补充紧贴教材的课外习题
【关于八年级数学说课稿模板锦集七篇】相关文章:
关于八年级语文说课稿模板锦集九篇10-12
数学生活日记模板锦集七篇01-01
关于数学生活日记模板锦集八篇12-29
关于会议通知模板锦集七篇10-14
关于雇佣合同模板锦集七篇08-18
关于八年级数学说课稿范文锦集八篇10-15
兰亭集序说课稿模板锦集8篇06-13
数学生活日记锦集七篇12-14
关于二年级数学说课稿锦集九篇10-04
大班数学优秀说课稿模板12-27