二次函数数学教案(通用14篇)
在教学工作者开展教学活动前,很有必要精心设计一份教案,教案是教学蓝图,可以有效提高教学效率。那么教案应该怎么写才合适呢?下面是小编为大家整理的二次函数数学教案,仅供参考,大家一起来看看吧。
二次函数数学教案 篇1
教学目标
熟练地掌握二次函数的最值及其求法。
重 点
二次函数的的最值及其求法。
难 点
二次函数的最值及其求法。
一、引入
二次函数的最值:
二、例题分析:
例1:求二次函数 的最大值以及取得最大值时 的值。
变题1:⑴、 ⑵、 ⑶、
变题2:求函数 ( )的最大值。
变题3:求函数 ( )的最大值。
例2:已知 ( )的最大值为3,最小值为2,求 的取值范围。
例3:若 , 是二次方程 的两个实数根,求 的最小值。
三、随堂练习:
1、若函数 在 上有最小值 ,最大值2,若 ,
则 =________, =________。
2、已知 , 是关于 的一元二次方程 的两实数根,则 的最小值是( )
A、0 B、1 C、-1 D、2
3、求函数 在区间 上的最大值。
四、回顾小结
本节课了以下内容:
1、二次函数的的最值及其求法。
课后作业
班级:( )班 姓名__________
一、基础题:
1、函数 ( )
A、有最大值6 B、有最小值6 C、有最大值10 D、有最大值2
2、函数 的最大值是4,且当 =2时, =5,则 =______, =_______。
二、提高题:
3、试求关于 的函数 在 上的最大值 ,高三。
4、已知函数 当 时,取最大值为2,求实数 的值。
5、已知 是方程 的两实根,求 的最大值和最小值。
三、题:
6、已知函数 , ,其中 ,求该函数的最大值与最小值,
并求出函数取最大值和最小值时所对应的自变量 的值。
二次函数数学教案 篇2
教学目标
1·从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系·
2·探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念·能够利用二次函数的图象求一元二次方程的近似根·
3·通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点·
教学重点
二次函数的最大值,最小值及增减性的理解和求法·
教学难点
二次函数的性质的应用·
《22·2二次函数与一元二次方程》同步练习
三、解答题
7·(1)请在坐标系中画出二次函数y=x2—2x的大致图象;
(2)根据方程的根与函数图象的关系,将方程x2—2x=1的根在图上近似地表示出来(描点);
(3)观察图象,直接写出方程x2—2x=1的根(精确到0·1)·
《22·2二次函数与一元二次方程》练习题
16·(杭州中考)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t—5t2(0≤t≤4)·
(1)当t=3时,求足球距离地面的高度;
(2)当足球距离地面的高度为10米时,求t;
(3)若存在实数t1,t2(t1≠t2),当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围·
二次函数数学教案 篇3
一、教学目的
1.使学生初步理解二次函数的概念。
2.使学生会用描点法画二次函数y=ax2的图象。
3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。
二、教学重点、难点
重点:对二次函数概念的初步理解。
难点:会用描点法画二次函数y=ax2的图象。
三、教学过程
复习提问
1.在下列函数中,哪些是一次函数?哪些是正比例函数?
(1)y=x/4;(2)y=4/x;(3)y=2x—5;(4)y=x2 — 2。
2.什么是一无二次方程?
3.怎样用找点法画函数的图象?
新课
1.由具体问题引出二次函数的定义。
(1)已知圆的面积是Scm2,圆的半径是Rcm,写出空上圆的面积S与半径R之间的函数关系式。
(2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式。
(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?
解:(1)函数解析式是S=πR2;
(2)函数析式是S=30L—L2;
(3)函数解析式是y=50(1+x)2,即
y=50x2+100x+50。
由以上三例启发学生归纳出:
(1)函数解析式均为整式;
(2)处变量的最高次数是2。
我们说三个式子都表示的是二次函数。
一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。
2.画二次函数y=x2的图象。
二次函数数学教案 篇4
【知识与技能】
1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.
2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.
【过程与方法】
经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.
【情感态度】
通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.
【教学重点】
1.会画y=ax2(a>0)的图象.
2.理解,掌握图象的性质.
【教学难点】
二次函数图象及性质探究过程和方法的体会教学过程.
一、情境导入,初步认识
问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?
问题2 如何用描点法画一个函数图象呢?
【教学说明】
①略;
②列表、描点、连线.
二、思考探究,获取新知
探究1 画二次函数y=ax2(a>0)的图象.
画二次函数y=ax2的图象.
【教学说明】
①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.
②从列表和描点中,体会图象关于y轴对称的特征.
③强调画抛物线的三个误区.
误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.
误区二:并非对称点,存在漏点现象,导致抛物线变形.
误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.
二次函数数学教案 篇5
一、教材分析:
《34.4二次函数的应用》选自义务教育课程标准试验教科书《数学》(冀教版)九年级上册第三十四章第四节,这节课是在学生学习了二次函数的概念、图象及性质的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。这也突出了课标的要求:注重知识与实际问题的联系。
本节教学时间安排1课时
二、教学目标:
知识技能:
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.能够利用二次函数的图象求一元二次方程的近似根。
数学思考:
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.
2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.
3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
解决问题:
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。
情感态度:
1.从学生感兴趣的问题入手,让学生亲自体会学习数学的价值,从而提高学生学习数学的好奇心和求知欲。
2.通过学生共同观察和讨论,培养大家的合作交流意识。
三、教学重点、难点:
教学重点:
1.体会方程与函数之间的联系。
2.能够利用二次函数的图象求一元二次方程的近似根。
教学难点:
1.探索方程与函数之间关系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
四、教学方法:启发引导 合作交流
五:教具、学具:课件
六、教学过程:
[活动1] 检查预习 引出课题
预习作业:
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.
师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
[活动2] 创设情境 探究新知
问题
1. 课本P94 问题.
2. 结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?
3. 结合预习题1,完成课本P94 观察中的题目。
师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。
二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
教师重点关注:
1.学生能否把实际问题准确地转化为数学问题;
2.学生在思考问题时能否注重数形结合思想的应用;
3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。
设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。
[活动3] 例题学习 巩固提高
问题
例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).
师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。
教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。
设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。
[活动4] 练习反馈 巩固新知
二次函数数学教案 篇6
目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
过程:
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格 中,
AB长x(m)123456789
BC长(m)12
面积y(m2)48
2.x的值是否可以任意取?有限定范围吗?
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.
二、提出问题
某商店将每 件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?
在这个问题中,可提出如下问题供学生思考并 回答:
1.商品的利润与售价、进价以及销售量之间有什么关系?
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多 少元?
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,
5.若设该商品每天的利润为y元,求y与x的函数关系式。
将函数关系式y=x(20-2x)(0 <x <10=化为:
y=-2x2+20x (0<x<10)……………………………(1)
将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:
y =-100x2+100x+20D (0≤x≤2)……………………(2)
三、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?
(分别是二次多项式 )
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点 ?
让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
1.(口答)下列函数中,哪些是二次函数?
(1)y= 5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3练习第1,2题。
五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实 际,编一道二次函数应用题,并写出函数关系式。
二次函数数学教案 篇7
教学目标
【知识与技能】
使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质.
【过程与方法】
使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.
【情感、态度与价值观】
使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.
重点难点
【重点】
使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象.
【难点】
用描点法画出二次函数y=ax2的图象以及探索二次函数的性质.
教学过程
一、问题引入
1.一次函数的图象是什么?反比例函数的图象是什么?
(一次函数的图象是一条直线,反比例函数的图象是双曲线.)
2.画函数图象的一般步骤是什么?
一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线).
3.二次函数的图象是什么形状?二次函数有哪些性质?
(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质.)
二、新课教授
【例1】 画出二次函数y=x2的图象.
解:(1)列表中自变量x可以是任意实数,列表表示几组对应值.
(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y).
(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示.
思考:观察二次函数y=x2的图象,思考下列问题:
(1)二次函数y=x2的图象是什么形状?
(2)图象是轴对称图形吗?如果是,它的对称轴是什么?
(3)图象有最低点吗?如果有,最低点的坐标是什么?
师生活动:
教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题.
学生动手画图,观察、讨论并归纳,积极展示探究结果,教师评价.
函数y=x2的图象是一条关于y轴(x=0)对称的曲线,这条曲线叫做抛物线.实际上二次函数的图象都是抛物线.二次函数y=x2的图象可以简称为抛物线y=x2.
由图象可以看出,抛物线y=x2开口向上;y轴是抛物线y=x2的对称轴:抛物线y=x2与它的对称轴的交点(0,0)叫做抛物线的顶点,它是抛物线y=x2的最低点.实际上每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点.
【例2】 在同一直角坐标系中,画出函数y=x2及y=2x2的图象.
解:分别填表,再画出它们的图象.
思考:函数y=x2、y=2x2的图象与函数y=x2的图象有什么共同点和不同点?
师生活动:
教师引导学生在平面直角坐标系中画出二次函数y=x2、y=2x2的图象.
学生动手画图,观察、讨论并归纳,回答探究的思路和结果,教师评价.
抛物线y=x2、y=2x2与抛物线y=x2的开口均向上,顶点坐标都是(0,0),函数y=2x2的图象的开口较窄,y=x2的图象的开口较大.
探究1:画出函数y=-x2、y=-x2、y=-2x2的图象,并考虑这些图象有什么共同点和不同点。
师生活动:
学生在平面直角坐标系中画出函数y=-x2、y=-x2、y=-2x2的图象,观察、讨论并归纳.教师巡视学生的探究情况,若发现问题,及时点拨.
学生汇报探究的思路和结果,教师评价,给出图形.
抛物线y=-x2、y=-x2、y=-2x2开口均向下,顶点坐标都是(0,0),函数y=-2x2的图象开口最窄,y=-x2的图象开口最大.
探究2:对比抛物线y=x2和y=-x2,它们关于x轴对称吗?抛物线y=ax2和y=-ax2呢?
师生活动:
学生在平面直角坐标系中画出函数y=x2和y=-x2的图象,观察、讨论并归纳.
教师巡视学生的探究情况,发现问题,及时点拨.
学生汇报探究思路和结果,教师评价,给出图形.
抛物线y=x2、y=-x2的图象关于x轴对称.一般地,抛物线y=ax2和y=-ax2的图象也关于x轴对称.
教师引导学生小结(知识点、规律和方法).
一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.当a0时,抛物线y=ax2的开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2的开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.
从二次函数y=ax2的图象可以看出:如果a0,当x0时,y随x的增大而减小,当x0时,y随x的增大而增大;如果a0,当x0时,y随x的增大而增大,当x0时,y随x的增大而减小.
三、巩固练习
1.抛物线y=-4x2-4的开口向,顶点坐标是,对称轴是,当x=时,y有最值,是.
【答案】下 (0,-4) x=0 0 大 -4
2.当m≠时,y=(m-1)x2-3m是关于x的二次函数.
【答案】1
3.已知抛物线y=-3x2上两点A(x,-27),B(2,y),则x=,y=.
【答案】-3或3 -12
4.抛物线y=3x2与直线y=kx+3的交点坐标为(2,b),则k=,b=.
【答案】 12
5.已知抛物线的顶点在原点,对称轴为y轴,且经过点(-1,-2),则抛物线的表达式为.
【答案】y=-2x2
6.在同一坐标系中,图象与y=2x2的图象关于x轴对称的是()
A.y=x2B.y=x2
C.y=-2x2 D.y=-x2
【答案】C
7.抛物线y=4x2、y=-2x2、y=x2的图象,开口最大的是()
A.y=x2 B.y=4x2
C.y=-2x2 D.无法确定
【答案】A
8.对于抛物线y=x2和y=-x2在同一坐标系中的位置,下列说法错误的是()
A.两条抛物线关于x轴对称
B.两条抛物线关于原点对称
C.两条抛物线关于y轴对称
D.两条抛物线的交点为原点
【答案】C
四、课堂小结
1.二次函数y=ax2的图象过原点且关于y轴对称,自变量x的取值范围是一切实数.
2.二次函数y=ax2的性质:抛物线y=ax2的对称轴是y轴,顶点是原点.当a0时,抛物线y=x2开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.
3.二次函数y=ax2的图象可以通过列表、描点、连线三个步骤画出来.
教学反思
本节课的内容主要研究二次函数y=ax2在a取不同值时的图象,并引出抛物线的有关概念,再根据图象总结抛物线的有关性质.整个内容分成:(1)例1是基础;(2)在例1的基础之上引入例2,让学生体会a的大小对抛物线开口宽阔程度的影响;(3)例2及后面的练习探究让学生领会a的正负对抛物线开口方向的影响;(4)最后让学生比较例1和例2,练习归纳总结.
二次函数数学教案 篇8
通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;
(2)分解因式的结果要以积的形式表示;
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式 的次数;
(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知
例题学习:
P166例1、例2(略)
在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习
1.P167练习;
2. 看谁连得准
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些变形是因式分解,为什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结
从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
学生发言。
通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。
活动8:课后作业
课本P170习题的第1、4大题。
学生自主完成
通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。
板书设计(需要一直留在黑板上主板书)
15.4.1提公因式法 例题
1.因式分解的定义
2.提公因式法
二次函数数学教案 篇9
知识技能
1. 能列出实际问题中的二次函数关系式;
2. 理解二次函数概念;
3. 能判断所给的函数关系式是否二次函数关系式;
4. 掌握二次函数解析式的几种常见形式.
过程方法
从实际问题中感悟变量间的二次函数关系,揭示二次函数概念.学生经历观察、思考、交流、归纳、辨析、实践运用等过程,体会函数中的常量与变量,深刻领悟二次函数意义
情感态度
使学生进一步体验函数是描述变量间对应关系的重要数学模型,培养学生合作交流意识和探索能力。
教学重点
理解二次函数的意义,能列出实际问题中二次函数解析式
教学难点
能列出实际问题中二次函数解析式
教学过程设计
教学程序及教学内容 师生行为 设计意图
一、情境引入
播放实际生活中的有关抛物线的图片,概括性的介绍本章.
二、探究新知
㈠、用函数关系式表示下列问题中变量之间的关系:
1.正方体的棱长是x,表面积是y,写出y关于x的'函数关系式;
2.n边形的对角线条数d与边数n有什么关系?
3.某工厂一种产品现在的年产量是20件,计划今后两年增加产量,如果每年都必上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?
㈡观察所列函数关系式,看看有何共同特点?
㈢类比一次函数和反比例函数概念揭示二次函数概念:
一般地,形如 的函数,叫做二次函数。其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项。
实质上,函数的名称都反映了函数表达式与自变量的关系.
三、课堂训练(略)
四、小结归纳:
学生谈本节课收获
1.二次函数概念
2.二次函数与一次函数的区别与联系
3.二次函数的4种常见形式
五、作业设计
㈠教材16页1、2
㈡补充:
1、①y=-x2②y=2x③y=22+x2-x3④m=3-t-t2是二次函数的是
2、用一根长60cm的铁丝围成一个矩形,矩形面积S(cm2)与它的一边长x(cm)之间的函数关系式是xxxxxxxxxxxx.
3、小李存入银行人民币500元,年利率为x%,两年到期,本息和为y元(不含利息税),y与x之间的函数关系是xxxxxxx,若年利率为6%,两年到期的`本利共xxxxxx元.
4、在△ABC中,C=90,BC=a,AC=b,a+b=16,则RT△ABC的面积S与边长a的关系式是xxxx;当a=8时,S=xxxx;当S=24时,a=xxxxxxxx.
5、当k=xxxxx时, 是二次函数.
6、扇形周长为10,半径为x,面积为y,则y与x的函数关系式为xxxxxxxxxxxxxxx.
7、已知s与 成正比例,且t=3时,s=4,则s与t的函数关系式为xxxxxxxxxxxxxxx.
8、下列函数不属于二次函数的是( )
A.y=(x-1)(x+2) B.y= (x+1)2 C.y=2(x+3)2-2x2 D.y=1- x2
9、若函数 是二次函数,那么m的值是( )
A.2 B.-1或3 C.3 D.
10、一块草地是长80 m、宽60 m的矩形,在中间修筑两条互相垂直的宽为x m的小路,这时草坪面积为y m2.求y与x的函数关系式,并写出自变量x的取值范围.
二次函数数学教案 篇10
教学目标:
会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。
重点难点:
重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。
难点:会运用二次函数知识解决有关综合问题。
教学过程:
一、例题精析,强化练习,剖析知识点
用待定系数法确定二次函数解析式.
例:根据下列条件,求出二次函数的解析式。
(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。
(2)抛物线顶点P(-1,-8),且过点A(0,-6)。
(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。
(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。
学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。
教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)
(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)
当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。
当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。
当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)
强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。
(1)若m为定值,求此二次函数的解析式;
(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。
二、知识点串联,综合应用
例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交
二次函数数学教案 篇11
教学目标
1、经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点
2、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题
3、能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究
教学重点和难点
重点:用三种方式表示变量之间二次函数关系
难点:根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究
教学过程设计
一、从学生原有的认知结构提出问题
这节课,我们来学习二次函数的三种表达方式。
二、师生共同研究形成概念
1、用函数表达式表示
☆做一做书本P56矩形的周长与边长、面积的关系
鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的关系。
比较全面、完整、简单地表示出变量之间的关系
2、用表格表示
☆做一做书本P56填表
由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。
表格表示可以清楚、直接地表示出变量之间的数值对应关系
3、用图象表示
☆议一议书本P56议一议
关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。
可以直观地表示出函数的变化过程和变化趋势
☆做一做书本P57
4、三种方法对比
☆议一议书本P58议一议
函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。这三种表示方式积压自有各自的优点,它们服务于不同的需要。
在对三种表示方式进行比较时,学生的看法可能多种多样。只要他们的想法有一定的道理,教师就应予以肯定和鼓励。
二次函数数学教案 篇12
教学目标:
让学生经历根据不同的条件,利用待定系数法求二次函数的函数关系式。
重点:二次函数表达式的形式的选择
难点:各种隐含条件的挖掘
教法:引导发现法
教学过程:
(一)诊断补偿,情景引入:
1、二次函数的一般式是什么
2、二次函数的图象及性质
(先让学生复习,然后提问,并做进一步诊断)
(二)问题导航,探究释疑:
一般地,函数关系式中有几个独立的系数,那么就需要有相同个数的独立条件才能求出函数关系式。例如:我们在确定一次函数的关系式时,通常需要两个立的条件:确定反比例函数的关系式时,通常只需要一个条件:如果要确定二次函数的关系式,又需要几个条件呢?
(三)精讲提炼,揭示本质:
例1。某涵洞是抛物线形,它的截面如图26。2。9所示,现测得水面宽1。6m,涵洞顶点O到水面的距离为2。4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?
分析如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系。这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是。此时只需抛物线上的一个点就能求出抛物线的函数关系式。
解由题意,得点B的坐标为(0。8,-2。4),
又因为点B在抛物线上,将它的坐标代入,得所以因此,函数关系式是。
例2、根据下列条件,分别求出对应的二次函数的关系式。
(1)已知二次函数的图象经过点A(0,-1)、B(1,0)、C(-1,2);
(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);
(3)已知抛物线与x轴交于点M(-3,0)(5,0)且与y轴交于点(0,-3);
(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4。
分析(1)根据二次函数的图象经过三个已知点,可设函数关系式为的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(3)根据抛物线与x轴的两个交点的坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为,同时可知抛物线的对称轴为x=3,再由与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为(1,0)和(5,0),任选一个代入,即可求出a的值。
解(1)设二次函数关系式为,由已知,这个函数的图象过(0,-1),可以得到c= -1。又由于其图象过点(1,0)、(-1,2)两点,可以得到
解这个方程组,得a=2,b= -1。
所以,所求二次函数的关系式是。
(2)因为抛物线的顶点为(1,-3),所以设二此函数的关系式为,又由于抛物线与y轴交于点(0,1),可以得到解得。
所以,所求二次函数的关系式是。
(3)因为抛物线与x轴交于点M(-3,0)、(5,0),
所以设二此函数的关系式为。
又由于抛物线与y轴交于点(0,3),可以得到解得。
所以,所求二次函数的关系式是。
(4)根据前面的分析,本题已转化为与(2)相同的题型请同学们自己完成。
(四)题组训练,拓展迁移:
1、根据下列条件,分别求出对应的二次函数的关系式。
(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);
(2)已知抛物线的顶点为(-1,2),且过点(2,1);
(3)已知抛物线与x轴交于点M(-1,0)、(2,0),且经过点(1,2)。
2、二次函数图象的对称轴是x= -1,与y轴交点的纵坐标是–6,且经过点(2,10),求此二次函数的关系式。
(五)交流评价,深化知识:
确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则。二次函数的关系式可设如下三种形式:(1)一般式:,给出三点坐标可利用此式来求。
(2)顶点式:,给出两点,且其中一点为顶点时可利用此式来求。
(3)交点式:,给出三点,其中两点为与x轴的两个交点、时可利用此式来求。
本课课外作业1。已知二次函数的图象经过点A(-1,12)、B(2,-3),
(1)求该二次函数的关系式;
(2)用配方法把(1)所得的函数关系式化成的形式,并求出该抛物线的顶点坐标和对称轴。
2、已知二次函数的图象与一次函数的图象有两个公共点P(2,m)、Q(n,-8),如果抛物线的对称轴是x= -1,求该二次函数的关系式
二次函数数学教案 篇13
【知识与技能】
1.会用描点法画二次函数y=ax2+bx+c的图象.
2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.
3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.
【过程与方法】
1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.
2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.
【情感态度】
进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.
【教学重点】
①用配方法求y=ax2+bx+c的顶点坐标;
②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.
【教学难点】
能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.
一、情境导入,初步认识
请同学们完成下列问题.
1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.
2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.
3.画y=-2x2+6x-1的图象.
4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.
5.二次函数y=-2x2+6x-1的y随x的增减性如何?
【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.
二、思考探究,获取新知
探究1 如何画y=ax2+bx+c图象,你可以归纳为哪几步?
学生回答、教师点评:
一般分为三步:
1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.
2.列表,描点,连线画出对称轴右边的部分图象.
3.利用对称点,画出对称轴左边的部分图象.
探究2 二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?
二次函数数学教案 篇14
【知识与技能】
1.会用描点法画二次函数y=ax2+bx+c的图象.
2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.
3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.
【过程与方法】
1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.
2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.
【情感态度】
进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.
【教学重点】
①用配方法求y=ax2+bx+c的顶点坐标;
②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.
【教学难点】
能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.
一、情境导入,初步认识
请同学们完成下列问题.
1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.
2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.
3.画y=-2x2+6x-1的图象.
4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.
5.二次函数y=-2x2+6x-1的y随x的增减性如何?
【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.
二、思考探究,获取新知
探究1 如何画y=ax2+bx+c图象,你可以归纳为哪几步?
学生回答、教师点评:
一般分为三步:
1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.
2.列表,描点,连线画出对称轴右边的部分图象.
3.利用对称点,画出对称轴左边的部分图象.
探究2 二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?
【二次函数数学教案】相关文章:
二次函数数学教案09-30
二次函数数学教案06-13
二次函数数学教案09-30
建立二次函数模型数学教案08-29
二次函数课件03-19
二次函数教案07-28
《二次函数》教案03-02
二次函数的教学反思10-18
二次函数教学设计11-30