高一数学教案

时间:2022-12-26 13:28:16 数学教案 我要投稿
  • 相关推荐

高一数学教案(通用15篇)

  作为一名为他人授业解惑的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。教案应该怎么写呢?下面是小编为大家收集的高一数学教案,仅供参考,欢迎大家阅读。

高一数学教案(通用15篇)

高一数学教案1

  教学目标

  1、掌握平面向量的数量积及其几何意义;

  2、掌握平面向量数量积的重要性质及运算律;

  3、了解用平面向量的数量积可以处理垂直的问题;

  4、掌握向量垂直的条件、

  教学重难点

  教学重点:平面向量的数量积定义

  教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

  教学过程

  1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,

  则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、

  并规定0向量与任何向量的数量积为0、

  ×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

  2、两个向量的数量积与实数乘向量的积有什么区别?

  (1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定、

  (2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分、符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替、

  (3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0、因为其中cosq有可能为0、

高一数学教案2

  教学目标

  1.理解分数指数幂的含义,了解实数指数幂的意义。

  2.掌握有理数指数幂的运算性质,灵活的运用乘法公式进行有理数指数幂的运算和化简,会进行根式与分数指数幂的相互转化。

  教学重点

  1.分数指数幂含义的理解。

  2.有理数指数幂的运算性质的理解。

  3.有理数指数幂的运算和化简。

  教学难点

  1.分数指数幂含义的理解。

  2.有理数指数幂的运算和化简。

  教学过程

  一.问题情景

  上节课研究了根式的意义及根式的性质,那么根式与指数幂有什么关系?整数指数幂有那些运算性质?

  二.学生活动

  1.说出下列各式的意义,并指出其结果的指数,被开方数的指数及根指数三者之间的关系

  (1)=(2)=

  2.从上述问题中,你能得到的结论为

  3.(a0)及(a0)能否化成指数幂的形式?

  三.数学理论

  正分数指数幂的意义:=(a0,m,n均为正整数)

  负分数指数幂的意义:=(a0,m,n均为正整数)

  1.规定:0的正分数指数幂仍是0,即=0

  0的负分数指数幂无意义。

  3.规定了分数指数幂的意义后,指数的概念从整数指数推广到了有理数指数,因而整数指数幂的运算性质同样适用于有理数指数幂。

  即=(1)

  =(2)其中s,tQ,a0,b0

  =(3)

  四.数学运用

  例1求值:

  (1)(2)(3)(4)

  例2用分数指数幂的形式表示下列各式(a0)

  (1)(2)

  例3化简

  (1)

  (2)(3)

  例4化简

  例5已知求(1)(2)

  五.回顾小结

  1.分数指数幂的意义。=(0,m,n)

  无意义

  2.有理数指数幂的运算性质

  3.整式运算律及乘法公式在分数指数幂运算中仍适用

  4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂,请同学们阅读P47的阅读部分

  练习P47-48练习1,2,3,4

  六.课外作业

  P48习题2.2(1)2,4

高一数学教案3

  教材:逻辑联结词

  目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。

  过程

  一、提出课题:简单逻辑、逻辑联结词

  二、命题的概念:

  例:125 ① 3是12的约数 ② 0.5是整数 ③

  定义:可以判断真假的语句叫命题。正确的叫真命题,错误的叫假命题。

  如:①②是真命题,③是假命题

  反例:3是12的约数吗? x5 都不是命题

  不涉及真假(问题) 无法判断真假

  上述①②③是简单命题。 这种含有变量的语句叫开语句(条件命题)。

  三、复合命题:

  1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。

  2.例:

  (1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

  (2)菱形的对角线互相 菱形的对角线互相垂直且菱形的

  垂直且平分⑤ 对角线互相平分

  (3)0.5非整数⑥ 非0.5是整数

  观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。

  3.其实,有些概念前面已遇到过

  如:或:不等式 x2x60的解集 { x | x2或x3 }

  且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }

  四、复合命题的构成形式

  如果用 p, q, r, s表示命题,则复合命题的形式接触过的有以下三种:

  即: p或q (如 ④) 记作 pq

  p且q (如 ⑤) 记作 pq

  非p (命题的否定) (如 ⑥) 记作 p

  小结:1.命题 2.复合命题 3.复合命题的构成形式

高一数学教案4

  教学目标:

  使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.

  教学重点:

  函数的概念,函数定义域的求法.

  教学难点:

  函数概念的理解.

  教学过程:

  Ⅰ.课题导入

  [师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?

  (几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).

  设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.

  [师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:

  问题一:y=1(xR)是函数吗?

  问题二:y=x与y=x2x 是同一个函数吗?

  (学生思考,很难回答)

  [师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).

  Ⅱ.讲授新课

  [师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子.

  在(1)中,对应关系是乘2,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应.

  在(2)中,对应关系是求平方,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应.

  在(3)中,对应关系是求倒数,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应.

  请同学们观察3个对应,它们分别是怎样形式的对应呢?

  [生]一对一、二对一、一对一.

  [师]这3个对应的共同特点是什么呢?

  [生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应.

  [师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.

  现在我们把函数的概念进一步叙述如下:(板书)

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰AB为从集合A到集合B的一个函数.

  记作:y=f(x),xA

  其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xA}叫函数的值域.

  一次函数f(x)=ax+b(a0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a0)和它对应.

  反比例函数f(x)=kx (k0)的定义域是A={x|x0},值域是B={f(x)|f(x)0},对于A中的任意一个实数x,在B中都有一个实数f(x)= kx (k0)和它对应.

  二次函数f(x)=ax2+bx+c(a0)的定义域是R,值域是当a0时B={f(x)|f(x)4ac-b24a };当a0时,B={f(x)|f(x)4ac-b24a },它使得R中的任意一个数x与B中的数f(x)=ax2+bx+c(a0)对应.

  函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.

  y=1(xR)是函数,因为对于实数集R中的任何一个数x,按照对应关系函数值是1,在R中y都有惟一确定的值1与它对应,所以说y是x的函数.

  Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数.

  [师]理解函数的定义,我们应该注意些什么呢?

  (教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)

  注意:①函数是非空数集到非空数集上的一种对应.

  ②符号f:AB表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.

  ③集合A中数的任意性,集合B中数的惟一性.

  ④f表示对应关系,在不同的函数中,f的具体含义不一样.

  ⑤f(x)是一个符号,绝对不能理解为f与x的乘积.

  [师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示

  Ⅲ.例题分析

  [例1]求下列函数的定义域.

  (1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

  分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.

  解:(1)x-20,即x2时,1x-2 有意义

  这个函数的定义域是{x|x2}

  (2)3x+20,即x-23 时3x+2 有意义

  函数y=3x+2 的定义域是[-23 ,+)

  (3) x+10 x2

  这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+).

  注意:函数的定义域可用三种方法表示:不等式、集合、区间.

  从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:

  (1)如果f(x)是整式,那么函数的定义域是实数集R;

  (2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;

  (3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;

  (4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);

  (5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.

  例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数.

  由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定.

  [师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11

  注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值.

  下面我们来看求函数式的值应该怎样进行呢?

  [生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.

  [师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢!

  [生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同.

  [师]生乙的回答完整吗?

  [生]完整!(课本上就是如生乙所述那样写的).

  [师]大家说,判定两个函数是否相同的依据是什么?

  [生]函数的定义.

  [师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?

  (学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)

  (无人回答)

  [师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!

  (生恍然大悟,我们怎么就没想到呢?)

  [例2]求下列函数的值域

  (1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}

  (3)y=x2+4x+3 (-31)

  分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域.

  对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域.

  对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法.

  解:(1)yR

  (2)y{1,0,-1}

  (3)画出y=x2+4x+3(-31)的图象,如图所示,

  当x[-3,1]时,得y[-1,8]

  Ⅳ.课堂练习

  课本P24练习17.

  Ⅴ.课时小结

  本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳)

  Ⅵ.课后作业

  课本P28,习题1、2. 文 章来

高一数学教案5

  教学目标

  1、使学生掌握指数函数的概念,图象和性质。

  (1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域。

  (2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质。

  (3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如的图象。

  2、通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。

  3、通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。

  教学建议

  教材分析

  (1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。

  (2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质。难点是对底数在和时,函数值变化情况的区分。

  (3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

  教法建议

  (1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如等都不是指数函数。

  (2)对底数的限制条件的理解与认识也是认识指数函数的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。

  关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

高一数学教案6

  学习目标

  1.能根据抛物线的定义建立抛物线的标准方程;

  2.会根据抛物线的标准方程写出其焦点坐标与准线方程;

  3.会求抛物线的标准方程。

  一、预习检查

  1.完成下表:

  标准方程

  图形

  焦点坐标

  准线方程

  开口方向

  2.求抛物线的焦点坐标和准线方程.

  3.求经过点的抛物线的标准方程.

  二、问题探究

  探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程?

  探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较.

  例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程.

  例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程.

  例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为.求该抛物线的方程,并写出其焦点坐标与准线方程.

  三、思维训练

  1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为.

  2.抛物线的焦点到其准线的距离是.

  3.设为抛物线的焦点,为该抛物线上三点,若,则=.

  4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是.

  5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。

  四、课后巩固

  1.抛物线的准线方程是.

  2.抛物线上一点到焦点的距离为,则点到轴的距离为.

  3.已知抛物线,焦点到准线的距离为,则.

  4.经过点的抛物线的标准方程为.

  5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是.

  6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程.

  7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。

高一数学教案7

  教学目标

  (1)正确理解充分条件、必要条件和充要条件的概念;

  (2)能正确判断是充分条件、必要条件还是充要条件;

  (3)培养学生的逻辑思维能力及归纳总结能力;

  (4)在充要条件的教学中,培养等价转化思想.

  教学建议

  (一)教材分析

  1.知识结构

  首先给出推断符号“”,并引出的意义,在此基础上讲述了充要条件的初步知识.

  2.重点难点分析

  本节的重点与难点是关于充要条件的判断.

  (1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件和结论之间的因果关系.

  (2)在判断条件和结论之间的因果关系中应该:

  ①首先分清条件是什么,结论是什么;

  ②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立;

  ③最后再指出条件是结论的什么条件.

  (3)在讨论条件和条件的关系时,要注意:

  ①若,但,则是的充分但不必要条件;

  ②若,但,则是的必要但不充分条件;

  ③若,且,则是的充要条件;

  ④若,且,则是的充要条件;

  ⑤若,且,则是的既不充分也不必要条件.

  (4)若条件以集合的形式出现,结论以集合的形式出现,则借助集合知识,有助于充要条件的理解和判断.

  ①若,则是的充分条件;

  显然,要使元素,只需就够了.类似地还有:

  ②若,则是的必要条件;

  ③若,则是的充要条件;

  ④若,且,则是的既不必要也不充分条件.

  (5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题逆否命题,逆命题否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.

  (二)教法建议

  1.学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系.充要条件中的,与四种命题中的,要求是一样的.它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若则”形式的复合命题.

  2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性.

  3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念.

  4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念.

  教学设计示例

  充要条件

  教学目标

  (1)正确理解充分条件、必要条件和充要条件的概念;

  (2)能正确判断是充分条件、必要条件还是充要条件;

  (3)培养学生的逻辑思维能力及归纳总结能力;

  (4)在充要条件的教学中,培养等价转化思想.

  教学重点难点:

  关于充要条件的判断

  教学用具:

  幻灯机或实物投影仪

  教学过程设计

  1.复习引入

  练习:判断下列命题是真命题还是假命题(用幻灯投影):

  (1)若,则;

  (2)若,则;

  (3)全等三角形的面积相等;

  (4)对角线互相垂直的四边形是菱形;

  (5)若,则;

  (6)若方程有两个不等的实数解,则.

  (学生口答,教师板书.)

  (1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.

  置疑:对于命题“若,则”,有时是真命题,有时是假命题.如何判断其真假的?

  答:看能不能推出,如果能推出,则原命题是真命题,否则就是假命题.

  对于命题“若,则”,如果由经过推理能推出,也就是说,如果成立,那么一定成立.换句话说,只要有条件就能充分地保证结论的成立,这时我们称条件是成立的充分条件,记作.

  2.讲授新课

  (板书充分条件的定义.)

  一般地,如果已知,那么我们就说是成立的充分条件.

  提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.

  (学生口答)

  (1)“,”是“”成立的充分条件;

  (2)“三角形全等”是“三角形面积相等”成立的充分条件;

  (3)“方程的有两个不等的实数解”是“”成立的充分条件.

  从另一个角度看,如果成立,那么其逆否命题也成立,即如果没有,也就没有,亦即是成立的必须要有的条件,也就是必要条件.

  (板书必要条件的定义.)

  提出问题:用“充分条件”和“必要条件”来叙述上述6个命题.

  (学生口答).

  (1)因为,所以是的充分条件,是的必要条件;

  (2)因为,所以是的必要条件,是的充分条件;

  (3)因为“两三角形全等”“两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;

  (4)因为“四边形的对角线互相垂直”“四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件;

  (5)因为,所以是的必要条件,是的充分条件;

  (6)因为“方程的有两个不等的实根”“”,而且“方程的有两个不等的实根”“”,所以“方程的有两个不等的实根”是“”充分条件,而且是必要条件.

  总结:如果是的充分条件,又是的必要条件,则称是的充分必要条件,简称充要条件,记作.

  (板书充要条件的定义.)

  3.巩固新课

  例1(用投影仪投影.)

  (学生活动,教师引导学生作出下面回答.)

  ①因为有理数一定是实数,但实数不一定是有理数,所以是的充分非必要条件,是的必要非充分条件;

  ②一定能推出,而不一定推出,所以是的充分非必要条件,是的必要非充分条件;

  ③、是奇数,那么一定是偶数;是偶数,、不一定都是奇数(可能都为偶数),所以是的充分非必要条件,是的必要非充分条件;

  ④表示或,所以是成立的必要非充分条件;

  ⑤由交集的定义可知且是成立的充要条件;

  ⑥由知且,所以是成立的充分非必要条件;

  ⑦由知或,所以是,成立的必要非充分条件;

  ⑧易知“是4的倍数”是“是6的倍数”成立的既非充分又非必要条件;

  (通过对上述问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识.)

  例2已知是的充要条件,是的必要条件同时又是的充分条件,试与的关系.(投影)

  解:由已知得,

  所以是的充分条件,或是的必要条件.

  4.小结回授

  今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础.

  课内练习:课本(人教版,试验修订本,第一册(上))第35页练习l、2;第36页练习l、2.

  (通过练习,检查学生掌握情况,有针对性的进行讲评.)

  5.课外作业:教材第36页 习题1.8 1、2、3.

高一数学教案8

  一、课标要求:

  理解充分条件、必要条件与充要条件的意义,会判断充分条件、必要条件与充要条件.

  二、知识与方法回顾:

  1、充分条件、必要条件与充要条件的概念:

  2、从逻辑推理关系上看充分不必要条件、必要不充分条件与充要条件:

  3、从集合与集合之间关系上看充分条件、必要条件与充要条件:

  4、特殊值法:判断充分条件与必要条件时,往往用特殊值法来否定结论

  5、化归思想:

  表示p等价于q,等价命题可以进行相互转化,当我们要证明p成立时,就可以转化为证明q成立;

  这里要注意原命题 逆否命题、逆命题 否命题只是等价形式之一,对于条件或结论是不等式关系(否定式)的命题一般应用化归思想.

  6、数形结合思想:

  利用韦恩图(即集合的包含关系)来判断充分不必要条件,必要不充分条件,充要条件.

  三、基础训练:

  1、 设命题若p则q为假,而若q则p为真,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  2、 设集合M,N为是全集U的两个子集,则 是 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  3、 若 是实数,则 是 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  四、例题讲解

  例1 已知实系数一元二次方程 ,下列结论中正确的是 ( )

  (1) 是这个方程有实根的充分不必要条件

  (2) 是这个方程有实根的必要不充分条件

  (3) 是这个方程有实根的充要条件

  (4) 是这个方程有实根的充分不必要条件

  A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)

  例2 (1)已知h 0,a,bR,设命题甲: ,命题乙: 且 ,问甲是乙的 ( )

  (2)已知p:两条直线的斜率互为负倒数,q:两条直线互相垂直,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  变式:a = 0是直线 与 平行的 条件;

  例3 如果命题p、q都是命题r的必要条件,命题s是命题r的充分条件,命题q是命题s

  的充分条件,那么命题p是命题q的 条件;命题s是命题q的 条件;命题r是命题q的 条件.

  例4 设命题p:|4x-3| 1,命题q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分条件,求实数a的取值范围;

  例5 设 是方程 的两个实根,试分析 是两实根 均大于1的什么条件?并给予证明.

  五、课堂练习

  1、设命题p: ,命题q: ,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  2、给出以下四个命题:①若p则q②若﹁r则﹁q③ 若r则﹁s

  ④若﹁s则q若它们都是真命题,则﹁p是s的 条件;

  3、是否存在实数p,使 是 的充分条件?若存在,求出p的取值范围;若不存在说明理由.

  六、课堂小结:

  七、教学后记:

  高三 班 学号 姓名 日期: 月 日

  1、 A B是AB=B的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  2、 是 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  3、 2x2-5x-30的一个必要不充分条件是 ( )

  A.-

  4、2且b是a+b4且ab的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  5、设a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,那么 是 M=N 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分又不必要条件

  6、若命题A: ,命题B: ,则命题A是B的 条件;

  7、设条件p:|x|=x,条件q:x2-x,则p是q的 条件;

  8、方程mx2+2x+1=0至少有一个负根的充要条件是 ;

  9、关于x的方程x2+mx+n = 0有两个小于1的正根的一个充要条件是 ;

  10、已知 ,求证: 的充要条件是 ;

  11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分条件,求实数m的取值范围。

  12、已知关于x的方程(1-a)x2+(a+2)x-4=0,aR,求:

  (1)方程有两个正根的充要条件;

  (2)方程至少有一正根的充要条件.

高一数学教案9

  1、如果把数学比作一个成长中的生气勃勃的人,把问题比作人身体的一个重要的器官,那么你将用什么器官比喻问题的重要性呢

  2、“问题是数学的心脏”,是一切科学发现与发明的源泉、在数学学习中,提出问题比解决问题具有同等甚至是更高的价值、因此在进入初中数学学习的时候,同学们要高度重视发现和提出数学问题,把这看作是提升自己数学能力的最重要的途径、

  3、看到《有理数》这一章的标题,你想到的第一个问题是什么?接下来你又会提出什么问题呢?

  4、“有理数”这个名词有点怪,难道还有“无理数”吗?”这个问题提得好!既然有“有理数”,当然会有“无理数”、要回答什么是“有理数”的问题,一个途径就是先回答“什么是无理数的问题”、

  5、我们在小学所学的数中,就有无理数,那就是无限不循环小数、有限小数、无限循环小数都是有理数、大家想一想下面的问题:

  ①有限小数、无限循环小数与分数是什么关系?

  ②整数能不能化成分数的形式?

  ③由此你能不能联想出有理数的“理”是什么?也就是说,什么样的数是有理数?

  1、1正数和负数

  一、教学目标

  知识与技能:了解正数和负数是怎样产生的,会识别正数和负数,理解0表示的量的意义;学会用正数和负数表示相反意义的量;

  过程与方法:在形成负数概念的过程中,培养观察、归纳与概括能力、情感、态度与价值观:通过师生合作,联系实际,感受数学与生活的联系,激发学生学习数学的热情、

  重点难点

  重点:形成负数概念;学会用正数和负数表示相反意义的量、

  难点:负数的意义及0的内涵、

  二、精讲预设:

  1、其实,在进入初中之前,我们就有同学初步学习过“负数”概念,知道什么是正数和负数,但在跨入初中数学的大门的时候,我们还是要隆重地引入负数概念,因为它是我们建立有理数概念不可缺少的基础、

  2、什么叫做正数?什么叫做负数?负数的概念是建立在什么基础上的?你能换一种方式解释负数这个概念吗?请注意,给概念下定义的表达方式:……叫做……、

  3、①把0以外的数分成正数和负数,起源于什么?

  ②表示相反意义的量,数的性质(正与负)是怎样规定的?有几种方式?

  ③表示相反意义的量,要特别注意量的表达,也就是一定不能忽略单位!否则就不是量,而是数了、

  ④正数可以省略“+”号,负数可以省略“—”号吗?为什么?

  4、还记得我在前面提出的关于“问题”在数学学习中地位的话吗?请你提出关于“正数和负数”的概念与应用的问题,我们来开一次“数学记者招待会”、

  三、教学反思

  1、这次尝试着从无理数的概念入手,“曲线教学”,一步到位,导出有理数的概念,从后续效果上看,还是比较成功的这一点在今后的教学中还可以延续、

  2、在学生自主学习与尝试展示的过程中,采用事前精心设计的连续追问的方式,可以起到打通思维,贯通知识,加深理解的作用、

  1、2、1有理数

  一、教学目标

  知识与技能:理解有理数的意义;能把有理数按要求分类;了解0在分类中作用、

  过程与方法:初步了解分类的思想方法,能正确地对有理数进行分类、情感、态度与价值观:在体系中理解知识的内涵,在分类中了解概念之间的联系,在学生的头脑中初步建立起对立与统一的思考方法、

  重点难点

  重点:理解有理数的分类方法、

  难点:掌握有理数的两种分类,避免混淆、

  二、精讲预设

  1、在罗列出所学过的有理数,并对有理数给出定义之后,提出“你能把所有的这些有理数作出分类吗?”的问题、

  2、在让学生充分尝试对有理数作出分类之后,讲解数学学习的效益与分类讨论的标准问题、数学学习的效益,不仅体现在数学知识与数学方法的掌握上,更体现在对数学数学思想方法的理解与运用上,这才是数学学习最重要的价值所在、分类讨论就是一种重要的数学学习方法、在分类时首先要确定分类的标准,其次要注意遵循不重复、不遗漏的原则、

  3、在解把有理数填入集合圈的习题时,会出现哪些问题?原因何在?怎么解决?

  ①在画集合圈时忽略省略号;

  ②在填分数集合时,把遗漏有限小数和无限循环小数;

  ③把无限循环小数误成分数、补充分类练习,采用《鼎新教案》P10例2,以加深学生对分类讨论的理解

  三、教学反思

  1、这是学生在初中数学学习中第一次接触分类思想,课本在这方面的处理太过简略,几乎到忽略不计的地步、为了弥补教材的不足,有必要加以补充、

  2、因为有理数的概念在本章教学的开篇就与学生进行过比较深入的讨论,所以本节教学的重点还是以放在对分类的标准与原则上为宜,在这方面对学生进行训练的后续教学效益应该是比较高的,今后还应坚持、

  1、2、2数轴

  一、教学目标

  知识与技能:了解数轴的概念,知道数轴的三要素,会画数轴;能将已知数在数轴上表示出来,能说出数轴上已知点表示的数、

  过程与方法:通过对数轴的学习体会数形结合的数学思想、情感、态度与价值观:通过对数轴的直观认识,对数形结合思想的体会,认识不同事物之间的内在关系,感受数学与生活的联系、

  重点难点

  重点:数轴的概念、

  难点:数轴的画法与应用、

  二、精讲预设

  1、画数轴注意事项歌诀

  直线要直切勿曲,原点方向单位齐;

  右为箭头左出头,无限延伸要留意;

  (长度)正负分布须对称,位置长度要适宜

  、数轴画在格子中,舒展大方贵清晰、 (数) (原点)(单位长度)

  2、在数轴上表示有理数的方法歌诀

  先画数轴要素全,数点描成实心圆;注意方向与距离,负数分数思虑全;点在线上勿飘起,数据标在点上面、

  3、应用归类、提出问题,组织学生完成、

  三、教学反思

  1、数轴是学生所接触的数形结合的第一个实例,因为对数轴概念的理解的不足,也因为教学中对数轴画法的练习设计数量偏少,导致形形色色的画法上的问题、对此一方面要在后续教学中加以弥补,另一方面在修改导学案的时候要对这一环节予以加强、

  2、在数轴上表示分数与小数,尤其是负分数与负小数时,学生出现了较多的错误,方向性的错误有,距离上的错误更多、对此要反复加以强调与来练习、

  1、2、3相反数

  一、教学目标

  知识与技能:借助数轴理解相反数的概念,知道互为相反数的两个数在数轴上的位置关系,给出一个数,能说出和写出它的相反数、

  过程与方法:经历操作、对比,发现、提出、解决问题的过程,从形和数两个不同的侧面来理解相反数的意义,领会数形结合的思想,培养分析问题与解决问题的能力、

  情感、态度与价值观:让学生充分参与问题的解决过程,体验参与的快乐与成就感、

  重点难点重点:相反数的概念、难点:相反数的识别与理解、

  二、精讲预设

  1、如何理解“两点关于原点对称”?位置关系,数量关系、

  2、如何理解互为相反数的概念? “只有符号不同”,什么必须相同?

  3、怎样表示一个数的相反数?在一个数的前面添上“—”时,要注意哪些问题?

  ①如果数不带符号,直接在数的前面添加“—”号;

  ②如果数本身带有符号,首先要用括号将这个数括起来,再在括号前前面;

  ③如果数是几个数的和或差的形式,参照第②条处理;

  4、的相反数怎样表示?的相反数怎样表示?的相反数呢?你能提出更复杂的问题并自己解决吗?这里面的规律是什么?

  三、教学反思

  1、相反数是相对简单的概念,对于这个简单的知识,通过从形到数的认识过程,可以培养学生的数学认识能力,对此如果重视不够,将是一个损失、

  2、相反数的表示方法其实是一个有一定难度的问题,解决的最好方法不是直接教给学生要注意什么,而是与学生一起探讨解决的方法、让学生参与解决问题的过程,也许是解决问题的最有效的方法、

  1、2、4绝对值

  一、教学目标

  知识与技能:理解绝对值的意义,会求一个数的绝对值;会比较两个有理数的大小、

  过程与方法:通过对正数、负数、0的绝对值的学习,体验分类讨论的数学思想、通关对有理数大小比较的学习,体验数形结合的数学思想、

  情感、态度与价值观:在充分的参与中体验数学的美与价值、

  重点难点

  重点:绝对值的意义;有理数的大小的比较、

  难点:绝对值的意义与两个负数的大小比较、

  二、精讲预设

  1、串讲相反数和绝对值问题提纲:

  ①相反数的几何意义是什么?(借助数轴解释相反数)

  ②在数轴上表示互为相反数的两个点的异同点分别是什么?

  ③什么叫做数的绝对值?数的绝对值是什么?

  ④依据绝对值的定义,怎样求一个数的绝对值?

  ⑤求绝对值的方法体现了什么数学思想方法?(分类讨论)

  ⑥求一个数的绝对值时要注意哪些问题?

  2、有理数大小比较的方法讲解提纲:

  ⑴试用分类讨论的方法分解有理数大小的比较问题:

  ①比较两个正数的大小;

  ②比较正数和0的大小;

  ③比较0和负数的大小;

  ④比较正数和负数的大小;

  ⑤比较两个负数的大小、

  ⑵上述问题中,真正需要解决的问题是什么?怎么解决?解决的程序是什么

  ⑶解决一般的有理数大小问题的思维与表达程序是什么?(先分类,后表述)一看能不能直接比较大小?二看需不需化简后再比较大小?三要注意比较结果的表达要求(答案保持数的原有形式与排列顺序)、

  三、教学反思

  1、诱导学生分析相反数的几何意义的共同特征,从而引出绝对值的概念,借助于知识之间的联系,使新知识在“出场”的时候,就与学生建立起“亲密”的联系、这一点是本节教学的亮点之一、

高一数学教案10

  学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助!

  教学目标

  1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

  (1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.

  (2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.

  (3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.

  2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.

  3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯.

  教学建议

  (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等.

  (2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.

  (3)由数列的通项公式写出数列的.前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.

  (4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.

  (5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.

  (6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.

  上述提供的高一数学教案:数列希望能够符合大家的实际需要!

高一数学教案11

  案例背景:

  对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

  案例叙述:

  (一).创设情境

  (师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

  反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

  (提问):什么是指数函数?指数函数存在反函数吗?

  (学生): 是指数函数,它是存在反函数的.

  (师):求反函数的步骤

  (由一个学生口答求反函数的过程):

  由 得 .又 的值域为 ,

  所求反函数为 .

  (师):那么我们今天就是研究指数函数的反函数-----对数函数.

  (二)新课

  1.(板书) 定义:函数 的反函数 叫做对数函数.

  (师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

  (教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)

  (学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .

  (在此基础上,我们将一起来研究对数函数的图像与性质.)

  2.研究对数函数的图像与性质

  (提问)用什么方法来画函数图像?

  (学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.

  (学生2)用列表描点法也是可以的。

  请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.

  (师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

  具体操作时,要求学生做到:

  (1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

  (2) 画出直线 .

  (3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

  学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

  和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

  教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:

  然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

  3. 性质

  (1) 定义域:

  (2) 值域:

  由以上两条可说明图像位于 轴的右侧.

  (3)图像恒过(1,0)

  (4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

  (5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

  当 时,在 上是减函数,即图像是下降的.

  之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

  当 时,有 ;当 时,有 .

  学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

  最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

  对图像和性质有了一定的了解后,一起来看看它们的应用.

  (三).简单应用

  1. 研究相关函数的性质

  例1. 求下列函数的定义域:

  (1) (2) (3)

  先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

  2. 利用单调性比较大小

  例2. 比较下列各组数的大小

  (1) 与 ; (2) 与 ;

  (3) 与 ; (4) 与 .

  让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

 三.拓展练习

  练习:若 ,求 的取值范围.

四.小结及作业

  案例反思:

  本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

  在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

高一数学教案12

  学习目标

  1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;

  2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.

  旧知提示 (预习教材P89~ P91,找出疑惑之处)

  复习1:什么叫零点?零点的等价性?零点存在性定理?

  对于函数 ,我们把使 的实数x叫做函数 的零点.

  方程 有实数根 函数 的图象与x轴 函数 .

  如果函数 在区间 上的图象是连续不断的一条曲线,并且有 ,那么,函数 在区间 内有零点.

  复习2:一元二次方程求根公式? 三次方程? 四次方程?

  合作探究

  探究:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好.

  解法:第一次,两端各放 个球,低的那一端一定有重球;

  第二次,两端各放 个球,低的那一端一定有重球;

  第三次,两端各放 个球,如果平衡,剩下的就是重球,否则,低的就是重球.

  思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求 的零点所在区间?如何找出这个零点?

  新知:二分法的思想及步骤

  对于在区间 上连续不断且 0的函数 ,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).

  反思: 给定精度,用二分法求函数 的零点近似值的步骤如何呢?

  ①确定区间 ,验证 ,给定精度

  ②求区间 的中点 ;[]

  ③计算 : 若 ,则 就是函数的零点; 若 ,则令 (此时零点 ); 若 ,则令 (此时零点 );

  ④判断是否达到精度即若 ,则得到零点零点值a(或b);否则重复步骤②~④.

  典型例题

  例1 借助计算器或计算机,利用二分法求方程 的近似解.

  练1. 求方程 的解的个数及其大致所在区间.

  练2.求函数 的一个正数零点(精确到 )

  零点所在区间 中点函数值符号 区间长度

  练3. 用二分法求 的近似值.

  课堂小结

  ① 二分法的概念;②二分法步骤;③二分法思想.

  知识拓展

  高次多项式方程公式解的探索史料

  在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点近似解的方法,这是一个在计算数学中十分重要的课题.

  学习评价

  1. 若函数 在区间 上为减函数,则 在 上( ).

  A. 至少有一个零点 B. 只有一个零点

  C. 没有零点 D. 至多有一个零点

  2. 下列函数图象与 轴均有交点,其中不能用二分法求函数零点近似值的是().

  3. 函数 的零点所在区间为( ).

  A. B. C. D.

  4. 用二分法求方程 在区间[2,3]内的实根,由计算器可算得 , , ,那么下一个有根区间为 .

  课后作业

  1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为()

  A.-1 B.0 C.3 D.不确定

  2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,则f(x)=0在[a,b]内()

  A.至少有一实数根 B.至多有一实数根

  C.没有实数根 D.有惟一实数根

  3.设函数f(x)=13x-lnx(x0)则y=f(x)()

  A.在区间1e,1,(1,e)内均有零点 B.在区间1e,1, (1,e)内均无零点

  C.在区间1e,1内有零点;在区间(1,e)内无零点[]

  D.在区间1e,1内无零点,在区间(1,e)内有零点

  4.函数f(x)=ex+x-2的零点所在的一个区间是()

  A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)

  5.若方程x2-3x+mx+m=0的两根均在(0,+)内,则m的取值范围是()

  A.m1 B.01 D.0

  6.函数f(x)=(x-1)ln(x-2)x-3的零点有()

  A.0个 B.1个 C.2个 D.3个

  7.函数y=3x-1x2的一个零点是()

  A.-1 B.1 C.(-1,0) D.(1,0)

  8.函数f(x)=ax2+bx+c,若f(1)0,f(2)0,则f(x)在(1,2)上零点的个数为( )

  A.至多有一个 B.有一个或两个 C.有且仅有一个 D.一个也没有

  9.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为()

  x -1 0 1 2 3

  ex 0.37 1 2.72 7.39 20.09

  A.(-1,0) B.(0,1) C.(1,2) D.(2,3)

  10.求函数y=x3-2x2-x+2的零点,并画出它的简图.

  【总结】

  20xx年数学网为小编在此为您收集了此文章高一数学教案:用二分法求方程的近似解,今后还会发布更多更好的文章希望对大家有所帮助,祝您在数学网学习愉快!

高一数学教案13

  [教学重、难点]

  认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。

  [教学准备]

  学生、老师剪下附页2中的图2。

  [教学过程]

  一、画一画,说一说

  1、学生各自借助三角板或直尺分别画一个锐角、直角、钝角。

  2、教师巡查练习情况。

  3、学生展示练习,说一说为什么是锐角、直角、钝角?

  二、分一分

  1、小组活动;把附页2中的图2中的三角形进行分类,动手前先观察这些三角形的特点,然后小组讨论怎样分?

  2、汇报:分类的标准和方法。可以按角来分,可以按边来分。

  二、按角分类:

  1、观察第一类三角形有什么共同的特点,从而归纳出三个角都是锐角的'三角形是锐角三角形。

  2、观察第二类三角形有什么共同的特点,从而归纳出有一个角是直角的三角形是直角三角形

  3、观察第三类三角形有什么共同的特点,从而归纳出有一个角是钝角的三角形是钝角三角形。

  三、按边分类:

  1、观察这类三角形的边有什么共同的特点,引导学生发现每个三角形中都有两条边相等,这样的三角形叫等腰三角形,并介绍各部分的名称。

  2、引导学生发现有的三角形三条边都相等,这样的三角形是等边三角形。讨论等边三角形是等腰三角形吗?

  四、填一填:

  24、25页让学生辨认各种三角形。

  五、练一练:

  第1题:通过“猜三角形游戏”让学生体会到看到一个锐角,不能决定是一个锐角三角形,必须三个角都是锐角才是锐角三角形。

  第2题:在点子图上画三角形第3题:剪一剪。

  六、完成26页实践活动。

高一数学教案14

  【学习目标】

  1、感受数学探索的成功感,提高学习数学的兴趣;

  2、经历诱导公式的探索过程,感悟由未知到已知、复杂到简单的数学转化思想。

  3、能借助单位圆的对称性理解记忆诱导公式,能用诱导公式进行简单应用。

  【学习重点】三角函数的诱导公式的理解与应用

  【学习难点】诱导公式的推导及灵活运用

  【知识链接】(1)单位圆中任意角α的正弦、余弦的定义

  (2)对称性:已知点P(x,),那么,点P关于x轴、轴、原点对称的点坐标

  【学习过程】

  一、预习自学

  阅读书第19页——20页内容,通过对-α、π-α、π+α、2π-α、α的终边与单位圆的交点的对称性规律的探究,结合单位圆中任意角的正弦、余弦的定义,从中自我发现归纳出三角函数的诱导公式,并写出下列关系:

  (1)- 407[导学案]4.4单位圆的对称性与诱导公式与 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  (2)角407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  (3)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  (4)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  二、合作探究

  探究1、求下列函数值,思考你用到了哪些三角函数诱导公式?试总结一下求任意角的三角函数值的过程与方法。

  (1) 407[导学案]4.4单位圆的对称性与诱导公式 (2) 407[导学案]4.4单位圆的对称性与诱导公式 (3)sin(-1650°);

  探究2: 化简: 407[导学案]4.4单位圆的对称性与诱导公式 407[导学案]4.4单位圆的对称性与诱导公式(先逐个化简)

  探究3、利用单位圆求满足 407[导学案]4.4单位圆的对称性与诱导公式 的角的集合。

  三、学习小结

  (1)你能说说化任意角的正(余)弦函数为锐角正(余)弦函数的一般思路吗?

  (2)本节学习涉及到什么数学思想方法?

  (3)我的疑惑有

  【达标检测】

  1、在单位圆中,角α的终边与单位圆交于点P(- 407[导学案]4.4单位圆的对称性与诱导公式 , 407[导学案]4.4单位圆的对称性与诱导公式 ),

  则sin(-α)= ;cs(α±π)= ;cs(π-α)=

  2.求下列函数值:

  (1)sin( 407[导学案]4.4单位圆的对称性与诱导公式 )= ; (2) cs210&rd;=

  3、若csα=-1/2,则α的集合S=

高一数学教案15

  教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.

  教学目的:

  (1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解构成函数的要素;

  (3)会求一些简单函数的定义域和值域;

  (4)能够正确使用“区间”的符号表示某些函数的定义域;

  教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;

  教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

  教学过程:

  一、引入课题

  1.复习初中所学函数的概念,强调函数的模型化思想;

  2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

  (1)炮弹的射高与时间的变化关系问题;

  (2)南极臭氧空洞面积与时间的变化关系问题;

  (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

  备用实例:

  我国xxxx年4月份非典疫情统计:

  日期222324252627282930

  新增确诊病例数1061058910311312698152101

  3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

  4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

  二、新课教学

  (一)函数的有关概念

  1.函数的概念:

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

  记作:y=f(x),x∈A.

  其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

  注意:

  ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  2.构成函数的三要素:

  定义域、对应关系和值域

  3.区间的概念

  (1)区间的分类:开区间、闭区间、半开半闭区间;

  (2)无穷区间;

  (3)区间的数轴表示.

  4.一次函数、二次函数、反比例函数的定义域和值域讨论

  (由学生完成,师生共同分析讲评)

  (二)典型例题

  1.求函数定义域

  课本P20例1

  解:(略)

  说明:

  ○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;

  ○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;

  ○3函数的定义域、值域要写成集合或区间的形式.

  巩固练习:课本P22第1题

  2.判断两个函数是否为同一函数

  课本P21例2

  解:(略)

  说明:

  ○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

  ○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

  巩固练习:

  ○1课本P22第2题

  ○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?

  (1)f(x)=(x-1)0;g(x)=1

  (2)f(x)=x;g(x)=

  (3)f(x)=x2;f(x)=(x+1)2

  (4)f(x)=|x|;g(x)=

  (三)课堂练习

  求下列函数的定义域

  (1)

  (2)

  (3)

  (4)

  (5)

  (6)

  三、归纳小结,强化思想

  从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。

  四、作业布置

  课本P28习题1.2(A组)第1—7题(B组)第1题

【高一数学教案】相关文章:

高一数学教案12-21

高一数学教案06-20

高一数学教案07-20

高一必修五数学教案04-10

高一必修四数学教案04-13

人教版高一数学教案07-30

上海高一数学教案07-30

关于高一数学教案09-30

人教版高一数学教案12-23

高一数学教案设计04-10