- 相关推荐
初中数学圆教案
作为一名辛苦耕耘的教育工作者,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么你有了解过教案吗?以下是小编为大家整理的初中数学圆教案,仅供参考,大家一起来看看吧。
初中数学圆教案1
一、课题
27.3 过三点的圆
二、教学目标
1.经历过一点、两点和不在同一直线上的三点作圆的过程.
2.. 知道过不在同一条直线上的三个点画圆的方法
3.了解三角形的外接圆和外心.
三、教学重点和难点
重点:经历过一点、两点和不在同一直线上的三点作圆的过程.
难点:知道过不在同一条直线上的三个点画圆的方法.
四、教学手段
现代课堂教学手段
五、教学方法
学生自己探索
六、教学过程设计
(一)、新授
1.过已知一个点A画圆,并考虑这样的圆有多少个?
2.过已知两个点A、B画圆,并考虑这样的圆有多少个?
3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?
让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.
得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.
不在同一直线上的三个点确定一个圆.
给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.
例:画已知三角形的外接圆.
让学生探索课本第15页习题1.
一起探究
八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?
分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.
(二)、小结
七、练习设计
P15习题2、3
八、教学后记
后备练习:
1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 .
2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()
A.在AC,BC两边高线的交点处
B.在AC,BC两边中线的交点处
C.在AC,BC两边垂直平分线的交点处
D.在A,B两内角平分线的交点处
初中数学圆教案2
教学目标:
1.使学生理解直线和圆的相交、相切、相离的概念。
2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。
3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。
重点难点:
1.重点:直线与圆的三种位置关系的概念。
2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。
教学过程:
一.复习引入
1.提问:复习点和圆的三种位置关系。
(目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)
2.由日出升起过程当中的三个特殊位置引入直线与圆的位置关系问题。
(目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力)
二.定义、性质和判定
1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。
(1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。
(2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。
(3)直线和圆没有公共点时,叫做直线和圆相离。
2.直线和圆三种位置关系的性质和判定:
如果⊙O半径为r,圆心O到直线l的距离为d,那么:
(1)线l与⊙O相交 d<r
(2)直线l与⊙O相切d=r
(3)直线l与⊙O相离d>r
三.例题分析:
例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。
①当r= 时,圆与AB相切。
②当r=2cm时,圆与AB有怎样的位置关系,为什么?
③当r=3cm时,圆与AB又是怎样的位置关系,为什么?
④思考:当r满足什么条件时圆与斜边AB有一个交点?
四.小结(学生完成)
五、随堂练习:
(1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的重要方法。
(2)已知⊙O的直径为13cm,直线L与圆心O的距离为d。
①当d=5cm时,直线L与圆的位置关系是;
②当d=13cm时,直线L与圆的位置关系是;
③当d=6。5cm时,直线L与圆的位置关系是;
(目的:直线和圆的位置关系的判定的应用)
(3)⊙O的半径r=3cm,点O到直线L的距离为d,若直线L 与⊙O至少有一个公共点,则d应满足的条件是()
(A)d=3 (B)d≤3 (C)d<3 d="">3
(目的:直线和圆的位置关系的性质的应用)
(4)⊙O半径=3cm。点P在直线L上,若OP=5 cm,则直线L与⊙O的位置关系是()
(A)相离(B)相切(C)相交(D)相切或相交
(目的:点和圆,直线和圆的位置关系的结合,提高学生的综合、开放性思维)
想一想:
在平面直角坐标系中有一点A(-3,-4),以点A为圆心,r长为半径时,
思考:随着r的变化,⊙A与坐标轴交点的变化情况。(有五种情况)
六、作业:P100—2、3
初中数学圆教案3
公开课教案
授课时间: 20xx.11.17早上第二节 授课班级:初三、1班 授课教师:
教学内容: 7.7 直线和圆的位置关系
教学目标:
知识与技能目标:1、理解直线和圆相交、相切、相离的概念。
2. 初步掌握直线和圆的位置关系的性质和判定及其灵活的应用。
过程与方法目标:1.通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思
想,培养学生观察、分析、概括、知识迁移的能力;
2. 通过例题教学,培养学生灵活运用知识的解决能力。
情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。
[1][2][3][4][5][6][7][8][9][10] ... 下一页 >>
初中数学圆教案4
教学目标
1.初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如的方程;
2.初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;
3.掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;
4.会用因式分解法解某些一元二次方程。
5.通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。
教学重点和难点
重点:一元二次方程的四种解法。
难点:选择恰当的方法解一元二次方程。
教学建议:
一、教材分析:
1.知识结构:一元二次方程的解法
2.重点、难点分析
(1)熟练掌握开平方法解一元二次方程
用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。
如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程,和方程就可以直接开平方法求解,在开平方时注意取正、负两个平方根。
配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的.平方这两个关键步骤。
(2)熟记求根公式和公式中字母的意义在使用求根公式时要注意以下三点:
1)把方程化为一般形式,并做到、之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。
2)把一元二次方程的各项系数、、代入公式时,注意它们的符号。
3)当时,才能求出方程的两根。
(3)抓住方程特点,选用因式分解法解一元二次方程
如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。
我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。
二、教法建议
1.教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.
2.注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.
初中数学圆教案5
教学内容
24。2圆的切线(1)
教学目标 使学生掌握切线的识别方法,并能初步运用它解决有关问题
通过切线识别方法的学习,培养学生观察、分析、归纳问题的能力
教学重点 切线的识别方法
教学难点 方法的理解及实际运用
教具准备 投影仪,胶片
教学过程 教师活动 学生活动
(一)复习 情境导入
1、复习、回顾直线与圆的三 种位置关系。
2、请学生判断直线和圆的位置关系。
学生判断的过程,提问:你是怎样判断出图中的直线和圆相切的?根据学生的回答,继续提出 问题:如何界定直线与圆是否只有一个公共点?教师指出,根据切线的定义可以识别一条直线是不是圆的切线,但有时使用定义识别很不方便,为此我们还要学习识别切 线的其它方法。(板书课题) 抢答
学生总结判别方法
(二)
实践与探索1:圆的切线的判断方法 1、由上面 的复习,我们可以把上节课所学的切线的定义作为识别切线的方法1——定义法:与圆只有一个公共点的直线是圆的切线。
2、当然,我们还可以由上节课所学的用圆心到直线的距离 与半径 之间的关系来判断直线与圆是否相切,即:当 时,直线与圆的位置关系是相切。以此作为识别切线的方法2——数量关系法:圆心到直线的距离等于半径的直线是圆的切线 。
3、实验:作⊙O的半径OA,过A作l⊥OA可以发现:
(1)直线 经过半径 的外端点 ;
(2)直线 垂直于半径 。这样我们就得到了从位 置上来判断直线是圆的切线的方法3——位置关系法:经过半径的外端且垂直于这条半径的直线是圆的切线。 理解并识记圆的切线的几种方法,并比较应用。
通过实验探究圆的切线的位置判别方法,深入理解它的两个要义。
三、课堂练习
思考:现在,任意给定一个圆,你能不能作出圆的切线?应该如何作?
请学生回顾作图过程,切线 是如何作出来的?它满足哪些条件? 引导学生总结出:①经过半径外端;②垂直于这条半径。
请学生继续思考:这两个条件缺少一个行不行? (学生画出反例图)
(图1) (图2) 图(3)
图(1)中直线 经过半径外端,但不与半径垂直; 图(2)中直线 与半径垂直,但不经过半径外端。 从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线。
最后引导学生分析,方法3实际上是从前一节所讲的“圆 心到直线的距离等于半径时直线和圆相切”这个结论直接得出来的,只是为了便于应用把它改写成“经过半径的外端且垂直于这条半径的直线是圆的切线”这种形式。 试验体会圆的位置判别方法。
理解位置判别方法的两个要素。
(四)应用与拓展 例1、如图,已知直线AB经过⊙O上的点A,并且AB=OA,OBA=45,直线AB是⊙O的切线吗?为什么?
例2、如图,线段AB经过圆心O,交⊙O于点A、C,BAD=B=30,边BD交圆于点D。BD是⊙ O的切线吗?为什么?
分析:欲证BD是⊙O的切线,由于BD过圆上点D,若连结OD,则BD过半径OD的外端,因此只需证明BD⊥OD,因OA=OD,BAD=B,易证BD⊥OD。
教师板演,给出解答过程及格式。
课堂练习:课本练习1-4 先选择方法,弄清位置判别方法与数量判别方法的本质区别。
注意圆的切线的特征与识别的区别。
(四)小结与作业 识 别一条直线是圆的切线,有 三种方法:
(1)根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;
(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线;
(3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的 切线,
说明一条直线是圆的切线,常常需要作辅助线,如果 已知直线过圆上某 一点,则作出过 这一点的半径,证明直线垂直于半径即可(如例2)。
各抒己见,谈收获。
(五)板书设计
识别一条直线是圆的切线,有三种方法: 例:
(1 )根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;
(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆 的切线;
(3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的 切线,
说明一条直线是圆的切线,常常需要作辅助线,如果已知直线过圆上某一点,则作出过 这一点的半径,证明 直线垂直于半径
(六)教学后记
教学内容 24。2圆的切线(2) 课型 新授课 课时 执教
教学目标 通过探究,使学生发现、掌握切线长定理,并初步长定理,并初步学会应用切线长定理解决问题,同时通过从三角形纸片中剪出最大圆的实验的过程中发现三角形内切圆的画法,能用内心的性质解决问题。
教学重点 切线长定理及其应用,三角形的内切圆的画法和内心的性质。
教学难点 三角形的内心及其半径的确定。
教具准备 投影仪,胶片
教学过程 教师 活动 学生活动
(一)复习导入:
请同学们回顾一下,如何判断一条直线是圆的切线?圆的切线具有什么性质?(经过半径外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径。)
你能说明以下这个问题?
如右图所示,PA是 的平分线,AB是⊙O的切线,切点E,那么AC是⊙O的切线吗?为什么?
回顾旧知,看谁说的全。
利用旧知,分析解决该问题。
(二)
实践与探索 问题1、从圆外一点可以作圆的几条切线?请同学们画一画。
2、请问:这一点 与切点的 两条线段的长度相等吗?为什么?
3、切线长的定义是什么?
通过以 上几个问题的解决,使同学们得出以下的结论:
从圆外一点可以引圆的两条切线,切线长相等。这一点与圆心的连线
平分两条切线的夹角。 在解决以上问题时,鼓励同学们用不同的观点、不同的知识来解决问题,它既可以用书上阐述的对称的观点解决,也可以用以前学习的其他知识来解决问题。
(三)拓展与应用 例:右图,PA、PB是,切点分别是A、B,直线EF也是⊙O的切线,切点为P,交PA、PB为E、F点,已知 , ,(1)求 的周长;(2)求 的度数。
解:(1)连结PA、PB、EF是⊙O的切线
所以 , ,
所以 的周长 (2)因为PA、PB、EF是⊙O的切线
所以 , ,,
所以
所以
画图分析探究,教学中应注重基本图形的教学,引导学生发现基本图形,应用基本图形解决问题。
(四)小结与作业 谈一下本节课的 收获 ? 各抒己见,看谁 说得最好
(五)板书设计
切线(2)
切线长相等 例:
切线长性质
点与圆心连 线平分两切线夹角
(六)教学后记
【初中数学圆教案】相关文章:
初中数学圆说课稿04-13
数学圆复习的教案10-16
小学数学《圆的面积》教案06-03
小班数学圆教案11-20
圆的周长数学教案07-11
《圆的认识》的数学教案10-26
《圆的认识》数学教案10-09
数学教案:圆的认识10-11
圆与方程数学教案08-27