【荐】六年级数学教案
作为一名专为他人授业解惑的人民教师,时常会需要准备好教案,借助教案可以让教学工作更科学化。优秀的教案都具备一些什么特点呢?下面是小编整理的六年级数学教案,欢迎阅读,希望大家能够喜欢。
六年级数学教案1
教学内容:
教学目标:
1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。
2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。
3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。
教学重点:理解圆周率,能计算圆的周长。
教学难点:探索并理解圆的周长与直径的商为定值。
教学准备:大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的正方形。
教学策略:自主探索、讨论交流、点拨与练习
教学程序:
一、激活目标
出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的周长?
二、活动建构
1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)
2、介绍圆周率的由来。
任意一个圆的周长与它的直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。
组织学生阅读资料,谈感受。
3、推导出:c=πd或c=2πr
4、计算花坛的周长,解决相关问题。
圆形花坛的直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?
三、解释应用
一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?
四、反馈测评
1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?
15厘米
A
B
2、小蚂蚁从A点沿着这条曲线爬到B点,大约要爬多远的距离?
3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?
五、课堂小结
我的最大收获是什么?我有什么遗憾?我有什么疑问?
希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。
六年级数学教案2
学材分析
已经学了比、除法、分数之间的关系,再来学会化简比的方法。
学情分析
根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简比。重点理解比的基本性质。难点正确应用比的基本性质化简比。
学习目标
1、理解比的基本性质。2、正确应用比的基本性质化简比。3、培养学生的抽象概括能力,渗透转化的数学思想。
导学策略
引导学生发现比的基本性质。
教学准备
习题准备
老师活动:
一、复习引入
(一)复习商不变的性质
1.谁能直接说出6025的商?
2.你是怎么想的?
3.根据是什么?
(二)复习分数的基本性质
根据是什么?内容是什么?
(三)求比值
二、讲授新课
我们以前学过商不变的性质和分数的基本性质,联想这两个性质,想一想:在比中又有什么样的规律?
(一)比的基本性质
1、出示8∶4和2∶1这两个比。
2.教师提问
这两个比有什么共同点吗?
这两个比有什么不同点吗?你是怎么想的?
(1)教师板书:比的前项和后项同时
乘以或者同时除以相同的数(0除外),比值不变.
板书课题:比的基本性质
(2)教师强调:同时相同0除外几个关键词
(二)化简比
1.练习引入
学校有8个篮球,12个排球,篮球和排球个数的比是多少?
(1)篮球和排球的个数比是8∶12
(2)篮球和排球的个数比是2∶3
讨论:篮球和排球的个数比是写成8∶12好,还是写成2∶3好?
2.最简单的整数比
最简单的整数比就是比的前项和后项是互质数,如2∶3就是最简单的整数比.
3.化简比
例1.把下面各比化成最简单的整数比.(1)14∶21=(147)∶(217)=2∶3讨论:化简整数比的方法是什么?
(2)∶=(18)∶(18)=3∶4
(3)1.25∶2=(1.25100)∶(2100)=125∶200=5∶8
1.25∶2=(1.254)∶(24)=5∶8(更好)
讨论:怎样把小数比化成最简单的整数比?
4.小结化简比的方法
(1)都化成整数比
(2)利用比的基本性质把比的前、后项同时除以它们的最大公约数,直到前、后项互质为止.
(三)区别化简比和求比值
1.练习
化简比:化成最简单的整数比
比值:求出商。
25∶100
4.2∶1.4
例如:25∶100化简比的结果是,读作1比4,求比值的结果是,读作四分之
三、巩固练习
(一)化简比
(二)选择
(三)思考题
六一班男生人数是女生的1.2倍,男、女生人数的比是(),男生和全班人数的比是(),女生和全班人数的比是().四、课堂小结通过今天的学习,你学到了哪些新知识?什么是比的基本性质?怎样化简比?
四、课堂作业:《伴你成长》
学生活动;
口答。
约分:
通分:
3∶28∶47∶2127∶95∶2516∶424∶52∶1
(比值都相等)
(前项和后项都不同)
我们可以说8∶4和2∶1相等吗?
(1)根据比与除法的关系(商不变的性质)
8∶4=84=(84)(44)=21=2∶1
(2)根据比与分数的关系(分数基本性质)
8∶4=2∶1
3.学生尝试概括比的基本性质(演示比的基本性质)
讨论:分数比怎么化简?为什么要乘上18?乘上9可以吗?
2.讨论:化简比和求比值的区别是什么?
区别:化简比的结果还是一个比,是一个最简单的整数比;求比值的结果是一个数.
6∶10∶0.3∶0.4
12∶21∶20.25∶1
1.1千米∶20千米=()
(1)1∶20(2)1000∶20(3)5∶1
2.做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是()
(1)20∶21(2)21∶20(3)7∶10
教学反思:化简比中小数与小数的比学生掌握的不够。
六年级数学教案3
教学目标
1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。
2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。
3、通过本节课的学习,知道与鸡兔同笼有关的数学史,对学生进行数学文化的熏陶和感染。
教学过程
一、故事引入
教师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。
出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)
二、探究新知
1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?
让学生以两人为一组讨论。
汇报讨论的结果。
(1)、列表:
鸡876543
兔012345
脚161820222426
(2)、假设法:
假设笼子里都是鸡,那么就是82=16(只)脚,这样就比题目多26-16=10(只)脚。
因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有102=5(只)兔子。
因此,鸡就有:8-5=3(只)
(3)、用方程解:
解:设鸡有x只,那么兔就有(8-x)只。
根据鸡兔共有26只脚来列方程式
2x+(8-x)4=26
2x+84-4x=26
32-26=4x-2x
2x=6
x=3
8-3=5(只)
2、小结解题方法:
教师:以上三种解法,哪一种更方便?
小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。用方程解更直接。
3、独立解决书中的趣题。
(1)、方程解:
解:设鸡有x只,那么兔就有(35-x)只。
根据鸡兔共有94只脚来列方程式
2x+(35-x)4=94
2x+354-4x=94
140-94=4x-2x
2x=46
x=23
35-23=12(只)
答:鸡有23只,兔有12只。
(2)、算术解:
假设都是鸡。
235=70(只)
94-70=24(只)
24(4-2)=12(只)
35-12=23(只)
答:鸡有23只,兔有12只。
三、巩固与运用
1、完成教科书第115页做一做的第1题。
学生独立读题分析后,列式解答。鼓励用方程解。
2、完成教科书第115页做一做的第2题。
提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)
请同学独立列式解答。(讲评时重点解释算术解的每步的算理)
68=48(人)
假设8条都是大船可坐48人。
48-38=10(人)
假设人数比实际的人数多10人。
多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。
10(6-4)=5(条)
8-5=3(条)
这是表示有3条大船。
四、作业
练习二十六第一、二题。
六年级数学教案4
第一单元:认识负数
教学内容:
1、认识负数:教材第1—6页例1—例4以及练习一
2、实践活动:面积是多少第10—11页
教学目标:
1、让学生在熟悉的生活情境中初步认识负数,知道负数和正数的读、写方法,知道0既不是正数也不是负数,正数都大于0,负数都小于0。
2、让学生初步学会用负数表示日常生活中的简单问题,体会数学与日常生活中的简单联系。
3、通过学生的实践操作,让学生初步体会化难为易、化繁为简的解决问题的策略,为后面学习多边形面积的计算做些准备。
教学重点:正数、负数的意义
教学难点:理解0既不是正数也不是负数
课时安排:3课时
(1)认识负数的意义
教学内容:p.1、2,完成第3页的练一练和练习一的第1~5题
教学目标:
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。
3、体验数学与日常生活密切相关,激发学生对数学的兴趣。
教学重点:在现实情境中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
教学准备:温度计挂图等
教学过程:
一、谈话导入:
通过复习,你知道这节课要学什么么?(板书:负数)
说我们以前认识过哪些数?(自然数、小数、分数)
分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)
二、学习例1:
1、你知道今天的最高温度么?你能在温度计上找到这个温度么?
介绍温度计:(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。(2)以0为界,0上面的温度表示零上,0下面的温度表示零下。(3)刻度。要注意一大格、一小格分别表示多少度?
在温度计上找到表示35℃的刻度。
你知道什么时候是0℃吗?(水和冰的混合物)
你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?
分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。
读一读:正35,负5
分别说说在这3个不同的温度你的感受。
2、完成试一试:
写出下面温度计上显示的气温各是多少摄氏度,并读一读。
对零下几度,可能学生会不能正确地看,注意指导。
3、完成第3页第2题的看图写一写,再读一读。
简单介绍有关赤道、北极、南极的知识。
4、完成第6页第4题:
先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。
5、读第7页第5题。,让学生说说体会。
6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。
三、学习例2:
1、出示例2图片,介绍“海平面”“海拔”的基本知识。
让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。
再指一指吐鲁番盆地的海拔。
指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。
用你自己的理解来说说这样记录有什么好处?
2、完成第6页第1题:用正数或负数表示下面的海拔高度。
读一读第2题的海拔高度,它们是高于海平面还是低于海平面。
三、认识正负数的意义:
1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。黑板上这些数,哪些是正数?哪些是负数?
你能用自己的话来说说怎样的数是正数?怎样的数是负数?
0呢?为什么?
2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。
3、完成第6页第3题:分别写出5个正数和5个负数。
四、全课小结:(略)
六年级数学教案5
学材分析
已抽象出比的概念,使学生感受到需要刻画两个量之间的数量关系应该用比,体理解比与除法、分数的关系会引入比的必要性以及比在生活中的广泛存在。
学情分析
学生理解比的意义比较困难。应密切联系学生已有的生活经验和学习经验。掌握求比值的方法。解比的意义,建立比的概念。
学习目标
1、理解的意义,掌握比的读法和写法,认识比的各部分名称。
2、掌握求比值的方法,并能正确求出比的比值。
3、培养学生抽象、概括能力。
导学策略
教学准备
教师活动
学生活动
一、谈话引入
在日常生活和和工农业生产中,常常需要对两个数量进行比较.比较的方法我们已经学过两种(比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法),今天我们继续学习新的比较方法,比。
二、讲授新课
(一)教学补充例1
一面红旗,长3分米,宽2分米,长是宽的几倍?宽是长的几分之几?
板书:32==23=
1.32表示什么?长是宽的几倍也可以说成谁和谁在比?是几比几?长和宽的比是3比2表示什么?
2.23表示什么?宽是长的几分之几也可以说成是谁和谁在比?是几比几?宽和长的比是2比3表示什么?
3.小结
4.练习
有5个红球和10个白球,求红球是白球的几分之几,怎么算?也可以怎么说?求白球是红球的几倍,怎么算?也可以怎么说?
(二)教学例2
例2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?
1.求的是什么?谁除以谁?也就是谁和谁进行比较?
2.汽车行驶路程和时间的比是100比2表示什么?
3.思考:单价可以说成是谁和谁的比?
4.小结
通过刚才的例子可以看出,
(三)归纳总结
教师板书:两个数相除又叫做两个数的比.
(四)练习
1.学校里有10棵杨树,7棵柳树,杨树和柳树棵数的比是(),柳树和杨树棵树的比是()
2.小华用2分钟口算了50道题,小华口算的题量和所用时间的比是().
3.学校食堂买20千克青菜,用了10元钱;买了30千克萝卜,用了42元钱;买萝卜和青菜数量的比是(),青菜和萝卜单价的比是().
(五)比的各部分名称和求比值的方法
1.两个数相除又叫做两个数的比,说法变了,书写格式和名称也就变了.
例如:3比2记作:3∶2
2比3记作:2∶3
100比2记作:100∶2
2.∶叫做比号,读作比(比号在两个数中间,注意与语文中的冒号区别),比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.
板书:
3.提问:比的前项和后项能随便交换位置吗?为什么?
4.练习:求比值
教师说明:求比值不写单位名称.
(六)比、除法、分数之间的关系(演示课件比、除法、分数的异同)
1.教师提问
(1)两个数相除又叫做两个数的比,比和除法到底有什么关系?
(2)为什么要用相当于这个词?能不能用是?
(3)在除法中,除数不能是零,那比的后项呢?
2.比的分数形式
(1)教师:比还有一种表示方法,就是分数形式.例如:
板书:3除以2可以写成2∶3,仍读作2比3
(2)思考:比和分数有什么关系?
三、巩固练习
(一)填空
(三)思考题
四、课堂小结
今天这节课你学到了哪些知识?比和除法、分数之间的联系是什么?区别呢?
五、课后作业
六年级数学教案6
教学目标:
1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。
2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。
3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。
4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。
教学重点:
理解百分率的含义,掌握求百分率的方法。
教学难点:
探究百分率的含义。
教学用具:
PPT课件
教学过程:
一、复习导入(8分)
1、出示口算题,限时1分钟,并校正题目。
2、小结学生所提问题,并指名口头列式。
3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。
4、小结:算法相同,但计算结果的表示方法不同。
5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。
6、口算比赛:(1分钟)(见课件)
7、根据口算情况,提出数学问题。
(做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)
8、尝试解答修改后的问题。
9、比较:“求一个数是另一个数的几分之几”与“求一个数是另一个数的百分之几”的问题在解法上有什么相同点和不同点?
10、举一些生活中的百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。(2)学习求百分率的方法,会解决求百分率的问题。
二、设问导读(9分)
1、说明达标率的含义。
2、板书达标率的计算公式,并说明除法为什么写成分数的形式?
3、组织学生以4人小组讨论。
4、巡回指导书写格式。阅读例题,思考下面的问题
(1)什么叫做达标率?
(2)怎样计算达标率?
(3)思考:公式中为什么要“×100%”呢?
(4)尝试计算例1的达标率。
三、质疑探究(5分)
1、在展示台上展示学生写出的百分率计算公式。
2、要求学生认真计算,并对学生进行思想教育。
1、生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?
2、求例1(2)中的发芽率。
四、巩固练习(14分)
1、指名口答,组织集体评议,再次引学生巩固百分率的含义。
2、对每一道题都要让学生分析、理解透彻,并找出错误原因。
3、出示问题,指导学生书写格式,并强调
4、解决问题要注意:看清求什么率?找出对应的量。
5、引学生比较、发现:这些百分率和100%比较,大小怎样?哪些百分率可能超过100%?
6、引学生观察、发现:出勤率+缺勤率=1.
五、加强巩固
1、说说下面百分率各表示什么意思。(1颗星)
(1)学校栽了200棵树苗,成活率是90%。
(2)六(1)班同学的近视率达14%。
(3)海水的出盐率是20%。
2、判断。(2颗星)
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。( )
(2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。( )
(3)把25克盐放入100克水中,盐水的含盐率为25%。
(4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。 5、工厂加工了105个零件,合格率达100%,则这批零件有100个合格。
3、解决问题(3颗星)
(1)我班有27名同学,上学期期末测试中,有24人优秀,那么我们班成绩的优秀率是多少?27名同学全部合格,合格率是多少?
(2)六(1)班今天有48人到校,有2人缺席,求出勤率。
(3)要求,以2人小组互查,每人练习一道题,口头列式。1、王大爷在荒山上植树,一共植了125棵,有115棵成活。这批树的成活率约是多少?
(4)王师傅加工的300个零件中有298个合格,合格率是多少?
课堂总结:
(1分)突出“关键点”。谈谈本节课的收获。
六年级数学教案7
教学目标
1、在实际情境中,体会化简比的必要性,进一步体会比的意义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3.认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。
教学重点:
会运用商不变的性质或分数的基本性质化简比。
教学难点:
能解决一些简单的实际问题。
教具准备:
蜂蜜、水、量筒、水杯和自制课件
教学时间:
预习提纲:
1、课本中哪杯水更甜?为什么?
2、什么是化简比?
3、化简比的根据是什么?怎样化简比?
4、试完成第52页的试一试。
教学过程:
一、情境引入
老师:不少同学已经发现今天讲台上多了两个杯子,这是老师课前分别调制好的两杯蜂蜜水。你现在能判断出哪杯蜂蜜水更甜吗?
你们需要老师提供什么信息?
根据学生回答出示数据信息:
蜂蜜水
(1)号杯:2小杯18小杯
(2)号杯:40毫升360毫升
你获得了什么信息?
联系最近我们所学的知识,你想到了什么?
随学生回答板书:(1)号杯2:18
蜂蜜与水的比(2)号杯40:360
二、探索新知
1、体会化简比的必要性。
再次提出问题:
哪杯蜂蜜水更甜,你现在能判断出来了吗?你又遇到了什么问题?
想想办法,先和同桌交流。
全班交流:你的想法与依据。随学生回答板书。
2:18=2÷18=2/18=1/9
30:270=30÷270=30/270=1/9
比的比值都是九分之一,也就是说,两个杯子中的蜂蜜与水的比其实都是是1:9。(式子后板书:1:9)
2:18=2÷18=2/18=1/9=1:9
30:270=30÷270=30/270=1/9=1:9
说一说,这个同学是怎样判断出来哪杯蜂蜜水更甜的?
小结:看!虽然所用的计量单位不同,但两杯中蜂蜜与水的比实际上都是1:9,比较的结果是一样甜。
2、理解化简比,揭示课题。
观察、比较:原来的比与后来得出的比有什么联系与区别?
根据学生发言,师板书:最简单的整数比
你能列举几个“最简整数比”吗?
通过例子认识到,就像分数约分一样再不能约分了,比的前项、后项只有公因数1,这样的整数比就是最简整数比。
指化简过程,揭示课题:比的化简
你是怎么理解化简比的?(随学生回答在化简比的过程上板书“化简”)
刚才化简比时,用到了以前学的什么知识?
小结:分数根据分数的基本性质可以约分,比也可以根据分数的基本性质或商不变的性质化简。
3、化简比的方法。
(1)独立尝试:同桌两人分别选一道。(找两人板书)。
出示小黑板:
化简比:24:42120:60
交流:说说你的思路。(方法、根据)
(2)小组活动:
化简比:
0.7:0.82/5:1/4
这两组比与前个的最大区别是什么?
小组讨论:如何把这两组比化简?并试一试。
(3)全班展示、交流:让我们一起来分享同学的智慧。
(充分展示学生的不同方法。)
(4)归纳:怎样化简比?
(必要时,小组先讨论一下再在全班交流。)
老师小结:看来,化简比的方法不唯一,不过都有一个共同目标:化简成最简单的整数比;化简比的方法可以统一,就像求比值一样,只不过最后写成比的形式罢了,实际上,化简比与求比值仅一步之遥。
4、看书质疑。
三、巩固提高
1、化简比:
(要求:学习有些吃力的可只化简前三组比,程度一般的学生至少化简四组比,程度好的学生要求全做。)
21:240.3:1.54/5:5/71:4/50.12:60.4:1/4
2、课本第53页第2题。(写出各杯中糖与水的质量比。并判断:这几杯糖水中有一样的吗?)
四、总结
回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?
小结:生活中有很多问题需要通过化简比来解决,因此学习化简比十分重要,也很必要.
五、作业:课本第52页试一试.
板书设计
比的化简
比化简最简单的整数比
1)号杯2:18=2÷18=2/18=1/9
蜂蜜与水的比一样甜2)号杯30:270=30÷270=30/270=1/9
教学反思
1:9
六年级数学教案8
教学内容:
《人教版六年级上册圆的认识》课本第57、58页的内容。
教学目标:
1、认识圆,知道圆的各部分名称,知道同一圆内半径、直径的
特征,初步学会用圆规画圆。
2、使学生掌握圆的基本特征,理解在同一个圆里直径与半径的
相互关系,能根据这种关系求圆的直径或半径。
3、培养学生的观察、分析、抽象、概括等思维能力。
教学重点:
理解和掌握圆的特征,学会用圆规画圆的方法。
教学难点:
理解圆的有关概念,归纳圆的特征。
教具准备:
圆规、直尺、细线、圆形纸片。
学具准备:
圆形纸片、圆规、直尺。
教学过程:
一、激趣导入
为什么车轮都要做成圆的?学生可能答:边缘光滑好滚动,半径一样长等。(有的学生可能已经预习了。)(板书课题:圆的认识)
二、探究新知
1、体验用不同工具画圆
教师提问:可以用什么画圆呢?
学生:圆规、尺子、圆形物品、绳子......
2、教师指出:圆形是由一条封闭曲线围成的平面图形。
认识圆的各部分名称
(1)、学生自学课本58页第一段。
(2)、自学后填一填。
1.用圆规画圆时( )所在的点叫做圆心,一般用字母( )表示。
2.连接( )和( )的线段叫做半径,一般用字母( )表示。
3. 通过( )并且两端都在( )的线段叫做直径,一般用字母( )表示。
3、用圆规画圆
根据圆心到圆上任意一点的距离都相等这一特征,我们可以用圆规画圆。
1)介绍画圆的步骤。
(1)把圆规的两脚分开,定好两脚间的距离。(定半径)
(2)把装有针尖的一只脚定在一点上,这个点就是圆心。(定圆心)
(3)把装有铅笔的一只脚旋转一周。(旋转一周)
教师强调:画圆时,一手捏住圆规顶部旋转,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在针尖的一脚。
2)学生练习画圆
教师提问:为什么同学们画的圆大小不一样呢?什么决定圆的大小?什么决定圆的位置?
教师板书:半径决定圆的大小、圆心决定圆的位置。
4、圆的特征
(1)、①小组讨论:同学们可以动手画一画或者折一折,看看半径和直径分别有多少条?再用尺子量一量或者折一折,看看每条半径长度怎么样?你发现了什么?讨论时教师要巡视指导,了解学生讨论情况。教师出示问题:在同一个圆里可以画多少条半径?(无数条)所有的半径都相等吗?(都相等) 在同一个圆里,可以画多少条直径?(无数条)所有的直径的长度都相等吗?(都相等)
②小组上台展示他们得到的结果和使用的方法。
③教师小结:在同一个圆里,有无数条半径,无数条直径,并且每条半径都相等、每条直径都相等 。
(2)、①讨论:半径与直径的关系
教师提问:在同圆或等圆中,半径和直径有什么关系?
②小组展示他们的结论和方法。
③总结:在同一个圆里,半径的长度是直径的1/2。
在同一个圆里,直径的长度是半径的2倍。用公式表示:r=d/2或d÷2、 d=2r
三、全课小结
1、这节课我们学习了什么?你有什么收获?
2、现在你能解释一下,为什么车轮是圆的吗?
六年级数学教案9
教学目标:
1、让学生了解正确的爱美观。
2、让学生知道小学六年级学生的各种心理特征,以及如何处理好这个阶段的种种问题。
教学重难点:
知道小学六年级学生的各种心理特征,以及如何处理好这个阶段的种种问题。
教学准备:教学挂图
教学时间:一课时
教学过程:
一、导人新课:
1、同学们,爱美之心,人皆有之。知道什么才是美吗?
2、揭题:爱美与健康
二:读课文
1、自读课文
思考:热怎样才是美?
2、齐读课文,回答
(1)学生回答
(2)读重点段
3、说说你是怎样理解的
(1)相互讨论、交流
(2)指名回答
4、思考课后练习,进一步提高真正美的认识。
三、总结课文
四、作业练习
1、什么是真正的美?
2、完成课后作业。
板书设计:
爱美与健康
美:形体美风度美仪表美心灵美
六年级数学教案10
【教学内容】
绿色出行。
【教学目的】
通过计算,设计调查表,分析调查结果联系交通现状,体会利用数学知识解决实际问题。
【重点难点】
进一步应用代数及统计等知识。
【教学准备】
多媒体课件。
【复习讲授】
教师:同学们今天都是怎么来到学校的呀?是坐汽车的多呢还是骑自行车或者步行的多呢?翻开课本105页,我们一起
来学习一下绿色出行。
1.组织学生阅读绿色出行相关材料,相互交流。指名学生汇报对材料的理解,其他同学补充。
2.讲授第1题。
教师:根据题中要求的数据,我们需要用到材料中的哪些已知量?
组织学生独立思考,举手回答。
学生:①xxxx年末汽车数量;②一辆汽车平均每年行驶路程;③xxxx年末私人轿车数量。
教师:很好,那么请同学们用上述数据求出第1题的结果。
汽车:49620000×0.16kg=7939200千克=7939.2吨
7932.2×15000=119088000吨
私人轿车:43220000×0.16kg=6915200千克=6915.2吨,
6915.2×15000=103728000吨
3.讲授第2题。
教师:刚才我们求出了全国的排放量,下面我们帮小明算一下,他们家的排放量。
学生独立思考,交流检查,教师评讲。
板书:小明爸爸从家到单位的距离:
20÷60×45=15千米
一年上下班行驶路程:15×2×245=7350千米
排放的二氧化碳量:7350×0.16=1176千克
4.反思。
教师:根据前面的信息,你能发现什么?
学生:①妈妈的单位和爸爸的单位一样远;
②妈妈坐地铁比爸爸开车快;
③小明的交通方式最环保。
5.组织学生设计调查表,调查本班学生及家长的交通出行方式。
6.讲解第106页阅读材料“你知道吗?”。
组织学生就“绿色出行”展开小组讨论,相互交流。
教师讲解统计材料中的同比和环比。
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
第1课时绿色出行
小明爸爸从家到单位距离:
20÷60×45=15千米
小明爸爸一年上下班行驶路程:
15×2×245=7350千米
排放的二氧化碳量:7350×0.16=1176千克
六年级数学教案11
如何突破分数乘分数这个难点?
分数乘法的计算法则和分数乘法的'意义是分数乘除法的基础,也是整个六年级应用题学习的基础和关键。而在人教版第5页的例3中,它是从分数乘分数的意义着手进行理解和分析,在经过繁杂的把单位1按分数意义平分再平分,还要借助画图让学生发现其实就是把单位1平均分成十份,而这个十份就是把分母相乘而得来的。法则的证明过程对于小学生来说非常的复杂的。纵观教材的编排思路与意图,它是按照成人的思维能力从最正统的思路按部就班着手进行分析与解释,它忽略了这个年龄段的大多数学生的接受能力。
有没有学生比较容易理解而又不难得出分数计算法则的方法?其实在学生学习分数乘法的过程中,特别是分数乘法的计算法则的学习,到了后面的计算对于学生来说记得的只是它的计算法则了,我们大可以撇开分数乘法的意义,换个角度去进行思考。大家都知道学生在五年级时学过分数化小数的知识,不妨在这节里拿出来用用,从小数乘法着手进行推导,学生会很快接受和掌握。
可以这样进行,先讲例3,把例3里的分数改成可以化成有限小数的分数,如
一、列式(要求只列式)
1、一台拖拉机每小时耕地3/5公顷,3小时可耕地多少公顷?
学生列式:3/5*3=?
2、一台拖拉机每小时耕地3/5公顷,3/4小时可耕地多少公顷?
引导学生想数量关系:
每小时耕地的公顷数*小时数=一共可耕地的公顷数
列式:3/5*3/4=
二、探讨怎么算,初步感知
1、让学生尝试计算并自由发言自己的想法
师生齐小结:3/5*3表示有3个3/5相加即
3/5+3/5+3/5=3*3/5=9/5(公顷)
2、而3/5*3/4则可以化成小数进行计算
3/5*3/4=0.6*0.75=0.45即
3/5*3/4==9/20(把小数的结果化成分数)
让学生猜猜,中间的计算过程是可以怎样填写
补充完整:3/5*3/4=3*3/5*4=9/20
三、进行验证:
1、老师出题:1/2*1/5=?5/8*1/4=
学生尝试完成并板书:1/2*1/5=1*1/2*5=1/10
5/8*1/4=5*1/8*4=5/32(这道题稍繁杂)
2、进行总结:你发现分数乘分数的计算方法可以怎样算?
通过对以上式子的观察从而得出结论:分数乘分数用分子相乘的积作分子,用分母相乘的积作分母。
3、教学如何用以上的法则去学习分数乘整数
如例题中的3/5*3,其实也可以用以上法则进行计算
过程如下:3/5*3=3/5*3/1=3*3/5*1=9/5
把整数3化成分数形式3/1就可以用以上法则进行计算了
4、出两道不能化成有限小数的分数乘法
如:3/9*2/7=
让学生用两种方法去做,
第一种方法:是把分数化成小数(保留两位小数)
3/9*2/7=033*0286=009438
第二种方法:是用分数乘法的法则去做
3/9*2/7=3*2/9*7=6/63=00952
四、教学先约分再乘的方法
这样进行教学虽然有其局限性,如分类数的选择就有讲究,必须是能化成有限小数的,二是化成小数然后再化成分数这个过程不是每个小数化分数都很容易。故而这样的分数也不是很随意的能找到,而对于不能化成有限小数的分数乘法就很难用这样的方法去进行有效的验证,当然这里使用的是不完全归纳法,举一知十进行推理,从而得出计算法则。这样做的基础是从学生最近发展区出发,从学生最容易接受的旧知出发正向迁移至新的知识中去。这是可行的。
六年级数学教案12
教学内容:
教材第66~67页运算定律、规律,及其后的练一练,练习十二第68题。
教学要求:
使学生进一步理解和掌握小学数学里学过的运算定律和一些规律,能应用运算定律或规律进行简便运算,培养学生合理、灵活地进行运算的能力。
教学过程:
一、揭示课题
1、口算。
7.2+2.8 42.5 812.5 34
1-0.8 56+44 0.50.2 10-3.7
2、揭示课题。
我们已经复习了整数、小数四则运算的计算法则。今天,我们复习整数、小数四则运算的运算定律。(板书课题)通过复习,要进一步理解和掌握学过的一些运算定律和运算的规律,并能应用这些定律和规律进行简便计算,学会合理、灵活地进行计算的方法。
二、复习运算定律及应用
1、整理运算定律。
(1)出示第66页表格。
提问:我们学过哪些运算定律?(板书填表)谁能用数举例并用字母式子来说明加法交换律?(根据口答板书填表)
(2)对下面这些运算定律,大家都能这样举例和用字母表示吗?指名板演,其他学生填在课本上。集体订正。
(3)提问:谁来根据字母式子,说说每个运算定律是什么意思?乘法的运算定律与加法运算定律有什么类似的地方?乘法结合律和分配律不同在哪些地方?
2、应用运算定律。
(1)提问:运算定律有什么应用?
指出:应用运算定律,可以根据算式里数的特点,使一些运算简便。这样,就可以又对又快地算出这些算式的结果。下面就分析一些题里数的特点,用简便算法进行计算。
(2)做练一练第l题。
指名四人板演,其余学生做在练习本上。集体订正,结合让学生说出简便计算的依据和为什么这样算。
三、复习运算规律
1、出示第66页最下面两题。
要求学生在课本上填写符号。指名口答,老师板书。指名说一说每个等式表示的意思。
2、提问:你知道减法和除法计算时,哪些情况可以应用这些规律使计算简便吗?指出:计算连减或连除时,如果两个减数先加或两个除数先乘,可以用口算计算出算式的得数,就可以顺着用这两个规律使计算简便;反过来看,如果把减去两个数的和转化成连减或者除以两个数的积转化成连除来计算,能直接口算的,可以反过来用这两个规律使计算简便。
3、做练一练第2题。
指名四人板演,其余学生做在练习本上。集体订正:先看数的特点,再说依据什么来计算的。
4、做练一练第3题。
(1)做加、减式题。
指名两人板演,其余学生做在练习本上。集体订正,说说怎样想的。提问:从这里的计算,你发现什么时候可以用这样的简便算法?加、减接近整十、整百数的时候用简便算法可以怎样想?指出:加上或减去接近整十、整百的数时,可以先看做整十、整日的数计算,然后根据应该加上的数,确定再加上或减去几。
(2)做乘法式题。
出示乘法题,让学生思考怎样算简便。指名口答,老师板书,井要求学生说说是怎样想的。
四、综合练习
1、说说下面题里的数有什么特点,怎样算简便。
0.8+4.6+0.2+5.4 12.5 2.50.84
9.6-5.7+0.4 6.31.4+3.71.4
2599 341-103 418+297
159+102 253-98 490352
2、改错。
出示练习十二第7题。让学生改在课本上。指名口答,老师板书改正,让学生说说错在哪里。
五、课堂小结
这堂课复习了什么?通过复习你有哪些收获?指出:我们在式题计算时,要注意先看清题目,分析数据的特点。如果数据符合一些运算定律或规律,能用简便算法时.一般应用简便算法,这样可以算得又对又快。
六、布置作业
课堂作业:练习十二第6题后五行。
家庭作业:练习十二第8题。
六年级数学教案13
【教学内容】
北师大版小学数学六年级(上册)第四单元第51~53页化简比。
【教学目标】
1)在实际情境中,体会化简比的必要性,进一步体会比的意义。
2)会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
【教学重点】
会运用商不变的性质或分数的基本性质化简比。
【教学难点】
能解决一些简单的实际问题。
【教具准备】
蜂蜜、水、量筒、水杯和自制课件
【教学设计】
教学过程
教学过程说明
一. 制蜂蜜水的活动:哪一杯更甜?
同学们分成小组进行实验活动:各小组拿出课前准备好的蜂蜜、水、量筒、水杯等实验物品,动手调制蜂蜜水。
各小组选出代表在全班进行汇报、交流。议一议哪个小组调制蜂蜜水更甜。
[课件出示]课本P51图片,同时配上画外音:
一个男同学说:我调制的一杯蜂蜜水用了40毫升蜂蜜、360毫升水。
一个女同学说:我调制的一杯蜂蜜水用了10毫升蜂蜜、90毫升水。
师:他们俩调制的蜂蜜水哪一杯更甜?请估一估,再试一试。
我们先分别写出它们的比。
40:360
10:90
就这样直接比较他们俩谁调制的蜂蜜水更甜还是有困难,用什么办法来解决呢?请分组讨论一下。
40:360===1:9
10:90===1:9
得出结论:两杯水一样甜。
二.化简比。
分数可以约分,比也可以化简。
0.7:0.8:
师:刚才我们根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简整数与整数的比。现在请同学们先自己尝试一下化简小数与小数的比和分数与分数的比,然后请同学说一说是根据什么来化简的。
0.7:0.8:
=0.70.8=
=78=4
=7:8=
=8:5
完成书上试一试化简下面各比。
15:210.12:0.4:1:
请学生独立完成后,说说化简比的方法,全班集体订正。
三.课堂练习。
[课件出示]课本P52第1题:连一连
在学生中开展比赛,鼓励学生独立完成。
[课件出示]课本P52第2题:写出各杯子中糖与水的质量比。
1)写出四个杯子中糖和水的质量比。
2)这几杯糖水有一样甜的吗?
3)还能写出糖与糖水的质量比吗?
[课件出示]课本P52第3题:
(1)(2)题自己独立完成;
(3)题投球命中率同学讨论完成。
四、总结
师:同学们一起来总结本节课学习的内容:
阅读数学课本P51比的化简。
我们是根据什么来化简比的呢?
是根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简的。
我们在实际生活中什么时候需要化简比?或者说我们用化简比可以解决实际生活中的哪些问题
四、独立完成课本P53第4题和第5题。
五、扩展练习
1、大小圆的半径分别是7厘米和2厘米,试求它们的直径之比,周长之比和面积之比分别是多少?
2、杨树的棵数是柳树棵数的20%,求杨树的棵数和柳树棵数的比是多少?
让学生进行实际操作,动手调制蜂蜜水。通过调制蜂蜜水的活动,让学生在解决哪一杯更甜这个问题的过程中,加深对比的意义的理解,进一步感受比、除法、分数之间的关系。
体会化简比的必要性,学会化简比的方法。根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简整数与整数的比。
这是小数与小数的比和分数与分数的比,还是根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简,目的是让学生在不同题目中巩固化简比的方法。
进一步巩固化简比的方法。
巩固化简比。
这几杯糖水有一样甜的吗?这个问题需要化简比或求出比值后才能确定
投球命中率的高低,其实就是比值大小的比较。因此,教师可以引导学生在完成(1),(2)两题的基础上,在小组内讨论完成(3)题,然后在班级交流每组的情况,从而让学生明白判断投球命中率的高低要看比值的大小。
这个实践活动不仅仅能巩固学生对比的认识,提高学生的测量技能,还可以鼓励学生从中发现身高与影长的关系,了解一些天文知识。学生通过亲自测量实践,可以发现:在同一时刻,不同人的身高与影长的比可以看成是一样的;在不同时刻,由于太阳照射点的变化,一个人身高和影长的比一般是不一样的。测量时由于误差可能影响发现,教师要向学生解释说明。这一活动也为以后学习正比例积累了经验。
【教学反思】
在实际情境中,体会了化简比的必要性,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。但还有少数同学对求比值和化简比混淆不清;
六年级数学教案14
教学内容
苏教版义务教育教科书《数学》六年级上册第35~36页例6、练一练,第37~38页练习六第6~9题。
教学目的要求:
学会计算分数的连乘,知道分数连乘的简便算法和计算时约分的简便方法。培养学生应用知识的能力和计算能力,提高分数乘法计算的熟练程度。
教学重点难点:
分数连乘的简便算法和计算时约分的简便方法。
教学过程:
一、复习
口算。题目略
笔算
问:分数乘法怎样计算?怎样约分计算比较简便?
二、新课教学
出示例6
六年级同学为国庆晚会做绸花。一班做了135朵,二班做得朵数是一班的,三班做的朵数是二班的。三班做了多少朵?
学生读题,尝试画线段图。
问:要求三班做了多少朵,要先算什么?
学生列式。
分步(朵)(朵)
综合
5、这样的乘法算式你能算吗?
讨论计算过程
问:有没有不同的算法?
比较不同算法。
问:两种算法各是怎样算的?
你认为哪种算法比较简便?怎样计算比较简便?
6、归纳方法。
问:今天的分数乘法,和以前计算的分数乘法有什么不同?怎样算简便?
7练习
做练一练
做后全班订正,交流算法。
三、巩固练习。
1、列式计算。
①与的积的21倍是多少?
②一个数是32的,这个数的是多少?
2、长方体的长是米,宽是米,高是米,它的体积是多少立方米?
练习六7
学生独立完成后,集体订正。
四、全课总结
这节课学习了什么内容?分数连乘怎样算比较简便?
五、作业:练习第6、8、9题
板书设计:
六年级数学教案15
教学目标
1.结合丰富的实例,认识反比例。
2.能根据反比例的意义,判断两个相关联的量是不是成反比例。
3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。
教学重点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学难点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程
一、复习
1.什么是正比例的量?
2.判断下面各题中的两种量是否成正比例?为什么?
(1)工作效率一定,工作时间和工作总量。
(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。
(3)正方形的边长和它的面积。
二、导入新课
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。
三、进行新课
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。
同桌交流,用自己的语言表达。
写出关系式:速度×时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定。
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。
写出关系式:每杯果汁量×杯数=果汗总量(一定)
以上两个情境中有什么共同点?
4.反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
教学内容:
苏教版义务教育课程标准实验教科书第60-61页
教材分析:
在本节课之前,学生们已经基本掌握了“用方向和距离描述、画出相关物体位置和描述简单的行走路线”方法。“实际测量”是一次实践与综合应用,主要目的是让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。
“实际测量”的主要内容包括:用工具测量两点间的距离,步测和目测。
在“用工具测量两点间的距离”的内容中,先学习在地面上测量两点间的距离,再用卷尺或测绳分段测量出相应的距离;“步测和目测”的内容中,介绍了得到步长的方法以及用步测的方法测定一段距离;目测重在介绍目测的方法。
教学目标:
⑴使学生会用工具测量两点间的距离、步测和目测的方法。
⑵在用工具测量两点间的距离、步测和目测的过程中,进一步感受所学知识在生活中的应用价值,发展空间观念。
⑶使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察日常生活现象,解决日常生活问题的意识。
教学重点:
掌握“用工具测量两点间的距离、步测和目测”的方法。
教学难点:
掌握“用工具测量两点间的距离、步测和目测”的方法。
教学具准备:
卷尺、标杆、50米跑道。
教学流程:
一、揭示课题,明确学习内容。
⑴揭示课题。
板书课题——实际测量。让学生说说对课题的理解。
⑵了解测量工具。
让学生说说知道的测量工具;预设:卷尺、测量仪、标杆等。
⑶明确学习内容。
测量地面上相隔较远的两点间的距离;步测和目测。
二、了解测量知识,为实践活动作准备。
⑴测量相隔较远的两点间的距离。
理解测定直线的意义:如果不先测定直线就去测量相隔较远的两点间的距离,分段测量时容易偏离两点间的连线,从而降低测量结果的精确程度。
理解测定直线的方法:把相隔较远的两点间的连线分成若干小段,以便于工具测量;
观察教材上的图片,让学生说说怎样在A、B两点间测定直线的?(2根以上的标杆成一线时)
掌握测定直线的步骤:测定直线;分段量出;记录计算。
⑵学习步测的方法。
理解步测在实际生活中应用:在没有测量工具或对测量要求不十分精确是,可以用步测。
掌握步测的方法:用步数×每一步的距离。
理解步测的关键:确定平均步长。
掌握确定平均步长的方法:让学生说说确定平均步长的方法,形成一般测定平均步长的过程,量出一段距离(50米),反复走几次,记录数据,计算步长。
理解实践活动的内容和方法:测定平均步长;步测篮球场的长和宽。
⑶学习目测的方法。
观察黑板,说说黑板的长和宽,交流得到黑板的长和宽的思考过程。预设:一米一米数出;比较得到;等等。
目测较短距离:人书本的长和宽;课桌的长和宽等等;
理解目测较长距离的方法:先量出一段距离(50米),每隔10米插上标杆,观察、理解;用目测发方法测定教学楼的长度。
三、实践活动。
⑴测定直线。
⑵确定平均步长。
⑶步测篮球场的长和宽。
⑷目测教学楼的长度。
第三单元分数除法
第10课时按比例分配的实际问题
教学内容:
课本第59--60页例11,“试一试”和“练一练”,完成练习十第1-3题。
教学目标:
1、使学生理解按比例分配实际问题的意义。
2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。
教学重难点:
理解按比例分配实际问题的意义,掌握解题的关键。
课前准备:
课件
教学过程:
一、创设情境、引入新知
根据信息填空:
(1)男生有31人,女生有21人,男生人数是女生人数的。
(2)红花的朵数与黄花朵数的比是3:2。你能联想到什么?
师:数学与生活是密切联系的,今天这节课就来研究前两节所学的比在生活的运用。
二、探究新知
1、出示例11中的实物图及例题。
(1)让学生阅读题目后说说你知道哪些信息?
(2)让学生说说你是怎样理解红色与黄色方格比这句话?(先同桌相互说一说)然后全班交流,学生可能有以下两种想法:
①红色与黄色方格数的比是3:2,就是把30个方格平均分成5份,其中3份涂红色,2份涂黄色;
②红色与黄色方格数的比是3:2,红色方格占总格数的3/5,黄色方格占2/5。
③红色与黄色方格数的比是3:2,也就是红色方格数是黄色方格数的3/2,或是黄色方格数是红色方格数的2/3。
师说明:在实际生活中,很多情况下,并不只是把一个数量平均分,使每一部分都一样多,而是在平均的基础上,按一定的比进行分配,这一题就是把30按3:2进行分配。
学生尝试解答,用你学过的知识来解答例2,并在学生小组内说说你是怎样想的?
说说你是怎样做的?
方法一:3+2=530÷5×330÷5×2
方法二:30×3/530×2/5
2、比较一下这几种方法中你理解的哪种方法,你是怎样理解的讲给同桌听一听?
说说这种方法的思路?(红色与黄色方格数的比是3:2,就是说,在30个方格里,红色方格数占3份,黄色方格数占2份,一共是5份,也就是说红色方格占总格数的,黄色方格占)
如何进行检验?自己检验请你检验一下同组同学做得对不对?(可以把求得的红色和黄色方格数相加,看是不是等于总方格数。或者可以把求得的红色和黄色方格数写成比的形式,看比简后是不是等于3:2)
3、完成练一练第1题。
4、完成试一试。
出示试一试。
提问:“按各小组人数的比分配”是什么意思?你想到了什么?
5、归纳(讨论)。
(1)比较例题与试一试题目在解答方法上有什么共同特点?
(2)怎么解答?
求总份数,各部分量占总数量的几分之几,最后求各部分量。
(3)教师指出:用这种特定方法解答的分配问题叫做“按比例分配”问题(板书课题)
三、应用比的知识解决实际问题
1、练一练第2题。
独立完成后进行交流
指出:把180块巧克力按照三个班的人数来分配,就是按怎样的比进行分配?
2、练一练第3题。
独立填表,完成后集体核对。
3、练习十第1题。
四、课堂总结
这节课学过以后,你有什么收获?
五、布置作业:
练习十第2、3题。
教学反思:
教学过程:
(一)导引探究,由表及里
教学例1,认识成正比例的量。
1.谈话引出例1的表格。一辆汽车在公路上行驶,行驶的时间和路程如下表。
时间(时)123456……路程(千米)80160240320400480……
在让学生说一说表中列出了哪两种量之后,教师引导学生逐步探究:行驶的时间和路程有关系吗?行驶的时间是怎样随着路程的变化而变化的?行驶的时间和路程的变化有什么规律?(学生探究第3个问题时,教师可进行适当的引导,如引导学生写出几组路程和时间对应的比,并要求学生求出比值。)
2.引导学生交流并聚焦以下内容:路程和时间是两种相关联的量,路程随着时间的变化而变化;时间扩大、路程也扩大,时间缩小、路程也缩小;路程和时间的比值总是一定的,也就是“路程/时间=速度(一定)”(板书关系式)。
3.教师对两种量之间的关系给予具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间咸正比例(板书“路程和时间成正比例”),行驶的路程和时间是成正比例的量。
4.让学生根据板书完整地说一说表中路程和时间成什么关系。
[数学概念是客观现实中数量关系和空间形式的本质属性在人脑中的反映。数学概念的来源一般有两个方面:一是直接从实际经验中概括得出;二是在原有的初级概念基础上通过新旧概念的相互作用而获得。正比例概念的形成属于前者,因此例1的教学可以充分利用表格,让学生通过对表中数据的观察和分析,由浅入深,由表及里,逐步认识成正比例的量的特点。本环节先让学生观察例题中的表格,说一说表中列出的是哪两种量;接着用三个引探性的问题逐步引导学生在探究学习活动中发现路程与时间之间的关系及变化趋势;最后,聚焦、明晰这两种量之间的关系,让学生初步认识正比例的特点。这样的教学有利于学生经历正比例概念的形成过程。]
(二)自主探究,尝试归纳
出示例2:汽车从甲地开往乙地,行驶的速度和所用时间如下表,它们之间有什么规律?
速度(千米/时)406080100120……时间(时)3020151210……
1.出示供学生自主探究的问题:当速度变化时,时间是否也随着变化?这种变化与例1中两种量的变化有什么不同?速度和时间的变化有什么规律?
2.引导学生在自主探究、交流中认识成反比例的量的特点:速度和时间是两种相关联的量,速度变化,时间也随着变化;例2中两种量的变化规律是:一种量扩大,另一种量反而缩小;速度和时间的变化规律是它们的乘积一定,可以表示为“速度×时间=路程(一定)”(板书关系式)。
3.在发现变化规律的基础上,让学生仿照正比例的意义,尝试归纳反比例的意义,引出反比例概念(板书“速度和时间成反比例”)。
[从生活原型中逐步抽象,从已有概念中衍生,从数学概念的学习中迁移等,都是建构数学概念的有效方法。有了学习正比例的基础,反比例意义的学习应更加体现学生的学习自主性。本环节除了让学生发现成反比例的量之间的关系,还让学生仿照正比例的意义,尝试归纳反比例的意义。这样能真正发挥学生的学习主动性,让学生在自主探究过程中经历反比例概念的形成过程。]
(三)对比探究,把握本质规律
1.将例1、例2教学时探究发现的内容用多媒体呈现出来,揭示正比例、反比例的内涵本质。
多媒体呈现:
例1路程/时间=速度(一定)
路程和时间成正比例
例2速度×时间;路程(一定)
速度和时间成反比例
2.探究活动。
(1)让学生仿照例1完成教材第62页“试一试”(题略),仿照例2完成教材第65页“试一试”(题略)。
(2)引导学生将成正比例的量与成反比例的量进行对比探究,找出它们的相同点与不同点。
[例1中路程和时间相依互变,速度不变,例2中速度和时间相依互变,路程不变,这样的对比有利于学生从变中看到不变;例1中速度是不变量,例2中路程是不变量,同样都有不变量,例1中路程和时间成正比例,而例2中速度和时间成反比例,这样的对比有利于学生从不变中看到变。变与不变关键要抓住本质——“比值一定”还是“积一定”。对比探究活动旨在让学生把握概念内在的联系与区别,形成正比例、反比例概念的认知结构。]
(3)引导学生尝试用字母表达式对正比例的意义和反比例的意义进行抽象概括。
启发学生思考:①如果用字母x和y分别表示两种相关联的量、用k表示它们的比值,正比例关系可以怎样表示?②如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以怎样表示?
根据学生的回答,板书关系式“正比例y/x=k(一定)”,“反比例x×y=k(一定)”。
[概念符号化在概念教学中很重要。《数学课程标准》明确指出,符号感主要表现之一是能从具体情境中抽象出数量关系和变化规律,并用符号来表示。学生概念形成的主要过程为:感知具体对象阶段、尝试建立表象阶段、抽象本质属性阶段、符号表征阶段、概念运用阶段。在符号表征阶段,学生尝试用语言或符号对同类对象的本质属性进行概括。本阶段教学是概念符号表征阶段,在这个阶段之前,学生对正比例、反比例的本质属性及特征有一定的认识,可以开始尝试用符号对正比例、反比例进行概括。“y/x=k(一定)”,“x×y=k(一定)”,是对正比例、反比例意义的抽象表达,是揭示正比例、反比例数量关系及其变化规律的数学模型。]
3.组织对比性练习。
(1)成正比例、反比例的对比练习。笔记本的单价、购买的数量和总价如下表:
表1
数量/本2030405060……总价/元3045607590……
表2
单价/元1。52456……数量/本4030151210……
在表1中,相关联的量是和,随着变化,是一定的。因此,数量和总价成关系。!
在表2中,相关联的量是和,随着变化,是一定的。因此,单价和数量成关系。
[将获得的新概念推广到其他的同类对象中去,是概念运用的过程,也是进一步理解概念的过程。表1是成正比例的量,表2是成反比例的量,这种正比例与反比例的对比,有利于学生进一步加深对正比例、反比例意义的认识,对正比例或反比例中两种量变化趋势和规律的把握。]
(2)成比例与不成比例的对比练习。
下面每题中的两个量哪些成正比例,哪些成反比例?哪些既不成正比例也不成反比例?
①圆的直径和周长。
②小麦每公顷产量一定,小麦的公顷数和总产量。
③书的总页数一定,已经看的页数和未看的页数。
[这一类型题比较抽象,学生只有对正比例、反比例的意义有了较深刻的理解,才能正确地作出判断。这样的练习有助于学生从整体上把握各种量之间的关系,有助于进一步提高学生判断成正比例、反比例的量的能力。此题型在新授课上还只是让学生初步接触,重点训练还要放在练习课。]
(3)从生活中寻找成正比例、反比例的量的实例,进行对比练习。
[举例练习是概念巩固阶段的重要组成部分。如果让学生独立找生活中成正比例、反比例的量的实例,可能有一定难度,我们可采用小组讨论的形式进行。此练习还可以让学生感受到数学与生活的联系。
【六年级数学教案】相关文章:
六年级数学教案01-04
六年级数学教案08-27
六年级小学数学教案10-11
六年级人教版数学教案12-02
六年级数学教案12-12
六年级数学教案01-05
六年级数学教案08-27
六年级数学教案分享04-10
关于六年级位置数学教案06-12
小学六年级数学教案11-16