高一数学教案

时间:2023-01-21 19:23:20 数学教案 我要投稿

【推荐】高一数学教案

  作为一名专为他人授业解惑的人民教师,往往需要进行教案编写工作,编写教案助于积累教学经验,不断提高教学质量。我们应该怎么写教案呢?下面是小编整理的高一数学教案,仅供参考,欢迎大家阅读。

【推荐】高一数学教案

高一数学教案1

  【学习目标】

  1、感受数学探索的成功感,提高学习数学的兴趣;

  2、经历诱导公式的探索过程,感悟由未知到已知、复杂到简单的数学转化思想。

  3、能借助单位圆的对称性理解记忆诱导公式,能用诱导公式进行简单应用。

  【学习重点】三角函数的诱导公式的理解与应用

  【学习难点】诱导公式的推导及灵活运用

  【知识链接】(1)单位圆中任意角α的正弦、余弦的定义

  (2)对称性:已知点P(x,),那么,点P关于x轴、轴、原点对称的点坐标

  【学习过程】

  一、预习自学

  阅读书第19页——20页内容,通过对-α、π-α、π+α、2π-α、α的终边与单位圆的交点的对称性规律的探究,结合单位圆中任意角的正弦、余弦的定义,从中自我发现归纳出三角函数的诱导公式,并写出下列关系:

  (1)- 407[导学案]4.4单位圆的对称性与诱导公式与 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  (2)角407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  (3)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  (4)角 407[导学案]4.4单位圆的对称性与诱导公式与角 407[导学案]4.4单位圆的对称性与诱导公式 的正弦函数、余弦函数关系

  二、合作探究

  探究1、求下列函数值,思考你用到了哪些三角函数诱导公式?试总结一下求任意角的三角函数值的过程与方法。

  (1) 407[导学案]4.4单位圆的对称性与诱导公式 (2) 407[导学案]4.4单位圆的.对称性与诱导公式 (3)sin(-1650°);

  探究2: 化简: 407[导学案]4.4单位圆的对称性与诱导公式 407[导学案]4.4单位圆的对称性与诱导公式(先逐个化简)

  探究3、利用单位圆求满足 407[导学案]4.4单位圆的对称性与诱导公式 的角的集合。

  三、学习小结

  (1)你能说说化任意角的正(余)弦函数为锐角正(余)弦函数的一般思路吗?

  (2)本节学习涉及到什么数学思想方法?

  (3)我的疑惑有

  【达标检测】

  1、在单位圆中,角α的终边与单位圆交于点P(- 407[导学案]4.4单位圆的对称性与诱导公式 , 407[导学案]4.4单位圆的对称性与诱导公式 ),

  则sin(-α)= ;cs(α±π)= ;cs(π-α)=

  2.求下列函数值:

  (1)sin( 407[导学案]4.4单位圆的对称性与诱导公式 )= ; (2) cs210&rd;=

  3、若csα=-1/2,则α的集合S=

高一数学教案2

  一、教学目标

  (1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;

  (2)理解逻辑联结词“或”“且”“非”的含义;

  (3)能用逻辑联结词和简单命题构成不同形式的复合命题;

  (4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;

  (5)会用真值表判断相应的复合命题的真假;

  (6)在知识学习的基础上,培养学生简单推理的技能.

  二、教学重点难点:

  重点是判断复合命题真假的方法;难点是对“或”的含义的理解.

  三、教学过程

  1.新课导入

  在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

  初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)

  (从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)

  学生举例:平行四边形的对角线互相平. ……(1)

  两直线平行,同位角相等.…………(2)

  教师提问:“……相等的角是对顶角”是不是命题?……(3)

  (同学议论结果,答案是肯定的.)

  教师提问:什么是命题?

  (学生进行回忆、思考.)

  概念总结:对一件事情作出了判断的语句叫做命题.

  (教师肯定了同学的回答,并作板书.)

  由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.

  (教师利用投影片,和学生讨论以下问题.)

  例1 判断以下各语句是不是命题,若是,判断其真假:

  命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.

  初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.

  2.讲授新课

  大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?

  (片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)

  (1)什么叫做命题?

  可以判断真假的语句叫做命题.

  判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 x2-5x+6=0

  中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

  (2)介绍逻辑联结词“或”、“且”、“非”.

  “或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.

  命题可分为简单命题和复合命题.

  不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.

  由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.

  (4)命题的表示:用p ,q ,r ,s ,……来表示.

  (教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)

  我们接触的'复合命题一般有“p 或q ”“p且q ”、“非p ”、“若p 则q ”等形式.

  给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.

  对于给出“若p 则q ”形式的复合命题,应能找到条件p 和结论q .

  在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.

  3.巩固新课

  例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.

  (1)5 ;

  (2)0.5非整数;

  (3)内错角相等,两直线平行;

  (4)菱形的对角线互相垂直且平分;

  (5)平行线不相交;

  (6)若ab=0 ,则a=0 .

  (让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)

高一数学教案3

  一、教学目标

  1.知识与技能:(1)通过实物操作,增强学生的直观感知。

  (2)能根据几何结构特征对空间物体进行分类。

  (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

  (4)会表示有关于几何体以及柱、锥、台的分类。

  2.过程与方法:

  (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

  (2)让学生观察、讨论、归纳、概括所学的知识。

  3.情感态度与价值观:

  (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

  (2)培养学生的空间想象能力和抽象括能力。

  二、教学重难点:

  (1)让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

  (2)柱、锥、台、球的结构特征的概括。

  三、教学用具

  (1)学法:观察、思考、交流、讨论、概括。

  (2)实物模型、投影仪。

  四、教学过程

  (一)创设情景,揭示课题

  1、由六根火柴最多可搭成几个三角形?(空间:4个)

  2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?

  3、展示具有柱、锥、台、球结构特征的空间物体。

  问题:请根据某种标准对以上空间物体进行分类。

  (二)、研探新知

  空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;

  旋转体(轴):圆柱、圆锥、圆台、球。

  1、棱柱的'结构特征:

  (1)观察棱柱的几何物体以及投影出棱柱的图片,

  思考:它们各自的特点是什么?共同特点是什么?

  (学生讨论)

  (2)棱柱的主要结构特征(棱柱的概念):

  ①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。

  (3)棱柱的表示法及分类:

  (4)相关概念:底面(底)、侧面、侧棱、顶点。

  2、棱锥、棱台的结构特征:

  (1)实物模型演示,投影图片;

  (2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。

  棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。

  棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

  3、圆柱的结构特征:

  (1)实物模型演示,投影图片——如何得到圆柱?

  (2)根据圆柱的概念、相关概念及圆柱的表示。

  4、圆锥、圆台、球的结构特征:

  (1)实物模型演示,投影图片

  如何得到圆锥、圆台、球?

  (2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。

  5、柱体、锥体、台体的概念及关系:

  探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?

  圆柱、圆锥、圆台呢?

  6、简单组合体的结构特征:

  (1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。

  (2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。

  (3)列举身边物体,说出它们是由哪些基本几何体组成的。

  (三)排难解惑,发展思维

  1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)

  2、棱柱的何两个平面都可以作为棱柱的底面吗?

  3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

  (四)巩固深化

  练习:课本P7练习1、2;课本P8习题1.1第1、2、3、4、5题

  (五)归纳整理:由学生整理学习了哪些内容

高一数学教案4

  一、教材

  《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

  二、学情

  学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

  三、教学目标

  (一)知识与技能目标

  能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

  (二)过程与方法目标

  经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

  (三)情感态度价值观目标

  激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

  四、教学重难点

  (一)重点

  用解析法研究直线与圆的位置关系。

  (二)难点

  体会用解析法解决问题的数学思想。

  五、教学方法

  根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

  六、教学过程

  (一)导入新课

  教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?

  教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。

  设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。

  (二)新课教学——探究新知

  教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。

  判断方法:

  (1)定义法:看直线与圆公共点个数

  即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。

  (2)比较法:圆心到直线的距离d与圆的半径r做比较,

  (三)合作探究——深化新知

  教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。

  已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?

  让学生自主探索,讨论交流,并阐述自己的解题思路。

  当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的'距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。

  (四)归纳总结——巩固新知

  为了将结论由特殊推广到一般引导学生思考:

  可由方程组的解的不同情况来判断:

  当方程组有两组实数解时,直线l与圆C相交;

  当方程组有一组实数解时,直线l与圆C相切;

  当方程组没有实数解时,直线l与圆C相离。

  活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。

  (五)小结作业

  在小结环节,我会以口头提问的方式:

  (1)这节课学习的主要内容是什么?

  (2)在数学问题的解决过程中运用了哪些数学思想?

  设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

  作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。

  七、板书设计

  我的板书本着简介、直观、清晰的原则,这就是我的板书设计。

高一数学教案5

  教学目标

  1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.

  2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.

  3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.

  教学重点与难点

  教学重点:函数单调性的概念.

  教学难点:函数单调性的判定.

  教学过程设计

  一、引入新课

  师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?

  (用投影幻灯给出两组函数的图象.)

  第一组:

  第二组:

  生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小.

  师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.

  (点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)

  二、对概念的分析

  (板书课题:)

  师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍.

  (学生朗读.)

  师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?

  生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少.

  师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!

  (通过教师的情绪感染学生,激发学生学习数学的兴趣.)

  师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力.

  (指图说明.)

  师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间.

  (教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)

  师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……

  (不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.)

  生:较大的函数值的函数.

  师:那么减函数呢?

  生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.

  (学生可能回答得不完整,教师应指导他说完整.)

  师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?

  (学生思索.)

  学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力.

  (教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.)

  生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.

  师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?

  生:不能.因为此时函数值是一个数.

  师:对.函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?

  生:不能.比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数.因而我们不能说y=x2是增函数或是减函数.

  (在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知.)

  师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.

  师:还有没有其他的关键词语?

  生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语.

  师:你答的很对.能解释一下为什么吗?

  (学生不一定能答全,教师应给予必要的提示.)

  师:“属于”是什么意思?

  生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取.

  师:如果是闭区间的话,能否取自区间端点?

  生:可以.

  师:那么“任意”和“都有”又如何理解?

  生:“任意”就是指不能取特定的'值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).

  师:能不能构造一个反例来说明“任意”呢?

  (让学生思考片刻.)

  生:可以构造一个反例.考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了.

  师:那么如何来说明“都有”呢?

  生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数.

  师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性.

  (教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.)

  师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.

  (用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力.)

  三、概念的应用

  例1 图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?

  (用投影幻灯给出图象.)

  生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间.

  生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢?

  师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,(增或减).反之不然.

  例2 证明函数f(x)=3x+2在(-∞,+∞)上是增函数.

  师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径.

  (指出用定义证明的必要性.)

  师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.

  (教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发.)

  师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.

  生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,

  f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,

  所以f(x)是增函数.

  师:他的证明思路是清楚的.一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).

  这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小.

  (对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.)

  调函数吗?并用定义证明你的结论.

  师:你的结论是什么呢?

  上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.

  生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数.

  生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.

  域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.

  上是减函数.

  (教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:

  (1)分式问题化简方法一般是通分.

  (2)要说明三个代数式的符号:k,x1·x2,x2-x1.

  要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.

  对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)

  四、课堂小结

  师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?

  (请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)

  生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤.

  五、作业

  1.课本P53练习第1,2,3,4题.

  数.

  =a(x1-x2)(x1+x2)+b(x1-x2)

  =(x1-x2)[a(x1+x2)+b].(*)

  +b>0.由此可知(*)式小于0,即f(x1)<f(x2).

  课堂教学设计说明

  是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.

  另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.

  还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫.

高一数学教案6

  一、教材

  首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。

  二、学情

  教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。

  三、教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  掌握两条直线平行与垂直的判定,能够根据其判定两条直线的位置关系。

  (二)过程与方法

  在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。

  (三)情感态度价值观

  在猜想论证的'过程中,体会数学的严谨性。

  四、教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的判定的推导。

  五、教法和学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

  六、教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)新课导入

  首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢?

  利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。

  (二)新知探索

  接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。

高一数学教案7

  教学目标

  1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.

  (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.

  (2)能从数和形两个角度认识单调性和奇偶性.

  (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.

  2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.

  3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

  教学建议

  一、知识结构

  (1)函数单调性的.概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

  (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

  二、重点难点分析

  (1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.

  (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

  三、教法建议

  (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

  (2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.

  函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

高一数学教案8

  教学目标

  1.理解分数指数幂的含义,了解实数指数幂的意义。

  2.掌握有理数指数幂的运算性质,灵活的运用乘法公式进行有理数指数幂的运算和化简,会进行根式与分数指数幂的相互转化。

  教学重点

  1.分数指数幂含义的理解。

  2.有理数指数幂的运算性质的理解。

  3.有理数指数幂的运算和化简。

  教学难点

  1.分数指数幂含义的理解。

  2.有理数指数幂的运算和化简。

  教学过程

  一.问题情景

  上节课研究了根式的意义及根式的性质,那么根式与指数幂有什么关系?整数指数幂有那些运算性质?

  二.学生活动

  1.说出下列各式的意义,并指出其结果的指数,被开方数的指数及根指数三者之间的关系

  (1)=(2)=

  2.从上述问题中,你能得到的结论为

  3.(a0)及(a0)能否化成指数幂的形式?

  三.数学理论

  正分数指数幂的.意义:=(a0,m,n均为正整数)

  负分数指数幂的意义:=(a0,m,n均为正整数)

  1.规定:0的正分数指数幂仍是0,即=0

  0的负分数指数幂无意义。

  3.规定了分数指数幂的意义后,指数的概念从整数指数推广到了有理数指数,因而整数指数幂的运算性质同样适用于有理数指数幂。

  即=(1)

  =(2)其中s,tQ,a0,b0

  =(3)

  四.数学运用

  例1求值:

  (1)(2)(3)(4)

  例2用分数指数幂的形式表示下列各式(a0)

  (1)(2)

  例3化简

  (1)

  (2)(3)

  例4化简

  例5已知求(1)(2)

  五.回顾小结

  1.分数指数幂的意义。=(0,m,n)

  无意义

  2.有理数指数幂的运算性质

  3.整式运算律及乘法公式在分数指数幂运算中仍适用

  4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂,请同学们阅读P47的阅读部分

  练习P47-48练习1,2,3,4

  六.课外作业

  P48习题2.2(1)2,4

高一数学教案9

  学 习 目 标

  1明确空间直角坐标系是如何建立;明确空间中任意一点如何表示;

  2 能够在空间直角坐标系中求出点坐标

  教 学 过 程

  一 自 主 学 习

  1平面直角坐标系建立方法,点坐标确定过程、表示方法?

  2一个点在平面怎么表示?在空间呢?

  3关于一些对称点坐标求法

  关于坐标平面 对称点 ;

  关于坐标平面 对称点 ;

  关于坐标平面 对称点 ;

  关于 轴对称点 ;

  关于 对轴称点 ;

  关于 轴对称点 ;

  二 师 生 互动

  例1在长方体 中, , 写出 四点坐标

  讨论:若以 点为原点,以射线 方向分别为 轴,建立空间直角坐标系,则各顶点坐标又是怎样呢?

  变式:已知 ,描出它在空间位置

  例2 为正四棱锥, 为底面中心,若 ,试建立空间直角坐标系,并确定各顶点坐标

  练1 建立适当直角坐标系,确定棱长为3正四面体各顶点坐标

  练2 已知 是棱长为2正方体, 分别为 和 中点,建立适当空间直角坐标系,试写出图中各中点坐标

  三 巩 固 练 习

  1 关于空间直角坐标系叙述正确是( )

  A 中 位置是可以互换

  B空间直角坐标系中点与一个三元有序数组是一种一一对应关系

  C空间直角坐标系中三条坐标轴把空间分为八个部分

  D某点在不同空间直角坐标系中坐标位置可以相同

  2 已知点 ,则点 关于原点对称点坐标为( )

  A B C D

  3 已知 三个顶点坐标分别为 ,则 重心坐标为( )

  A B C D

  4 已知 为平行四边形,且 , 则顶点 坐标

  5 方程 几何意义是

  四 课 后 反 思

  五 课 后 巩 固 练 习

  1 在空间直角坐标系中,给定点 ,求它分别关于坐标平面,坐标轴和原点对称点坐标

  2 设有长方体 ,长、宽、高分别为 是线段 中点分别以 所在直线为 轴, 轴, 轴,建立空间直角坐标系

  ⑴求 坐标;

  ⑵求 坐标;

高一数学教案10

  本文题目:高一数学教案:函数的奇偶性

  课题:1.3.2函数的奇偶性

  一、三维目标:

  知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。

  过程与方法:通过设置问题情境培养学生判断、推断的能力。

  情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。

  二、学习重、难点:

  重点:函数的奇偶性的概念。

  难点:函数奇偶性的判断。

  三、学法指导:

  学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。

  四、知识链接:

  1.复习在初中学习的轴对称图形和中心对称图形的定义:

  2.分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。

  五、学习过程:

  函数的奇偶性:

  (1)对于函数 ,其定义域关于原点对称:

  如果______________________________________,那么函数 为奇函数;

  如果______________________________________,那么函数 为偶函数。

  (2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。

  (3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。

  六、达标训练:

  A1、判断下列函数的奇偶性。

  (1)f(x)=x4;(2)f(x)=x5;

  (3)f(x)=x+ (4)f(x)=

  A2、二次函数 ( )是偶函数,则b=___________ .

  B3、已知 ,其中 为常数,若 ,则

  _______ .

  B4、若函数 是定义在R上的奇函数,则函数 的图象关于 ( )

  (A) 轴对称 (B) 轴对称 (C)原点对称 (D)以上均不对

  B5、如果定义在区间 上的函数 为奇函数,则 =_____ .

  C6、若函数 是定义在R上的奇函数,且当 时, ,那么当

  时, =_______ .

  D7、设 是 上的`奇函数, ,当 时, ,则 等于 ( )

  (A)0.5 (B) (C)1.5 (D)

  D8、定义在 上的奇函数 ,则常数 ____ , _____ .

  七、学习小结:

  本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。

  八、课后反思:

高一数学教案11

  教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.

  教学目的:

  (1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解构成函数的要素;

  (3)会求一些简单函数的定义域和值域;

  (4)能够正确使用“区间”的符号表示某些函数的定义域;

  教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;

  教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

  教学过程:

  一、引入课题

  1.复习初中所学函数的概念,强调函数的模型化思想;

  2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

  (1)炮弹的射高与时间的变化关系问题;

  (2)南极臭氧空洞面积与时间的变化关系问题;

  (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

  备用实例:

  我国xxxx年4月份非典疫情统计:

  日期222324252627282930

  新增确诊病例数1061058910311312698152101

  3.引导学生应用集合与对应的语言描述各个实例中两个变量间的.依赖关系;

  4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

  二、新课教学

  (一)函数的有关概念

  1.函数的概念:

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

  记作:y=f(x),x∈A.

  其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

  注意:

  ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  2.构成函数的三要素:

  定义域、对应关系和值域

  3.区间的概念

  (1)区间的分类:开区间、闭区间、半开半闭区间;

  (2)无穷区间;

  (3)区间的数轴表示.

  4.一次函数、二次函数、反比例函数的定义域和值域讨论

  (由学生完成,师生共同分析讲评)

  (二)典型例题

  1.求函数定义域

  课本P20例1

  解:(略)

  说明:

  ○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;

  ○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;

  ○3函数的定义域、值域要写成集合或区间的形式.

  巩固练习:课本P22第1题

  2.判断两个函数是否为同一函数

  课本P21例2

  解:(略)

  说明:

  ○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

  ○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

  巩固练习:

  ○1课本P22第2题

  ○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?

  (1)f(x)=(x-1)0;g(x)=1

  (2)f(x)=x;g(x)=

  (3)f(x)=x2;f(x)=(x+1)2

  (4)f(x)=|x|;g(x)=

  (三)课堂练习

  求下列函数的定义域

  (1)

  (2)

  (3)

  (4)

  (5)

  (6)

  三、归纳小结,强化思想

  从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。

  四、作业布置

  课本P28习题1.2(A组)第1—7题(B组)第1题

高一数学教案12

  本文题目:高一数学教案:对数函数及其性质

  2.2.2 对数函数及其性质(二)

  内容与解析

  (一) 内容:对数函数及其性质(二)。

  (二) 解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查.题型主要是选择题和填空题,命题灵活.学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用.

  一、 目标及其解析:

  (一) 教学目标

  (1) 了解对数函数在生产实际中的简单应用.进一步理解对数函数的图象和性质;

  (2) 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质..

  (二) 解析

  (1)在对数函数 中,底数 且 ,自变量 ,函数值 .作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确.

  (2)反函数求法:①确定原函数的值域即新函数的定义域.②把原函数y=f(x)视为方程,用y表示出x.③把x、y互换,同时标明反函数的定义域.

  二、 问题诊断分析

  在本节课的`教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。

  三、 教学支持条件分析

  在本节课一次递推的教学中,准备使用PowerPoint 20xx。因为使用PowerPoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。

  四、 教学过程

  问题一. 对数函数模型思想及应用:

  ① 出示例题:溶液酸碱度的测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升.

  (Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系?

  (Ⅱ)纯净水 摩尔/升,计算纯净水的酸碱度.

  ②讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想

  问题二.反函数:

  ① 引言:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function)

  ② 探究:如何由 求出x?

  ③ 分析:函数 由 解出,是把指数函数 中的自变量与因变量对调位置而得出的. 习惯上我们通常用x表示自变量,y表示函数,即写为 .

  那么我们就说指数函数 与对数函数 互为反函数

  ④ 在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质?

  ⑤ 分析:取 图象上的几个点,说出它们关于直线 的对称点的坐标,并判断它们是否在 的图象上,为什么?

  ⑥ 探究:如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗,为什么?

  由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线 对称)

  ⑦练习:求下列函数的反函数: ;

  (师生共练 小结步骤:解x ;习惯表示;定义域)

  (二)小结:函数模型应用思想;反函数概念;阅读P84材料

  五、 目标检测

  1.(20xx全国卷Ⅱ文)函数y= (x 0)的反函数是

  A. (x 0) B. (x 0) C. (x 0) D. (x 0)

  1.B 解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B.

  2. (20xx广东卷理)若函数 是函数 的反函数,其图像经过点 ,则 ( )

  A. B. C. D.

  2. B 解析: ,代入 ,解得 ,所以 ,选B.

  3. 求函数 的反函数

  3.解析:显然y0,反解 可得, ,将x,y互换可得 .可得原函数的反函数为 .

  【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:对数函数及其性质能给您带来帮助!

高一数学教案13

  1.1 集合含义及其表示

  教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。

  教学过程:

  一、阅读下列语句:

  1) 全体自然数0,1,2,3,4,5,

  2) 代数式 .

  3) 抛物线 上所有的点

  4) 今年本校高一(1)(或(2))班的全体学生

  5) 本校实验室的所有天平

  6) 本班级全体高个子同学

  7) 著名的科学家

  上述每组语句所描述的对象是否是确定的?

  二、1)集合:

  2)集合的元素:

  3)集合按元素的个数分,可分为1)__________2)_________

  三、集合中元素的三个性质:

  1)___________2)___________3)_____________

  四、元素与集合的关系:1)____________2)____________

  五、特殊数集专用记号:

  1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______

  4)有理数集______5)实数集_____ 6)空集____

  六、集合的表示方法:

  1)

  2)

  3)

  七、例题讲解:

  例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( )

  A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形

  例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?

  1)地球上的四大洋构成的集合;

  2)函数 的全体 值的集合;

  3)函数 的全体自变量 的集合;

  4)方程组 解的集合;

  5)方程 解的集合;

  6)不等式 的解的集合;

  7)所有大于0且小于10的奇数组成的集合;

  8)所有正偶数组成的集合;

  例3、用符号 或 填空:

  1) ______Q ,0_____N, _____Z,0_____

  2) ______ , _____

  3)3_____ ,

  4)设 , , 则

  例4、用列举法表示下列集合;

  1.

  2.

  3.

  4.

  例5、用描述法表示下列集合

  1.所有被3整除的数

  2.图中阴影部分点(含边界)的坐标的集合

  课堂练习:

  例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________

  例7、已知: ,若 中元素至多只有一个,求 的取值范围。

  思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。

  小结:

  作业 班级 姓名 学号

  1. 下列集合中,表示同一个集合的是 ( )

  A . M= ,N= B. M= ,N=

  C. M= ,N= D. M= ,N=

  2. M= ,X= ,Y= , , .则 ( )

  A . B. C. D.

  3. 方程组 的解集是____________________.

  4. 在(1)难解的题目,(2)方程 在实数集内的.解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.

  5. 设集合 A= , B= ,

  C= , D= ,E= 。

  其中有限集的个数是____________.

  6. 设 ,则集合 中所有元素的和为

  7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为

  8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

  若A= ,试用列举法表示集合B=

  9. 把下列集合用另一种方法表示出来:

  (1) (2)

  (3) (4)

  10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。

  11. 已知集合A=

  (1) 若A中只有一个元素,求a的值,并求出这个元素;

  (2) 若A中至多只有一个元素,求a的取值集合。

  12.若-3 ,求实数a的值。

  【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助!

高一数学教案14

  教学目的:

  (1)使学生初步理解集合的概念,知道常用数集的概念及记法

  (2)使学生初步了解“属于”关系的意义

  (3)使学生初步了解有限集、无限集、空集的意义

  教学重点:集合的基本概念及表示方法

  教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

  授课类型:新授课

  课时安排:1课时

  教 具:多媒体、实物投影仪

  内容分析:

  集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

  这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念集合是集合论中的原始的`、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。

  教学过程:

  一、复习引入:

  1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  2、教材中的章头引言;

  3、集合论的创始人——康托尔(德国数学家)(见附录);

  4.“物以类聚”,“人以群分”;

  5.教材中例子(P4)

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有关概念:

  由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。

  定义:一般地,某些指定的对象集在一起就成为一个集合.

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

  (2)元素:集合中每个对象叫做这个集合的元素

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合 记作N,

  (2)正整数集:非负整数集内排除0的集 记作N*或N+

  (3)整数集:全体整数的集合 记作Z ,

  (4)有理数集:全体有理数的集合 记作Q ,

  (5)实数集:全体实数的集合 记作R

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

  (2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作

  4、集合中元素的特性

  (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

  (2)互异性:集合中的元素没有重复

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的开口方向,不能把a∈A颠倒过来写

  三、练习题:

  1、教材P5练习1、2

  2、下列各组对象能确定一个集合吗?

  (1)所有很大的实数 (不确定)

  (2)好心的人 (不确定)

  (3)1,2,2,3,4,5.(有重复)

  3、设a,b是非零实数,那么 可能取的值组成集合的元素是_—2,0,2__

  4、由实数x,-x,|x|, 所组成的集合,最多含( A )

  (A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

  5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

  (1) 当x∈N时, x∈G;

  (2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

  证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0* = a+b ∈G,即x∈G

  证明(2):∵x∈G,y∈G,

  ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,

  又∵ =且 不一定都是整数,

  ∴ = 不一定属于集合G

  四、小结:本节课学习了以下内容:

  1、集合的有关概念:(集合、元素、属于、不属于)

  2、集合元素的性质:确定性,互异性,无序性

  3、常用数集的定义及记法

高一数学教案15

  案例背景:

  对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

  案例叙述:

  (一).创设情境

  (师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

  反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

  (提问):什么是指数函数?指数函数存在反函数吗?

  (学生): 是指数函数,它是存在反函数的.

  (师):求反函数的步骤

  (由一个学生口答求反函数的过程):

  由 得 .又 的值域为 ,

  所求反函数为 .

  (师):那么我们今天就是研究指数函数的反函数-----对数函数.

  (二)新课

  1.(板书) 定义:函数 的反函数 叫做对数函数.

  (师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的'什么性质吗?最初步的认识是什么?

  (教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流)

  (学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .

  (在此基础上,我们将一起来研究对数函数的图像与性质.)

  2.研究对数函数的图像与性质

  (提问)用什么方法来画函数图像?

  (学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.

  (学生2)用列表描点法也是可以的。

  请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.

  (师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

  具体操作时,要求学生做到:

  (1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

  (2) 画出直线 .

  (3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

  学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

  和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

  教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:

  然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

  3. 性质

  (1) 定义域:

  (2) 值域:

  由以上两条可说明图像位于 轴的右侧.

  (3)图像恒过(1,0)

  (4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

  (5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

  当 时,在 上是减函数,即图像是下降的.

  之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

  当 时,有 ;当 时,有 .

  学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

  最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

  对图像和性质有了一定的了解后,一起来看看它们的应用.

  (三).简单应用

  1. 研究相关函数的性质

  例1. 求下列函数的定义域:

  (1) (2) (3)

  先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

  2. 利用单调性比较大小

  例2. 比较下列各组数的大小

  (1) 与 ; (2) 与 ;

  (3) 与 ; (4) 与 .

  让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

 三.拓展练习

  练习:若 ,求 的取值范围.

四.小结及作业

  案例反思:

  本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

  在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

【高一数学教案】相关文章:

高一数学教案12-21

高一数学教案06-20

高一数学教案07-20

人教版高一数学教案07-30

上海高一数学教案07-30

人教版高一数学教案12-23

关于高一数学教案09-30

高一必修五数学教案04-10

高一必修四数学教案04-13

高一数学教案【热门】01-17