《公约数》数学教案

时间:2023-02-04 16:59:01 数学教案 我要投稿

《公约数》数学教案

  在教学工作者实际的教学活动中,通常需要准备好一份教案,教案是保证教学取得成功、提高教学质量的基本条件。教案要怎么写呢?下面是小编整理的《公约数》数学教案,仅供参考,大家一起来看看吧。

《公约数》数学教案

《公约数》数学教案1

  教学目标

  1.使学生掌握公约数、最大公约数、互质数的概念.

  2.使学生初步掌握求两个数的最大公约数的一般方法.

  教学重点

  理解公约数、最大公约数、互质数的概念.

  教学难点

  掌握求两个数的最大公约数的一般方法.

  教学步骤

  一、铺垫孕伏.

  1.说出什么是约数、质因数、分解质因数.

  2.求18、20、27的约数

  3.把18、20、27分解质因数

  二、探究新知.

  教师引入:我们已经会求一个数的约数了,这节课我们学习怎样求两个数公有的约数.

  (一)教学例1【演示课件 “最大公约数”】

  8和12各有哪些约数,它们公有的约数有哪几个?最大的公有的约数是多少?

  板书:8的全部约数:1、2、4、8

  12的全部约数:1、2、3、4、6、12

  学生交流:发现了什么?

  学生汇报:8和12公有的约数是:1、2、4

  最大的公有的约数是:4.(教师板书)

  1.总结概念:8和12公有的约数,叫做8和12的公约数.

  1、2、4是8和12的公约数.公约数中最大的一个叫做最大公约数,4是8和12的最大公约数.

  2.阅读教材,理解公约数、最大公约数的意义.

  3.反馈练习:把15和18的约数、公约数分别填在下面的圈里再找出它们的最大公约数.

  (二)教学互质数【演示课件“互质数”】

  1.5和7的公约数和最大公约数各是多少?7和9呢?

  5的约数:1、5 7的约数:1、7

  7的约数:1、7 9的约数:1、3、9

  5和7的公约数:1 7和9的公约数:1

  5和7的最大公约数:1 7和9的最大公约数:1

  教师提问:有什么共同点?(公约数和最大公约数都是1)

  教师点明:公约数只有1的两个数,叫做互质数.

  2.学生讨论:8和9是不是互质数,为什么?

  强调:判断两个数是不是互质数,只要看这两个数的公约数是不是只有1.

  3.分析:质数和互质数有什么不同?

  (意义不同,质数是对一个数说的,互质数是对两个数的关系说的.)

  4.反馈练习:学生举例说明互质的数.

  (三)教学例2.

  求18和30的最大公约数.

  1.用短除法把18和30分解质因数.

  2.教师提问:根据结果能否知道18和30的约数各有哪些?怎么想的?

  明确:根据分解质因数的方法可以求一个数的约数.

  3.师生归纳:18和30的约数,要能整除18,又能整除30,就必须包含18和30公有的质因数.最大公约数是公约数中最大的,它就必须包含18和30全部公有的质因数2和3.2×3=6,所以18和30的最大公约数是6.

  4.教学求最大公约数的一般书写格式.

  启发:为了简便能不能边分解质因数边找公有的质因数?

  (把两个短除式合并)

  18和30的最大公约数是2×3=6

  5.反馈练习:求12和20的最大公约数.

  6.小结求两个数的最大公约数的方法.

  ①学生讨论.

  ②师生归纳:求两个数的最大公约数,一般先用这两个数公有的质因数去除,一直除到所得的.商是互质数为止,然后把所有的除数乘起来.

  ③教师说明:做短除法时,除数通常是这两个数公有的质因数,并从最小的开始除起;也可以用一个合数去除,只要能够整除这两个数就行.

  ④反馈练习:求36和54的最大公约数.

  三、全课小结.

  今天这节课我们主要研究了用什么方法求两个数的最大公约数及相应概念,(板书:最大公约数)它是为以后学习约分做准备的,希望同学们知道知识间是有必然联系的.

  四、随堂练习.【演示课件“练习”】

  1.填空.

  (1)( )叫做这几个数的公约数,其中( )叫做这几个数的最大公约数.

  (2)( )叫做互质数.

  (3)求两个数的最大公约数,一般先用这两个数( )连续去除,一直除到所得的商是( )为止,然后把( )连乘起来.

  2.先把下面的两个数分解质因数,再求出它们的最大公约数.

  12=( )×( )×( )

  30=( )×( )×( )

  12和30的最大公约数是( )×( )=( )

  3.判断.

  (1)3和5是互质数.( )

  (2)6和8是互质数.( )

  (3)1和6是互质数.( )

  (4)1和44不是互质数.( )

  (5)14和15不是互质数.( )

  五、布置作业.

  求下面每组数的最大公约数.

  6和9 16和12 42和54 30和45

  六、板书设计

《公约数》数学教案2

  设计意图:

  在设计的时候我想要引导学生学会看书,学会咬文嚼字,比如书上是这样写的:求两个数的最大公约数,一般先用这两个数公有的质因数连续去除,一直除到所得的商互质为止,然后把所有的除数连乘起来。在品味这段话时,有些学生会注意到“一般”这两个字,从而提出“为什么一般用这两个数公有的质因数连续去除,不用质因数去除行不行?”,教师可以引导他们通过向别人求教、上网查资料等方式,自己得出答案,即不用公有的质因数去除也行,也可用公有的合数去除,不过习惯上用两个数公有的质因数去除。解决这个问题之后,学生就会觉得数学语言是非常严谨的,一字一句均需斟酌。

  教学要求

  ①使学生理解公约数、最大公约数、互质数的概念。

  ②使学生初步掌握求两个数最大公约数的一般方法。

  ③培养学生抽象、概括的能力和动手实际操作的能力。

  教学重点

  理解公约数、最大公约数、互质数的概念。

  教学难点

  理解并掌握求两个数的最大公约数的一般方法。

  教学用具

  投影仪等。

  教学过程

  一、创设情境

  填空:①12÷3=4,所以12能被4( )。4能( )12,12是3的( ),3是12的( )。②把18和30分解质因数是 ,它们公有的质因数是( )。③10的约数有( )。

  二、揭示课题

  我们已经学会求一个数的约数,现在来看两个数的约数。

  三、探索研究

  1.小组合作学习

  (1)找出8、12的约数来。

  (2)观察并回答。

  ①有无相同的约数?各是几?

  ②1、2、4是8和12的什么?

  ③其中最大的一个是几?知道叫什么吗?

  (3)归纳并板书

  ①8和12公有的约数是:1、2、4,其中最大的一个是4。

  ②还可以用下图来表示。

  8 1 3

  2 4 6 12

  8 和12 的公约数

  (4)抽象、概括。

  ①你能说说什么是公约数、最大公约数吗?

  ②指导学生看教材第66页里有关公约数、最大公约数的概念。

  (5)尝试练习。

  做教材第67页上面的“做一做”的第1题。

  2.学习互质数的概念

  (1)找出下列各组数的公约数来:5和7 8和9 12和25 1和9

  (2)这几组数的公约数有什么特点?

  (3)这几组数中的两个数叫做什么?(看书67页)

  (4)质数和互质数有什么不同?(使学生明确:质数是一个数,而互质数是两个数的关系)

  3.学习例2

  (1)出示例2并说明:我们通常用分解质因数的方法来求两个数的最大公约数。

  (2)复习的第2题,我们已将18和30分解质因数(如后) 18=2×3×3 30=2×3×5

  (3)观察、分析。

  ①从18和30分解质因数的式子中,你能看出18和30各有哪些约数吗?

  ②18和30的公约数就必须包含18和30公有的'什么?

  ③18和30公有的质因数有哪些?

  ④18和30的公约数和最大公约数是哪些?(1、2、3、6(2×3))

  ⑤最大公约数6是怎样得出来的?

  (4)归纳板书。

  18和30的最大公约数6是这两个数全部公有质因数的乘积。

  (5)求最大公约数的一般书写格式。

  为了简便,我们把两个短除式合并成一个如: 18 30

  让学生分组讨论合并后该怎样做?

  ①每次用什么作除数去除?

  ②一直除到什么时候为止?

  ③再怎样做就可以求出最大公约数?

  ④为什么不把商也连乘进去?

  (6)尝试练习。

  做教材第68页的“做一做”,学生独立解答后点几名学生讲每步是怎样做的,最后集体订正。

  (7)抽象概括求最大公约数的方法。

  ①谁能说说求最大公约数的方法。

  ②引导学生看教材第68页求两个数的最大公约数的方法。

  四、课堂实践

  做练习十四的1、2、3题。

  五、课堂小结

  学生总结今天学习的内容。

  六、课堂作业

  1.做练习十四的第4题。

  2.做练习十四的12题。

  课后反思:

  教学"求最大公约数",课本共安排了三个例题及一个"做一做",教学时,当教师向学生介绍完用短除法求两个数的最大公约数之后,让学生讨论质疑其它二例时,学生A就提出:"两个数的最大公约数也就是这两个数的差。"教师问:"有什么根据?"学生回答说:"按照课本的三个例题:12和18的最大公约数是6;90和72的最大公约数是18;24、36和48的最大公约数是12;做一做40,60和80的最大公约数是20。"还真是呀!学生们很惊讶,教师了解到学生错误结论的由来,但不急于指出学生的错误,首先肯定了学生善于观察和思考的精神,接着又向学生指出:"是巧合呢,还是真有这样的规律存在呢?"学生为了验证,纷纷举例演算,就连平时较少开动脑筋的学生,也算得很起劲。过了一会,小B第一个发现象36和28,90和68的最大公约数就不是它们的差。教师又及时把这一信息交给学生,学生的研究热情被激发起来,课堂气氛异常活跃。下课了,大家的讨论还在继续着,并且乐此不疲。他们为了探求"规律",愉快地做了几十道求最大公约数的练习,牢固地掌握了知识。在教师创设的途径中,学生品尝到成功的喜悦,更激发了他们探求知识,孜孜以求,为学业成功更努力学习。

《公约数》数学教案3

  设计意图:

  教学实践告诉我们,教学的成败,学生的学习效果如何,在很大程度上取决于学生的参与程度。教师的全部劳动,归根到底就是为了学生的主动学习。因此,激发学生的参与意识,让学习成为学生发自内心的需要,让课堂成为学生获取知识的乐园是我们每位教师应努力的方向。还有对学生的评价,包罗万象,既有对学习方法的评价,又有对学习情感的评价,也有对自己的鞭策鼓励。这样的评价,教师只需适当点拨、启发,便能让学生在被他人肯定的同时得到极大的满足感,增强学生主动参与探究的自信心,从而把主动探究学习作为自己学习生活中的第一乐趣。这节课我在设计上注重这两点,来设计和展开教学。

  教学要求

  在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的最大公约数,培养学生的观察能力。

  教学重点

  掌握求两个数的最大公约数的方法。

  教学难点

  正确、熟练地求出两种特殊情况的最大公约数。

  教学过程

  一、创设情境

  1、思考并回答:

  ①什么是公约数,什么是最大公约数?

  ②什么是互质数?质数与互质数有什么区别?(回答后做练习十四的第5题)

  2、求30和70的最大公约数?

  3、说说下面每组中的两个数有什么关系?

  7和21 8和15

  二、揭示课题

  我们已经学会求两个数的最大公约数,这节课我们继续学习求这两种特殊情况的最大公约数(板书课题)

  三、探索研究

  1.教学例3

  (1)求出下列几组数的最大公约数:7和21 8和15 42和14 17和19

  (2)观察结果:通过求这几组数的最大公约数,你发现了什么?

  (3)归纳方法:先让学生讲,再指导学生看教材第69页的结论。

  (4)尝试练习。

  做教材第69页的“做一做”,学生独立做后由学生讲评,集体订正。

  四、课堂实践

  1.做练习十四的第7题,学生独立观察看哪几组数是第一种特殊情况,哪几组数是第二种特殊情况,再解答出来。

  2.做练习十四的第6题,先让学生独立作出判断后再让学生讲明判断的理由。

  3.做练习十四的第9题,学生口答集体订正。

  五、课堂小结

  学生小结今天学习的内容、方法。

  六、课堂作业

  1、做练习十四的第8、10、11题。

  2、有兴趣、有余力的同学可做练习十四的第13题和思考题。

  课后反思:

  有的数学问题比较复杂,光靠个人的'学习,在短时间内达不到好的效果时,教学时,我让学生前后桌组成四人小组,小组中搭配上、中、下三类学生,由一位优等生任组长,组织组内同学讨论如下问题:

  (1)、一个数的约数与这个数的质因数有什么联系?

  (2)、两个数的公约数与这两个数公有的质因数有什么联系?

  (3)、怎样求两个数的最大公约数?

  我们知道“最大公约数”一课最难理解的就是其算理,我也尝试过多种不同的教学组织形式,但无论是老师讲解还是学生看书,给学生的感觉大多是:太难懂了,算了吧!这时,何不让学生讨论讨论,让他们把自己的想法在组内说说?俗话说:三个臭皮匠顶一个诸葛亮。这样,不仅保证了全班同学的全员参与,使每位同学都有了发表自己见解的机会;而且通过小组之间的交流、启发、讨论、总结,学生的思路被打开了,想法在逐步完善着,学生个人对最大公约数算理的理解都会有不同幅度的提升;学生的归纳、推理、判断等能力也在这里得到提高;学生的合作意识,团结协作的精神也在不断增强;当自己的意见被采纳时,学生也在尽情地享受着交流成功的乐趣。如果学生能把学习当成一件“美差”去做,这不正是我们最想看到的吗?

【《公约数》数学教案】相关文章:

《求两个数的最大公约数》数学教案06-22

五年级最大公约数的数学教案06-22

《最大公约数》教学设计11-29

公约数随堂练习题06-12

最大公约数的教学反思07-04

《最大公约数》教学设计06-16

求两个数的最大公约数的五年级数学教案06-23

求两个数的最大公约数的五年级数学教案08-31

五年级数学《公约数、最大公约数的认识》教案设计06-23