数学教案:完全平方公式

时间:2023-02-17 11:35:02 数学教案 我要投稿

数学教案:完全平方公式

  作为一名默默奉献的教育工作者,常常要写一份优秀的教案,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写呢?以下是小编精心整理的数学教案:完全平方公式,欢迎大家借鉴与参考,希望对大家有所帮助。

数学教案:完全平方公式

数学教案:完全平方公式1

  1.能根据多项式的乘法推导出完全平方公式;(重点)

  2.理解并掌握完全平方公式,并能进行计算.(重点、难点)

  一、情境导入

  计算:

  (1)(x+1)2; (2)(x-1)2;

  (3)(a+b)2; (4)(a-b)2.

  由上述计算,你发现了什么结论?

  二、合作探究

  探究点:完全平方公式

  【类型一】 直接运用完全平方公式进行计算

  利用完全平方公式计算:

  (1)(5-a)2;

  (2)(-3-4n)2;

  (3)(-3a+b)2.

  解析:直接运用完全平方公式进行计算即可.

  解:(1)(5-a)2=25-10a+a2;

  (2)(-3-4n)2=92+24n+16n2;

  (3)(-3a+b)2=9a2-6ab+b2.

  方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”.

  变式训练:见《学练优》本课时练习“课堂达标训练”第12题

  【类型二】 构造完全平方式

  如果36x2+(+1)x+252是一个完全平方式,求的值.

  解析:先根据两平方项确定出这两个数,再根据完全平方公式确定的值.

  解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=±26x5,∴+1=±60,∴=59或-61.

  方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.

  变式训练:见《学练优》本课时练习“课堂达标训练”第4题

  【类型三】 运用完全平方公式进行简便计算

  利用完全平方公式计算:

  (1)992; (2)1022.

  解析:(1)把99写成(100-1)的形式,然后利用完全平方公式展开计算.(2)可把102分成100+2,然后根据完全平方公式计算.

  解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;

  (2)1022=(100+2)2=1002+2×100×2+4=10404.

  方法总结:利用完全平方公式计算一个数的平方时,先把这个数写成整十或整百的数与另一个数的和或差,然后根据完全平方公式展开计算.

  变式训练:见《学练优》本课时练习“课堂达标训练”第13题

  【类型四】 灵活运用完全平方公式求代数式的值

  若(x+)2=9,且(x-)2=1.

  (1)求1x2+12的值;

  (2)求(x2+1)(2+1)的值.

  解析:(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.

  解:(1)∵(x+)2=9,(x-)2=1,∴x2+2x+2=9,x2-2x+2=1,4x=9-1=8,∴x=2,∴1x2+12=x2+2x22=(x+)2-2xx22=9-2×222=54;

  (2)∵(x+)2=9,x=2,∴(x2+1)(2+1)=x22+2+x2+1=x22+(x+)2-2x+1=22+9-2×2+1=10.

  方法总结:所求的展开式中都含有x或x+时,我们可以把它们看作一个整体代入到需要求值的代数式中,整体求解.

  变式训练:见《学练优》本课时练习“课后巩固提升”第9题

  【类型五】 完全平方公式的几何背景

  我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2-(a-b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是( )

  A.a2-b2=(a+b)(a-b)

  B.(a-b)(a+2b)=a2+ab-2b2

  C.(a-b)2=a2-2ab+b2

  D.(a+b)2=a2+2ab+b2

  解析:空白部分的面积为(a-b)2,还可以表示为a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+b2.故选C.

  方法总结:通过几何图形面积之间的数量关系对完全平方公式做出几何解释.

  变式训练:见《学练优》本课时练习“课堂达标训练”第7题

  【类型六】 与完全平方公式有关的探究问题

  下表为杨辉三角系数表,它的`作用是指导读者按规律写出形如(a+b)n(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)6展开式中所缺的系数.

  (a+b)1=a+b,

  (a+b)2=a2+2ab+b2,

  (a+b)3=a3+3a2b+3ab2+b3,

  则(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.

  解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n-1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1;(a+b)5的各项系数依次为1、5、10、10、5、1;因此(a+b)6的系数分别为1、6、15、20、15、6、1,故填20.

  方法总结:对于规律探究题,读懂题意并根据所给的式子寻找规律,是快速解题的关键.

  变式训练:见《学练优》本课时练习“课后巩固提升”第10题

  三、板书设计

  1.完全平方公式

  两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.

  (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

  2.完全平方公式的运用

  本节课通过多项式乘法推导出完全平方公式,让学生自己总结出完全平方公式的特征,注意不要出现如下错误:(a+b)2=a2+b2,(a-b)2=a2-b2.为帮助学生记忆完全平方公式,可采用如下口诀:首平方,尾平方,乘积两倍在中央.教学中,教师可通过判断正误等习题强化学生对完全平方公式的理解记忆。

数学教案:完全平方公式2

  一、教材分析

  完全平方公式是初中代数的一个重要组成部分,是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,对以后学习因式分解、解一元二次方程、配方法、勾股定理及图形面积计算都有举足轻重的作用。

  本节课是继乘法公式的内容的一种升华,起着承上启下的作用。在内容上是由多项式乘多项式而得到的,同时又为下一节课打下了基础,环环相扣,层层递进。通过这节课的学习,可以培养学生探索与归纳能力,体会到从简单到复杂,从特殊到一般和转化等重要的思想方法。

  二、学情分析

  多数学生的.抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。所以教学中应尽可能多地让学生动手操作,突出完全平方公式的探索过程,自主探索出完全平方公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力、合作交流能力和数学化能力。

  三、教学目标

  知识与技能

  利用添括号法则灵活应用乘法公式。

  过程与方法

  利用去括号法则得到添括号法则,培养学生的逆向思维能力。

  情感态度与价值观

  鼓励学生算法多样化,培养学生多方位思考问题的习惯,提高学生的合作交流意识和创新精神。

  四、教学重点难点

  教学重点

  理解添括号法则,进一步熟悉乘法公式的合理利用.

  教学难点

  在多项式与多项式的乘法中适当添括号达到应用公式的目的.

  五、教学方法

  思考分析、归纳总结、练习、应用拓展等环节。

  六、教学过程设计

  师生活动

  设计意图

  一.提出问题,创设情境

  请同学们完成下列运算并回忆去括号法则.

  (1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括号法则:

  去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合.

  也就是说,遇“加”不变,遇“减”都变.

  二、探究新知

  把上述四个等式的左右两边反过来,又会得到什么结果呢?

  (1) 4+5+2=4+(5+2) (2)4-5-2=4-(5+2)

  (3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)

  左边没括号,右边有括号,也就是添了括号,同学们可不可以总结出添括号法则来呢?

  (学生分组讨论,最后总结)

  添括号法则是:

  添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.

  也是:遇“加”不变,遇“减”都变.

  请同学们利用添括号法则完成下列练习:

  1.在等号右边的括号内填上适当的项:

  (1)a+b-c=a+( ) (2)a-b+c=a-( )

  (3)a-b-c=a-( ) (4)a+b+c=a-( )

  判断下列运算是否正确.

  (1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)

  (3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

  总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确.

  三、新知运用

  有些整式相乘需要先作适当的变形,然后再用公式,这就需要同学们理解乘法公式的结构特征和真正内涵.请同学们分组讨论,完成下列计算.

  例:运用乘法公式计算

  (1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

  (3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

  四.随堂练习:

  1.课本P111练习

  2.《学案》101页——巩固训练

  五、课堂小结:

  通过本节课的学习,你有何收获和体会?

  我们学会了去括号法则和添括号法则,利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算.

  我体会到了转化思想的重要作用,学数学其实是不断地利用转化得到新知识,比如由繁到简的转化,由难到易的转化,由已知解决未知的转化等等.

  六、检测作业

  习题14.2: 必做题: 3 、4 、5题

  选做题:7题

  知识梳理,教学导入,激发学生的学习热情

  交流合作,探究新知,以问题驱动,层层深入。

  归纳总结,提升课堂效果。

  作业检测,检测目标的达成情况。

数学教案:完全平方公式3

  教学目标

  1。使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;

  2。理解完全平方式的意义和特点,培养学生的判断能力。

  3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.

  4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。

  教学重点和难点

  重点:运用完全平方式分解因式。

  难点:灵活运用完全平方公式公解因式。

  教学过程设计

  一、复习

  1。问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

  答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解。我们学过的因式分解的方法有提取公因式法及运用平方差公式法。

  2。把下列各式分解因式:

  (1)ax4-ax2 (2)16m4-n4。

  解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

  (2) 16m4-n4=(4m2)2-(n2)2

  =(4m2+n2)(4m2-n2)

  =(4m2+n2)(2m+n)(2m-n)。

  问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

  答:有完全平方公式。

  请写出完全平方公式。

  完全平方公式是:

  (a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。

  这节课我们就来讨论如何运用完全平方公式把多项式因式分解。

  二、新课

  和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到

  a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。

  这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式。运用这两个式子,可以把形式是完全平方式的多项式分解因式。

  问:具备什么特征的多项是完全平方式?

  答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式。

  问:下列多项式是否为完全平方式?为什么?

  (1)x2+6x+9; (2)x2+xy+y2;

  (3)25x4-10x2+1; (4)16a2+1。

  答:(1)式是完全平方式。因为x2与9分别是x的平方与3的'平方,6x=2·x·3,所以

  x2+6x+9=(x+3) 。

  (2)不是完全平方式。因为第三部分必须是2xy。

  (3)是完全平方式。25x =(5x ) ,1=1 ,10x =2·5x ·1,所以

  25x -10x +1=(5x-1) 。

  (4)不是完全平方式。因为缺第三部分。

  请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?

  答:完全平方公式为:

  其中a=3x,b=y,2ab=2·(3x)·y。

  例1 把25x4+10x2+1分解因式。

  分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍。所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式。

  解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2。

  例2 把1- m+ 分解因式。

  问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?

  答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“ ”是 的平方,第二项“- m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式。

  解法1 1- m+ =1-2·1· +( )2=(1- )2。

  解法2 先提出 ,则

  1- m+ = (16-8m+m2)

  = (42-2·4·m+m2)

  = (4-m)2。

  三、课堂练习(投影)

  1。填空:

  (1)x2-10x+( )2=( )2;

  (2)9x2+( )+4y2=( )2;

  (3)1-( )+m2/9=( )2。

  2。下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多

  项式改变为完全平方式。

  (1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;

  (4)9m2+12m+4; (5)1-a+a2/4。

  3。把下列各式分解因式:

  (1)a2-24a+144; (2)4a2b2+4ab+1;

  (3)19x2+2xy+9y2; (4)14a2-ab+b2。

  答案:

  1。(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2。

  2。(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式。

  (2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式。

  (3)是完全平方式,a2-4ab+4b2=(a-2b)2。

  (4)是完全平方式,9m2+12m+4=(3m+2) 2。

  (5)是完全平方式,1-a+a2/4=(1-a2)2。

  3。(1)(a-12) 2; (2)(2ab+1) 2;

  (3)(13x+3y) 2; (4)(12a-b)2。

  四、小结

  运用完全平方公式把一个多项式分解因式的主要思路与方法是:

  1。首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解。有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解。

  2。在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b) 2;如果是负号,则用公式a2-2ab+b2=(a-b) 2。

  五、作业

  把下列各式分解因式:

  1。(1)a2+8a+16; (2)1-4t+4t2;

  (3)m2-14m+49; (4)y2+y+1/4。

  2。(1)25m2-80m+64; (2)4a2+36a+81;

  (3)4p2-20pq+25q2; (4)16-8xy+x2y2;

  (5)a2b2-4ab+4; (6)25a4-40a2b2+16b4。

  3。(1)m2n-2mn+1; (2)7am+1-14am+7am-1;

  4。(1) x -4x; (2)a5+a4+ a3。

  答案:

  1。(1)(a+4)2; (2)(1-2t)2;

  (3)(m-7) 2; (4)(y+12)2。

  2。(1)(5m-8) 2; (2)(2a+9) 2;

  (3)(2p-5q) 2; (4)(4-xy) 2;

  (5)(ab-2) 2; (6)(5a2-4b2) 2。

  3。(1)(mn-1) 2; (2)7am-1(a-1) 2。

  4。(1) x(x+4)(x-4); (2)14a3 (2a+1) 2。

  课堂教学设计说明

  1。利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。

  2。本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法。在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点。例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法。

数学教案:完全平方公式4

  一、教材分析

  本节内容在全书及章节的地位:《完全平方公式》是人教版数学八年级上册第十四章的内容。在此之前,学生已学习了多项式的乘法,这为过渡到本节的学习起着铺垫作用。本节课通过学生合作学习,利用多项式相乘法则和图形解释而得到完全平方公式,进而理解和运用完全平方公式,对以后学习因式分解,解一元二次方程都具有举足轻重的作用。

  作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透换元思想和数形结合思想 。

  二、学情分析

  学生刚学过多项式的乘法,已具备学习和运用完全平方公式的知识结构,但是由于学生初步学习乘法公式,认清公式结构并不容易,因此教学时要循序渐进。

  三、教学目标

  知识与技能

  1.完全平方公式的推导及其应用。

  2.完全平方公式的几何证明。

  过程与方法

  经历探索完全平方公式的过程,进一步发展符号感和推理能力。

  情感态度与价值观

  对学生观察能力、概括能力、语言表述能力的培养,以及数学思想的渗透。

  四、教学重点难点

  教学重点

  完全平方公式的推导过程;结构特点与公式的应用。

  教学难点

  完全平方公式结构特点及其应用。

  五、教法学法

  多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。

  六、教学过程设计

  师生活动

  设计意图

  一.复习多项式与多项式的乘法法则

  1、多项式与多项式的乘法法则内容。

  2、多项式与多项式的乘法练习。

  二.讲授新课

  完全平方公式的推导

  1、利用多项式与多项式的乘法法则和几何法推导完全平方(和)公式

  附:有简单的填空练习

  2、利用多项式乘法则和换元法推导完全平方 (差)公式

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  二、总结完全平方公式的特点

  介绍助记口诀:首平方,尾平方,首尾两倍乘积放中央。

  三、课堂练习

  1、改错练习

  2、例题讲解(总结利用完全平方公式计算的步骤)

  第一步选择公式,明确是哪两项和(或差)的平方;

  第二步准确代入公式;

  第三步化简。

  计算练习

  (1)课本110页第一题

  (2) (x-6)2 (y-5)2

  四、课堂小结:

  1、应用完全平方公式应注意什么?

  在解题过程中要准确确定a和b,对照公式原形的两边, 做到不丢项、不弄错符号、2ab时不能少乘以2。

  2、助记口诀

  复习多项式与多项式的乘法法则为新课的学习做准备。

  利用不同的.的方法来推导完全平方公式,让学生认知数学中的不同解题方法。

  利用助记口诀帮助学生更加准确的掌握完全平方公式的特点。

  通过课堂练习,使学生掌握用完全平方公式计算的步骤,加强学生解题的准确率。

  强调应用完全平方公式解题的注意点和助记口诀,提高学生解决问题的能力和解题的准确率。

【数学教案:完全平方公式】相关文章:

完全平方公式数学教案03-01

数学教案完全平方公式12-30

完全平方公式的说课稿02-11

《完全平方公式》的说课稿02-09

完全平方公式的教案11-27

完全平方公式教案07-18

《完全平方公式》教案02-15

完全平方公式与平方差公式教案11-26

完全平方公式与平方差公式的教案11-26