七年级数学上册教案

时间:2024-07-02 16:13:04 数学教案 我要投稿

七年级数学上册教案

  作为一名教师,就难以避免地要准备教案,借助教案可以更好地组织教学活动。教案应该怎么写呢?以下是小编精心整理的七年级数学上册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

七年级数学上册教案

七年级数学上册教案1

  教学目标

  1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

  2,能区分两种不同意义的量,会用符号表示正数和负数;

  3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

  教学难点正确区分两种不同意义的量。

  知识重点两种相反意义的量

  教学过程(师生活动)设计理念

  设置情境

  引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

  活中仅有这些“以前学过的数”够用了吗?下面的例子

  仅供参考.

  师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1。73米,体重58。5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…

  问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

  学生活动:思考,交流

  师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

  问题2:在生活中,仅有整数和分数够用了吗?

  请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

  (也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

  学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.

  这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

  以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

  分析问题

  探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

  这些问题都必须要求学生理解.

  教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

  这阶段主要是让学生学会正数和负数的表示.

  强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

  举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

  问题4:请同学们举出用正数和负数表示的例子.

  问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.

  能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

  课堂练习教科书第5页练习

  小结与作业

  课堂小结围绕下面两点,以师生共同交流的方式进行:

  1,0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;

  2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

  本课作业教科书第7页习题1。1第1,2,4,5(第3题作为下节课的'思考题。

  作业可设必做题和选做题,体现要求的层次性,以满足不同学生的需要

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的.

  负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子

  或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实

  存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例

  子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.

  这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,

  体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见

  的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。

七年级数学上册教案2

  【学习目标】:

  1、会用尺规画一条线段等于已知线段;

  2、会比较两条线段的长短;

  3、理解线段中点的 概念,了解“两点之间,线段最短”的性质。

  【学习重点】:线段 的中点概念,“两点之间,线段最短”的性质是重点;

  【学习难点】:画一条线段等于已知线段是难点。

  【导学指导】

  一、温故知新

  1、过A、B、C三点作直线,小 明说有三条,小颖说有一条,小林说不是一条就是三条,你认为______的说法是对的。

  二 、自主学习

  问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长 ?

  上面的实际问题可以转化为下面的数学问题:

  2、比较两条线段的`长短

  两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?

  我们先来回答下面的问题。

  怎样比较两个同学的身高?

  一是用尺子测量;二是站在一起比(脚在同一高度)。

  如果把两个同学看成两条线段,那么比较两条线段就有两种方法。

  (1)度量法:用刻度尺分别量出两条线段的长度从而进行比较。

  (2)把一条线段移到另一条线段上,使一端对齐,从而进行比较,我们称为叠合法。

  练习题

  一、填空

  1.我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________.

  2. 三条直线两两相交,则交点有_______________个.

  二、下列说法中正确的是( )

  A、两点之间线段最短

  B、若两个角的顶点重合,那么这两个角是对顶角

  C、一条射线把一个角分成两个角,那么这条射线是角的平分线

  D、过直线外一点有两条直线平行于已知直线

  9、下列说法:①平角就是一条直线;②直线比射线线长;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,其中正确的有( )

  A、0个B、1个C、2个D、3个

  同步四维训练

  知识一:直线的性质

  3.在开会前,工作人员进行会场布置,在主席台上由两人拉着一条绳子,然后以“准绳”为基准摆放茶杯,这样做的理由是(B )

  A.两点之间线段最短

  B.两点确定一条直线

  C.垂线段最短

  D.过一点可以作无数条直线

  知识点二:线段的作法及比较

  4.在跳绳比赛中,要在两条绳子中挑出较长的一条用于比赛,选择的方法是(A )

  A.把两条绳子的一端对齐,然后拉直两条绳子,另一端在外面的即为长绳

  B.把两条绳子接在一起

  C.把两条绳子重合观察另一端的情况

  D.没有办法挑选

七年级数学上册教案3

  第一课时

  教学目的

  让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。

  重点、难点

  1.重点:通过分析图形问题中的数量关系,建立方程解决问题。

  2.难点:找出“等量关系”列出方程。

  教学过程

  一、复习提问

  1.列一元一次方程解应用题的步骤是什么?

  2.长方形的周长公式、面积公式。

  二、新授

  问题3.用一根长60厘米的铁丝围成一个长方形。

  (1)使长方形的宽是长的专,求这个长方形的长和宽。

  (2)使长方形的宽比长少4厘米,求这个长方形的面积。

  (3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?

  不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。

  (3)当长方形的长为18厘米,宽为12厘米时

  长方形的面积=18×12=216(平方厘米)

  当长方形的长为17厘米,宽为13厘米时

  长方形的面积=221(平方厘米)

  ∴(1)中的长方形面积比(2)中的长方形面积小。

  问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积最大呢?并加以验证。

  实际上,如果两个正数的和不变,当这两个数相等时,它们的积最大,通过以后的学习,我们就会知道其中的道理。

  三、巩固练习

  教科书第14页练习1、2。

  第l题等量关系是:圆柱的体积=长方体的体积。

  第2题等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。

  四、小结

  运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。

  五、作业

  教科书第16页,习题6.3.1第1、2、3。

  第二课时

  教学目的

  通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。

  重点、难点

  1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。

  2.难点:找出能表示整个题意的等量关系。

  教学过程

  一、复习

  1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数

  本利和=本金×利息×年数+本金

  2.商品利润等有关知识。

  利润=售价-成本 ; =商品利润率

  二、新授

  问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?

  利息-利息税=48.6

  可设小明爸爸前年存了x元,那么二年后共得利息为

  2.43%×X×2,利息税为2.43%X×2×20%

  根据等量关系,得 2.43%x·2-2.43%x×2×20%=48.6

  问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得

  2.43%x·2·80%=48.6

  解方程,得 x=1250

  例1.一家商店将某种服装按成本价提高40%后标价,又以8折 (即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?

  大家想一想这15元的利润是怎么来的?

  标价的80%(即售价)-成本=15

  若设这种服装每件的成本是x元,那么

  每件服装的标价为:(1+40%)x

  每件服装的实际售价为:(1+40%)x·80%

  每件服装的利润为:(1+40%)x·80%-x

  由等量关系,列出方程:

  (1+40%)x·80%-x=15

  解方程,得 x=125

  答:每件服装的成本是125元。

  三三、巩固练习

  教科书第15页,练习1、2。

  四、小结

  当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

  五、作业

  教科书第16页,习题6.3.1,第4、5题。

  三课时

  教学目的'

  借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

  重点、难点

  1.重点:列一元一次方程解决有关行程问题。

  2.难点:间接设未知数。

  教学过程

  一、复习

  1.列一元一次方程解应用题的一般步骤和方法是什么?

  2.行程问题中的基本数量关系是什么?

  路程=速度×时间 速度=路程 / 时间

  二、新授

  例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?

  画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。

  1.坐公共汽车行了多少路程?乘的士行了多少路程?

  2.乘公共汽车用了多少时间,乘出租车用了多少时间?

  3.如果都乘公共汽车到火车站要多少时间?

  4,等量关系是什么?

  如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

  可设公共汽车从小张家到火车站要x小时。

  设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。

  三、巩固练习

  教科书第17页练习1、2。

  四、小结

  有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

  四、作业

  教科书习题6.3.2,第1至5题。

  第四课时

  教学目的

  1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。

  2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。

  重点、难点

  重点:工程中的工作量、工作的效率和工作时间的关系。

  难点:把全部工作量看作“1”。

  教学过程

  一、复习提问

  1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全

  部工作量的多少?

  2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成

  全部工作量的多少?

  3.工作量、工作效率、工作时间之间有怎样的关系?

  二、新授

  阅读教科书第18页中的问题6。

  分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。

  2.怎样用列方程解决这个问题?本题中的等量关系是什么?

  [等量关系是:师傅做的工作量+徒弟做的工作量=1)

  [先要求出师傅与徒弟各完成的工作量是多少?]

  两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2

  师傅完成的工作量为= ,徒弟完成的工作量为=

  所以他们两人完成的工作量相同,因此每人各得225元。

  三、巩固练习

  一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现

  由甲独做10小时;

  请你提出问题,并加以解答。

  例如 (1)剩下的乙独做要几小时完成?

  (2)剩下的由甲、乙合作,还需多少小时完成?

  (3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?

  四、小结

  1.本节课主要分析了工作问题中工作量、工作效率和工作时间之

  间的关系,即 工作量=工作效率×工作时间

  工作效率= 工作时间=

  2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。

  五、作业

  教科书习题6.3.3第1、2题。

七年级数学上册教案4

  教学目标:

  知识目标:有理数的概念,有理数的分类,熟练的写出某集合中的数。

  过程与方法:感受分类的思想,分类的依据。

  情感态度价值观:感受数的对称美,

  课堂教学过程

  一.情境问题:

  到目前为止,你能举出哪些数,你能把这些数分类吗?你的分类依据是什么?有理数:整数正整数,0,负整数。

  分数正分数,负分数。

  有理数:正有理数

  负有理数。

  二.尝试应用:

  1课本第8页练习。补充:整数集合,负整数集合,分数集合。

  2判断:1.正整数和负整数统称为整数。

  2.小数不是有理数。

  3正数和负数统称为有理数。

  4分数包括正分数和负分数。

  http://baogao.oh100.com 是有理数。

  三.补偿提高:

  将下列的数填在相应的`括号中。

  -8.5,6,-21/5,0,-200,+13/5,-2,35,0.01,+86.

  正整数集合:

  负整数集合:

  正分数集合:

  负分数集合:

  正数集合:

  分数集合:

  非正数集合:

  自然数集合:

  思考:既是正数又是整数的数是什么数?既是负数又是分数的数是什么数?

  四.小结与反思:

  本节课用到得思想,重要知识,注意问题,你的疑惑.

  教后反思:

  本节对有理数的分类:按正负来分,按整数和分数来分。明确分类标准。能正确的写出某些数的集合。

  本节需要学生熟练。再有理数的分类的探讨上二班较流畅,但是正负来分为落实好。

七年级数学上册教案5

  知识目标

  使学会解比例的方法,进一步理解和掌握比例的基本性质。

  能力目标

  联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。

  情感目标

  利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。

  重点

  使学会解比例的方法,进一步理解和掌握比例的基本性质。

  难点

  体现解比例在生产生活中的广泛应用。

  教学过程

  教学预设个性修改

  目标导学,复习激趣,自主合作,汇报交流,变式训练

  创境激疑一、旧知铺垫

  1、什么叫做比例?

  2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?

  3、比例有几种表示形式?

  合作探究二、探索新知

  1、出示埃菲尔铁挂图

  2、出示例题

  (1)、读题。

  (2)、从这道题里,你们获得了哪些信息?

  (3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)

  (4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)

  (5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)

  (6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)

  (7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

  (8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)

  (9)、这样在组成比例的.四个项中,我们知道其中的几个项?还有几个项不知道?

  (10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)

  (11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做? (指名板演)

  (12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)

  (13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)

  (14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。

  (15)、我们解出的答案对不对呢?怎么知道?可以怎样检验? (把结果代入题目中看看对应的比的比值是不是能成比例.)

  (16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。

  2、教学例3

  过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?

  (1)、出示例3,问:这题与刚刚那个比例有哪些不同?

  (2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)

  (3)、在这个比例里,哪些是外项?哪些是内项?

  (4)、解答(提问:你们是怎么解答的?)、检验。

  (5)、 =

  拓展应用在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?

  总结这节课主要学习了什么内容?

  作业布置教材43页5题

  板书设计解比例

  例3、解比例=

  解:2.4 =1.5×6

  =( )×( )

  ( )

  教学札记

七年级数学上册教案6

  教学目标:

  1、能将正方体、长方体、棱锥、棱柱展开成平面图形;并由它们的平面图形折叠成立体图形

  2、在操作活动中认识棱柱的某些特性;

  3、经历折叠、模型制作等活动,发展空间观念,积累数学活动经验;

  教学重点:

  通过活动认识归纳出棱柱的特性,并能初步感受到研究空间问题的思维方法

  教学难点:

  根据简单的立体图形判别平面图形;反之,根据平面图形判别立体图形。

  教学过程:

  一、导入情境

  让学生自己出示现实生活中某些商品的包装盒(课前准备工作),制作这些纸盒,我们是先根据它们表面展开后图形的形状剪裁纸张,再折叠围成,从而引入课题——展开与折叠。

  二、通过动手操作,加强对图形(棱柱)的感受,体会棱柱的性质做一做

  活动一:

  1、如图1所示的平面图形经过折叠能否围成一个棱柱?请同学们以同桌的'形式动手做做看。

  2、操作完后,请学生展示他们制作的模型。

  3、实践验证图1所示的平面图形经过折叠可以围成如图2所示的棱柱。

  4、教师介绍棱柱的各部分名称。

七年级数学上册教案7

  教学目标

  1.了解的概念和的画法,掌握的三要素;

  2.会用上的点表示有理数,会利用比较有理数的大小;

  3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

  教学建议

一、重点、难点分析

  本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与上点的对应关系的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础。

  二、知识结构

  有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法。

  三、教法建议

  小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念。是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的.位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。

  关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

  四、的相关知识点

  1.的概念

  (1)规定了原点、正方向和单位长度的直线叫做。

  这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的

  (2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。

  以是理解有理数概念与运算的重要工具。有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想。另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对的学习。

  2.的画法

  (1)画直线(一般画成水平的)、定原点,标出原点“O”。

  (2)取原点向右方向为正方向,并标出箭头。

  (3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。

  (4)标注数字时,负数的次序不能写错,如下图。

  3.用比较有理数的大小

  (1)在上表示的两数,右边的数总比左边的数大。

  (2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

  (3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写成“ ”。

  五、定义的理解

  1、规定了原点、正方向和单位长度的直线叫做,如图1所示。

  2、所有的有理数,都可以用上的点表示。例如:在上画出表示下列各数的点(如图2)。

  A点表示-4; B点表示-1.5;

  O点表示0; C点表示3.5;

  D点表示6。

  从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:

  正数都大于0,负数都小于0,正数大于一切负数。

  因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。

  同理,表示是负数;反之是负数也可以表示为。

  3、正常见几种错误

  1)没有方向;

  2)没有原点;

  3)单位长度不统一。

七年级数学上册教案8

  教学目标:

  知识与技能:

  通过探索七巧板的制作方法及几何图形间的相关联系,掌握基本的识图、作图技能。

  通过七巧板的制作、拼摆等活动,丰富对平行、垂直及角等有关内容的认识并熟悉其几何语言的表述。

  过程与方法:

  在七巧板的制作及图形的性质、变换活动中积累数学活动经验。

  在七巧板拼图活动中,对所作图形做出合理的推断或猜测,培养学生的想象能力和创新能力。

  能结合自己的图形发现其中的平行线、垂线、直角、锐角、钝角,培养学生的观察、分析、概括的能力。

  情感与态度:

  认识七巧板是我国人民发明的世界优秀文化,是我国人民对数学发展的重大贡献

  在用七巧板拼图的过程中获得成功的体验。

  能在自己独立思考的基础上,积极参与小组的讨论,敢于发表自己的观点,并能尊重与理解他人。在交流合作的过程中,培养团队精神和创新精神。

  教材分析:

  学生生活的空间中存在着丰富的图形,图形的直观性是学生认识和理解自然界及社会的绝妙工具。在这种真切的感知下,经历探究七巧板的制作过程从而体会几何图形间的相互联系,进而在七巧板的制作和拼图活动中,培养学生的实践能力和创新精神,在小组的'合作交流与相互评价中,体会不同图形的奇幻,以及其中所蕴藏的数学知识,丰富和发展学生的数学活动经历和体验。

  教学重点:探究七巧板的制作方法并制作一副七巧板。

  教学难点:通过拼图时所表现的几何图形,把握已经学过的平行、垂直及角度等有关内容的有机联系和几何语言的表达。

  学生状况分析:

  我所教的两个班是微机班,从进校摸底考试来看,学生普遍基础较差,有些甚至就是小学二、三年级的水平。五班整体水平好于六班,六班两极分化严重。在与学生接触后,逐渐了解到大多数孩子成长在不完整的家庭中,家长素质又普遍较差,孩子承受了很多家庭带给他们的压力。面对这样的学生,在教学中,更多的是以提高在数学方面的兴趣,调动他们主观的学习积极性,进而让他们感受到学习的乐趣,找回那份自信心,从而愉快的体验生活中的数学模型,用正确的方法指导学习。

  教学过程:

  (1)课题引入:

  活动说明:唤起学生对七巧板的记忆,激起学生的学习兴趣。

  (2)七巧板的起源:

  活动说明:让学生在丰富的史料中感受七巧板是我国古代智慧的结晶。

  (3)七巧板的制作:

  活动说明:通过七巧板中所蕴藏的数学知识,加深学生对线段、点、平行线、垂线、锐角、直角、钝角等有关几何概念的认识,强化几何语言的正确表达,丰富学生的数学意识。

  (4)七巧板的拼图:

  活动说明:培养学生的想象能力及团队合作精神,符合探究性学习和合作学习的要求,同时让学生明白数学知识无处不在。

  (5)课后思考

  活动说明:引导学生进一步思考组成七巧板的各个几何图形间的相互联系。

  (6)课后探索

  活动说明:给学生一个表现自己想象力和创造力的空间和时间,使学生各自的个性得到充分的体现。实现人人学有价值的数学、人人都能获得必需的数学、不同的人在数学上得到不同的发展的目标。

七年级数学上册教案9

  一、目标

  1.用它们拼成各种形状不同的四边形,并计算它们的周长。

  (鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)

  2.教师揭示以上这些工作实际上是在进行整式的加减运算

  3.回顾以上过程 思考:整式的.加减运算要进行哪些工作?

  生1:“去括号”

  生2:“合并同类项”

  师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用,

  二、揭示如何进行整式的加减运算

  1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

  2.教学例二 例2 求2a2-4a+1与-3a2+2a-5的差.

  (本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)

  解:(2a2-4a+1)-(-3a2+2a-5)

  =2a2-4a+1+3a2-2a+5

  =5a2-6a+6

  3.拓展练习

  (1)求多项式2x -3 +7与6x -5 -2的和.

  提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)

  (2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)

  (4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)

  4.教学例3

  先化简下式,再求值:

  (做此类题目应先与学生一起探讨一般步骤:

  (1)去括号。

  (2)合并同类项。

  (3)代值)

  解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3

  =15a2b –5ab2+4ab2 -12a2b)

  =3a2b –ab2

  三、小结

  1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

  2.进行化简求值计算时

  (1)去括号。

  (2)合并同类项。

  (3)代值

  3.通过本节课的学习你还有哪些疑问?

  四、布置作业

  习题4.5 2. (3) ;4. (2);5.。

  五、课后反思

  省略

七年级数学上册教案10

  教学目标

  1.进一步掌握有理数的运算法则和运算律;

  2.使学生能够熟练地按有理数运算顺序进行混合运算;

  3.注意培养学生的运算能力.

  教学重点和难点

  重点:有理数的混合运算.

  难点:准确地掌握有理数的运算顺序和运算中的符号问题.

  课堂教学过程设计

  一、从学生原有认知结构提出问题

  1.计算(五分钟练习):

  (5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;

  (13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;

  (17)(-2)4; (18)(-4)2; (19)-32; (20)-23;

  (24)3.4×104÷(-5).

  2.说一说我们学过的有理数的运算律:

  加法交换律:a+b=b+a;

  加法结合律:(a+b)+c=a+(b+c);

  乘法交换律:ab=ba;

  乘法结合律:(ab)c=a(bc);

  乘法分配律:a(b+c)=ab+ac.

  二、讲授新课

  前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?

  1.在只有加减或只有乘除的同一级运算中,按照式子的`顺序从左向右依次进行.

  审题:(1)运算顺序如何?

  (2)符号如何?

  说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.

七年级数学上册教案11

  一、背景知识

  《有理数》选自浙江版《义务教育课程标准实验教科书·数学·七年级上册》第一章《从自然数到有理数》中的第二节,这一章是开启整个初中阶段代数学习的大门。《有理数》是本章的第二节。本节内容让学生在现实的情境中理解负数的引入确实是实际生活的需要,感受到有理数应用的广泛性,是在小学学习自然数和分数之后,数的概念的第一次扩充,是自然数和分数到有理数的衔接与过渡,并且是以后学习数轴、绝对值及有理数运算的基础。

  二、教学目标

  1、知识目标:理解有理数产生的必然性、合理性;会判断一个数是正数还是负数,能灵活运用正、负数表示生活中具有相反意义的量;会将有理数从不同的角度进行分类。

  2、过程与方法:利用学生身边熟悉的事物引入负数、学习有理数;运用有理数表示现实生活问题中的量;让学生经历有理数概念的形成及运用过程,领会分析、总结的方法。

  3、情感与能力目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过实际问题的解决和从不同角度对有理数分类,可提高学生应用数学能力和培养学生的分类思想。

  三、教学重点、难点

  重点:能应用正、负数表示具有相反意义的量和对有理数进行合理的分类。

  难点:用有理数表示实际生活中的量。

  四、教学设计

  (一)创设情境 探求新知

  如图表示某一天我国5个城市的最低气温。

  请同学们合作讨论下列问题:

  1、-20℃、-10℃、5℃、0℃、10℃ 这几个量分别表示什么?

  2、你还在哪些地方见到过用带有“-”号的数来表示某一种量,请讲出来。

  把学生讲出的较恰当的量写到黑板上,再引导学生把与之相对的量分别写在后边,如:零下20℃——零上10℃, 降低5米——升高8米, 支出100元——收入500元。指出这样的量就是具有相反意义的量,并从以下方面加以理解。

  (1)具有相反意义的'量是:意义相反,与值无关。

  (2)区分“意义相反”与“意义不同”。

  反问学生:以上具有相反意义的量能用我们学过的自然数和分数表示出来吗?

  显然是不能的。为了解决这样的实际问题,我们需要引进一种新的数——负数。

  我们把一种意义的量(如零上)规定为正,用学过的数(零除外)来表示,这样的数叫做正数,正数前面可以放上正号“+”来表示(常省略不写),;把另一种与之意义相反的量规定负,用学过的数(零除外)前面放上负号“-”来表示,这样的数叫做负数(负号不能省略)。

  如:“+2”读做“正2”、“-3.3”读做“负3.3”等。

  这样我们学过的数中又增加了新的数——负整数和负分数;相应地我们学过的自然数和分数分别称为正整数和正分数。

  (二)运用新知 体验成功

  填空:

  1)规定盈利为正,某公司去年亏损了2.5万元,记做__________万元,今年盈利了3.2万元,记做__________万元;

  2)规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔__________米;吐鲁番盆地最低处低于海平面155米,记做海拔__________米;

  3)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。汽车向北行驶75km,记做________km(或_______km),汽车向南行驶100km,记做________km;

  4)下降米记做米,则上升米记做__________米;

  5)如果向银行存入50元记为50元,那么-30.50元表示__________;

  6)规定增加的百分比为正,增加25%记做__________,-12%表示__________.

  利用第3)题说明在表示具有相反意义的量时,把哪一种意义的量规定为正,是相对的例如我们可以把向南100米记做+100km,那么向北记做-75km.但习惯上,人们常把上升、运进、零上、增加、收入等规定为正。

  (请同学独立完成,然后同桌同学相互评价。)

  (三) 师生互动,继续探究

  (合作学习)读一读这些数0,880,-20xx,+123,-233,-2.5,+3.2,+918,-155,+75,-100,25%,-12%,请根据你认定的数的特征进行分类,并说出分类的特征。

  让学生四人小组合作讨论完成。

  估计可能出现的正确结论有:

  ;

  ;

  对于较为正确的分类,并能说出特征的都将给予肯定,重视个体差异,体现多元评价的思想,发挥评价的激励作用,保护学生的自尊心,增强学生的自信心.然后教师给出规范的分类:

  正整数、零和负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

  说明:①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③零是整数,零既不是正数,也不是负数.

  (四) 分层练习,巩固提高

  为了使学生实现从掌握知识到运用知识的转化,使知识教育与能力培养结合起来,设计分层练习。

  例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?

  -8.4, 22, ,0.33, , -9.

  练习1 判断表中各数属于什么数,在相应的空格内打“√” .

  正整数

  整数

  分数

  正数

  负数

  有理数

  20xx

  √

  √

  √

  √

  -4.9

  0

  -12

  探究活动:

  练习2 如图,两个圈内分别表示所有正数组成的正数集合和所有整数组成的整数集合.请写出3个分别满足下列条件的数:

  1)属于正数集合,但不属于整数集合的数;

  2)属于整数集合,但不属于正数集合的数;

  3)既属于正数集合,又属于整数集合的数.

  将它们分别填入图中适当的位置.你能说出这两个圈的重叠部分表示什么数的集合吗?

  通过多角度的练习,并对典型错误进行讨论与矫正,使学生巩固所学内容,同时完成对新知的迁移。

  (五)概括梳理,形成系统

  采取师生互动的形式完成。即:

  学生谈本节课的收获,教师适当的补充、概括,以本节知识目标的要求进行把关,确保基础知识的当堂落实。

  (六)布置作业

  1、课后作业

  2、设计题可根据自己的喜好和学有余利的同学完成。

七年级数学上册教案12

  【知识与技能】

  1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.

  2.了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.

  【过程与方法】

  通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.

  【情感态度】

  通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.

  【教学重点】

  理解算术平方根的概念.

  【教学难点】

  根据算术平方根的概念正确求出非负数的算术平方根.

  一、情境导入,初步认识

  教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.

  问题1求出下列各数的平方.

  1,0,(-1),-1/3,3,1/2.

  问题2下列各数分别是某实数的平方,请求出某实数.

  25,0,4,4/25,1/144,-1/4,1.69.

  对学生进行提问,针对学生可能会得出的`一个值,由学生互相交流指正,再由教师指明正确的考虑方式.

  由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.

  22=4,(-2) =4,故平方为4的数为2或-2.

  问题3学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?

  分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.

  《6.1.2平方根》课堂练习题

  2.(绵阳中考)±2是4的(A)

  A.平方根B.相反数

  C.绝对值D.算术平方根

  3.下面说法中不正确的是(D)

  A.6是36的平方根B.-6是36的平方根

  C.36的平方根是±6 D.36的平方根是6

  4.下列说法正确的是(D)

  A.任何非负数都有两个平方根

  B.一个正数的平方根仍然是正数

  C.只有正数才有平方根

  D.负数没有平方根

  《6.1平方根》课时练习含答案

  15.下面说法正确的是( )

  A.4是2的平方根

  B.2是4的算术平方根

  C.0的算术平方根不存在

  D.-1的平方的算术平方根是-1

  答案:B

  知识点:平方根;算术平方根

  解析:

  解答:A、4不是2的平方根,故本选项错误;

  B、2是4的算术平方根,故本选项正确;

  C、0的算术平方根是0,故本选项错误;

  D、-1的平方为1,1的算术平方根为1,故本选项错误.

  故选B.

  分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.

七年级数学上册教案13

  一、教学目标

  1、知识与技能

  (1)初步了解立体图形和平面图形的概念、

  (2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体、

  2、过程与方法

  (1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉、

  (2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体、

  3、情感、态度、价值观

  (1)、形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的`审美情趣、

  二、教学重点、难点:

  教学重点:常见几何体的识别

  教学难点:从实物中抽象几何图形、

  三、教学过程

  1、创设情境,导入新课、

  (1)同学们,不知你们有没有仔细地观察过我们生活的周围,如果你认真观察的话,你会发现我们生活在一个多姿多彩的图形世界里、引导学生观察08年奥运村模型图,你能从中找到一些你熟悉的图形吗?

  (2)用幻灯片展示一些实物图片并引导学生观察、从城市宏伟的建筑到江南水乡的小桥流水,从高科技产品到日常小玩意,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代的雕塑,从自然界形态各异的动物到北京的申奥标志……图形的世界是丰富多彩的

  2、直观感知,识别图形

  (1)对于各种各样的物体,数学中关注是它们的形状、大小和位置、

  (2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形、观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点、

七年级数学上册教案14

  一、教学目标

  知识与技能

  1.理解单项式及单项式系数、次数的概念。

  2.会准确迅速地确定一个单项式的系数和次数。

  过程与方法

  通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

  情感态度与价值观

  初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

  二、重点难点

  重点

  列单项式表示数量关系,单项式及其系数、次数的意义.

  难点

  列单项式表示数量关系.

  三、学情分析

  本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

  四、教学过程设计

  问题设计师生活动设计意图

  [活动1]

  举世瞩目的.青藏铁路于20xx年7月1日建成通车,实现了几代中国人梦寐以求的愿望。青藏铁路是世界上海拔最高、线路最长的高原铁路。青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答问题:

  列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

  提问:字母表示数有什么意义?

  学生独立思考,尝试解决

  解答:

  1002=200千米

  1003=300千米

  100t=100t千米

  我们用含字母t的式子100t表示路程。用字母表示数后,可以用含有字母的式子把数量关系简明地表达出来,更适合一般规律的表达。

  从学生已有的数学经验和现实问题情境出发,感受用字母表示数的意义。

  以青藏铁路为引例,对学生进行爱国主义教育的德育渗透。

七年级数学上册教案15

  一、教学目标:

  通过观察生活中的大量物体,认识基本的几何体,数学教案-北师大版数学(七年级上)新教材教案 生活中的图形(一)。

  经过比较不同的物体学会观察物体间的不同特征,体会几何体间的联系与区别。

  二、教学过程:

  1、引入:

  (1)幻灯投影P2的彩图,利用现实生活的背景让学生说出熟悉的几何体(如球体、长方体、正方体等)

  (2)展出圆柱、圆锥、正方体、棱柱、球的模型,让学生分别说出这几种几何体的名称。

  2、过程:

  (1)组织学生分组讨论圆柱、圆锥的共同点与异同点,然后学生回答。

  (2)组织学生分组讨论棱柱、圆锥的共同点与异同点,老师巡场指导。

  (3)学生回答问题。老师鼓励学生大胆说出自己的答案,并对每一种答案再交由学生共同讨论它的正确性。

  (4)幻灯演示,棱柱的两种类型:直棱柱与斜棱柱,一般棱柱仅指直棱柱。

  (5)组织学生讨论

  如何对以上几何体进行分类:

  1)按底面

  2)按侧面

  学生上台动手将这几种几何体进行分类,老师让学生试着说明归类的理由是什么?无论学生说什么老师都应用鼓励的目光让学生说出自己的答案。

  3、议一议:

  投影P3的图片让学生感知这是现实生活中的一角,可能是书房的一角可能是教室的一角,让学生分组讨论:

  (1)、上图中哪些物体的形状与长方体、正方体类似?

  (学生在回答桌面时老师应指出桌面是指整个层面)

  (2)上图中哪些物体的.形状与圆柱、圆锥类似?挂篮球的网袋是否类似于圆锥?为什么?

  (3)请找出上图中与笔筒形状类似的物体?

  (4)请找出上图中与地球形状类似的物体?

  4、想一想:

  生活中还有哪些物体的形状类似于棱柱、圆柱、圆锥与球。

  5、小结:

  与学生总结本节课所学的内容,通过感知不同的物体体验现实生活中原来有如此多的几何体,几何体在我们的生活中无处不在。我们也学会简单地区别不同的物体。

  6、作业:

  P4习题

【七年级数学上册教案】相关文章:

平移人教版数学七年级上册教案10-14

七年级上册数学教案10-15

实数数学七年级上册教案10-14

七年级数学上册教案01-19

七年级数学教案上册模板10-14

七年级数学上册教案模板10-14

七年级上册数学优秀教案范文03-07

实数人教版数学七年级上册教案12-22

七年级上册数学教案优秀02-01