八年级数学说课稿

时间:2022-12-26 19:31:33 数学说课稿 我要投稿
  • 相关推荐

八年级数学说课稿合集15篇

  作为一名教师,通常会被要求编写说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。怎样写说课稿才更能起到其作用呢?下面是小编为大家收集的八年级数学说课稿,希望对大家有所帮助。

八年级数学说课稿合集15篇

八年级数学说课稿1

  一、教材分析

  直角三角形的性质是初二年级上半学期第19章第8节的内容,共分为3个课时,一为直角三角形两个锐角互余和斜边上的中线等于斜边的一半两个性质定理;二为直角三角形30度所对的边等于斜边的一半及其逆定理,三为综合训练。本堂课为第一课时的内容。在此之前学生已经学习过一般三角形的相关性质如内角和性质、外角性质、三边关系以及特殊三角形如等腰三角形和等边三角形的性质和判定,以及三角形全等等足够的知识基础。本课为研究特殊三角形——直角三角形的入门,是以后综合图形证明的一个基础。

  二、学生分析

  总体来说,绝大多数学生处于中等偏下水平,对几何证明的学习或多或少有些心里障碍,尤其是证题思路的形成,但是仍处于对于新事物好奇的阶段,所以可以通过老师课堂上得有效引导和阶梯是铺垫提示让学生学有所成。

  三、教学目标

  1、掌握直角三角形两个锐角互余和斜边上的中线等于斜边的一半这两个性质定理,并能初步运用其解决简单的几何问题;

  2、经历定理推导过程,体会实验—猜想—论证的完整过程。

  3、通过探究直角三角形的性质,培养学生的学习兴趣和严谨的学习态度。

  四、教学难点、重点

  1、经历“直角三角形斜边上的中线等于斜边的一半”这一性质定理的推导过程

  2、直角三角形两个性质定理的简单运用

  五、教学设计过程

  (一)性质1的引入和训练

  1、利用2分钟预备铃学生朗读自己整理的已经学过的有关三角形的知识点;

  2、开门见山,提问直角三角形两个锐角的关系,得出性质1:直角三角形两个锐角互余;重点强调几何书写,让学生了解在证明书写时如何规范应用这个性质

  3、性质1的应用,由易入难进行训练,准备习题如下:

  1、在直角三角形中,有一个锐角为480,那么另一个锐角度数为

  2、等腰直角三角形的一个锐角等于__________

  3、如图,在Rt△ABC中,∠ACB=900,CD是斜边AB上的高,

  那么图中有几个直角三角形?有几组角互余?有哪些角相等?

  第1小题是最简单的应用;

  第2小题为后面性质2的推导过程中特殊的直角三角形——等腰直角三角形中斜边上得中线等于斜边的一半打个小基础,而且这也是一个常识知识。在两题的训练中,帮助学生熟悉性质1;

  第3小题是课本上得例题,通过他训练学生的思维和规范书写,同时对这个常规的母子三角形进一步加深印象。

  (二)性质2的探索和简单应用

  首先从等腰直角三角形这一特殊的直角三角形入手,学生容易获得斜边上的中线等于斜边的一半的结论,考虑到班级的部分学生基础并不是很好,所以这里设计了个问题——图中有几个等腰三角形?启发学生得出结论。然后通过提问是否在一半直角三角形中也能获得这个结论,引发学生的思考。然后鼓励学生动手测量实验获得猜想在组织学生讨论引导他们用演绎证明的方法严谨的推导出直角三角形的性质2。这部分的证明是整堂课的难点,需要老师的有效引导和启发,最后性质的得出也让学生感受到从特殊到一般思想方法和实验—猜想—论证的完整定理推导过程。同时通过证明的过程进一步学习添加辅助线的技巧,学会用运动的眼光来看待几何证明问题,如果时间来得及想介绍下同一法的证明方法,为一部分好的学生开阔一下思路。

  归纳出定理2后同样给出几何规范书写,强调使用条件有2个,一是直角三角形二是斜边的中线。

  然后准备由易到难的习题练习如下:

  (1)在直角三角形中,斜边长6,那么该三角形的斜边上的中线长为________.

  在直角三角形中,斜边上的中线为6,那么该三角形的斜边长为_________

  (2)直角三角形斜边上得中线和高分别是8和5,则这个三角形的面积是_______

  (3)在△ABC中,∠ACB=90°,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB=_________.

  (变式:在△ABC中,∠ACB=9

  0°,CE是AB边上的中线,若∠A=30°,那么与CE相等的线段有_______________)

  第1题是基础训练;

  第2题进一步提高思维,知道三角形面积需要知道一边和这边上得高,高已知就需要确定这一边的长,再通过直角三角形斜边上的中线这个条件获得这一边的长从而解决问题,培养学生从题目中分析出有用的信息;

  第3题不难,但是没有图形,需要学生自己根据题意画出草图,在几何学习过程中图是最重要的环节之一,而我们的学生对于没有图的题需要自己画图的题存在不小的问题,所以利用这个题训练他们的正确画图能力。

  变式把一个锐角改成30度,也是为了下一节中直角三角形中30°的角所对的边和斜边之间数量关系讨论做一个铺垫,起到承上启下的作用。

  (三)巩固提高训练

  这里通过2个习题进行对于定理2的应用训练,同时关注书写的规范

  1、【例2】如图,在△ABC中,AD⊥BC,E、F分别是AB、AC上的中点,

  且DE=DF.求证:AB=AC

  2、已知:如图,BF、CE分别是△ABC的高,N、D分别是EF、BC的中点,分别联接ED、FD。求证(1)ED=FD(2)DNEF

  第二题的原题中没有2个小问题,而是直接提问DNEF,这里可根据学生实际的情况考虑是否给出第一小问题作为铺垫。在引导学生进行证明的过程中帮助学生去找题中得已知条件,看有没有直角或垂直的条件,有没有中点的条件,再结合看是不是存在直角三角形斜边上得中线情况。尤其是当图形复杂时要耐得下心来寻找关键的条件。

  (四)课堂小结

  让学生说说自己这堂课的收获,学生可能对2个定理影响深刻,老师要从分析方法上提点学生注意辅助线的添加方法和图形中找有用的条件的方法

  (五)作业布置

  不把练习册直接拿来用,而是根据学生的情况进行增减的作业布置,让一般的学生牢牢掌握基础,让好的学生思维获得进一步提高,分层作业的设置尽量考虑所有学生。

  (六)作业指导

  对于回家作业进行有针对性的简要分析、训练思维,帮助学生加强分析题得能力,同时帮助部分基础比较弱得同学理清思路

  附:

  19.8(1)作业单

  一、任务单上未完成的作业完成

  二、练习册上部分习题

  1、在直角三角形中,有一个锐角为380,那么另一个锐角度数为

  2、在Rt△ABC中,∠C=900,∠A-∠B=300,那么∠A=,∠B=

  3、如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,点E是边AC的中点,DE=2cm,∠BCD=20°,那么AC=_______cm,∠A=_______°

  4、在直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为________

  5、已知:如图,在△ABC中,∠B=∠A,CD⊥BC,CE是边BD上的中线

  求证:AC=BD

  6、已知:如图,AD、BE相交于点C,AB=AC,EC=ED,M、F、G分别是AE、BC、CD的中点。

  求证:(1)AE=2MF

  (2)MF=MG

  7、已知Rt△ABC和Rt△ADC有公共的斜边AC,点M是AC的中点,点N是BD的中点,求证直线MN垂直平分线段BD

  【说明】1、2、4题是两个性质定理的基础训练,第3题结合图形,考察学生对于图形的简单分析能力,利用已知条件和掌握的知识技巧解题。

  第5题通过证明线段的倍分问题,培养学生“倒推”的分析能力,通过角的转化,等角对等边等知识的综合运用,同时考察学生对上课复习的如何证明线段倍分关系的方法进行考察。

  第6题乍一看图形比较复杂,其实只需要需找到图形中得2个直角三角形即可解决问题,这里需要运用到等腰三角形的三线合一性质的运用,难点在于克服图形复杂造成的无力感,这是很多学生的一个通病,看到图形复杂就先一步在心里上给自己设置障碍,通过此题鼓励学生细心的分析题,用已知条件创造中间结论并结合图形解决问题。

  第7题其实是课堂上巩固提高训练部分中第2题的变式,只需要添加2条辅助线就和那一题一样了,考察学生是不是能看透图形的本质已经相关问题的迁移以及辅助线的添加技巧。

  三、选作作业:书上课后第4题、练习册最后一题

  这是需要添加辅助线,构造出直角三角形斜边上得中线从而利用新学的知识解决的问题,作为选做题一是之前的作业量对大部分同学而言足够了,但是对个别好的学生还是学有余的,无论是时间上还是在思维训

  练上,这两道题讲会的后面的课堂上老师做引导再作为全班的作业,这里可以让一些学生先自行完成,最好在后面的课堂上由此部分学生来点播其他的同学。

八年级数学说课稿2

  1、初二数学上册角的平分线的性质_教学内容分析

  本节课是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的。内容包括角平分线的作法、角平分线的性质及初步应用。作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。因此,本节内容在数学知识体系中起到了承上启下的作用。同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。

  2、初二数学上册角的平分线的性质_学生分析

  刚进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导。根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础。

  3、初二数学上册角的平分线的性质_教学环境分析

  利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律。

  4、初二数学上册角的平分线的性质_教学重点、难点

  本节课的教学重点为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。教学难点是:1、对角平分线性质定理中点到角两边的距离的正确理解;2、对于性质定理的运用。

  教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习。

八年级数学说课稿3

  一、教材分析

  说课内容:

  《整式的乘除与因式分解》的《完全平方公式》。

  教材的地位和作用:

  完全平方公式是初中数学中的重要公式,在整个中学数学中有着广泛的应用,重要的数学方法“配方法”的基础也是依据完全平方公式的。而且它在整式乘法,因式分解,分式运算及其它代数式的变形中起作十分重要的作用。

  本节内容共安排两个课时,这次说课是其中第一个课时。完全平方公式这一教学内容是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,教材从具体到抽象,由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,逐步培养学生的逻辑推理能力和建模思想。

  教学目标和要求:

  由课标要求以及学生的情况我将三维目标定义为以下三点:

  知识与技能目标:了解公式的几何背景,理解并掌握公式的结构特征,能利用公式进行计算。

  过程与方法目标:在学习的过程中使学生体会数、形结合的优势,进一步发展符号感和推理能力,培养学生数学建模的思想。

  情感与态度目标:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立自信心。

  教学的重点与难点:

  根据对学生学习过程分析及课标要求我把重点定为:完全平方公式的结构特点及公式的直接运用。而难点应为完全平方公式的应用以及对公式中字母a、b的广泛含义的理解与正确应用。在教学过程中多处留有空白点以供学生独立研究思考。

  二、教法与学法

  (1)多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。

  (2)教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。

  (3)由易到难安排例题、练习,符合八年级学生的认知结构特点。

  (4)课堂中,对学生激励为主,表扬为辅,树立其学习的自信心。

  三、教学过程

  教师活动学生活动设计意图

  一、创设情景,推导公式

  计算

  1、想一想(电脑演示)

  一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种,(如图所示)

  ⑴、分别写出每块实验田的面积;

  ⑵、用不同的形式表示实验田的总面积,并进行比较,你发现了什么?

  2、算一算

  ①、=?你能用多项式乘法法则说明理由吗?(引导学生说理)

  3、做一做

  你能利用面积知识,仿照课本以及演示的动画,自己给出的示意图吗?

  二、自主探究,合作交流

  板书公式:

  ①②1、问题:

  ①这两个公式有何相同点与不同点?

  ②你能用自己的语言叙述这两个公式吗

八年级数学说课稿4

  一、学生起点分析

  学生已经学完三角形的内角和,对内角和的问题有了一定的认识,加上八年级的学生好奇心、求知欲强,互相评价、互相提问的积极性高、因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,所以把这节课设计成一节探索活动课是切实可行的。

  二、教学任务分析

  本节课是《义务教育课程标准实验教科书》北师大版八年级上册第四章第六节《探索多边形内角和与外角和》的第一课时、本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神、在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力。

  教学目标

  【知识与技能】掌握多边形内角和定理,进一步了解转化的数学思想

  【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

  【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

  教学重难点

  【教学重点】多边形内角和定理的探索和应用。

  【教学难点】多边形定义的理解。多边形内角和公式的推导。转化的数学思维方法的渗透。

  三、教学过程设计

  本节课分成七个环节:

  第一环节:创设现实情境,提出问题,引入新课。

  第二环节:概念形成。

  第三环节:实验探究。

  第四环节:思维升华。

  第五环节:能力拓展。

  第六环节:课时小结。

  第七环节:布置作业。

  第一环节 创设现实情境,提出问题,引入新课

  1、多媒体展示蜂窝,教师结合图片让学生发现生活中无处不在的多边形。

  2、工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?

  目的:

  1、通过现实情境的展示,调动学生的情绪,激发起进一步学习的兴趣。

  2、把学生的注意力自然的引入研究方向,为课题的研究做铺垫。

  第二环节 概念形成

  1、借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素。

  2、教师再给出严格规范的定义,特别借助学具说明“在平面内”的必要性、此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形。

  目的:

  1、对于边角这些能在图形中识别而又不要求学生掌握的描述性定义,采取学生类比三角形的表示方法来归纳,渗透类比的数学思想。

  2、借助于自制的直观教具,说明多边形定义中“在平面内”这一条件,易于学生理解,化解了难点。

  第三环节 实验探究

  (以四人小组为单位展开探究活动)

  提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究。

  活动一:利用四边形探索四边形内角和

  要求:先独立思考再小组合作交流完成)

  (师巡视,了解学生探索进程并适当点拨)

  (生思考后交流,把不同的方案在纸上完成)

八年级数学说课稿5

  各位老师,大家早上好!今天我将要为大家讲的课题是“平均数”,下面我将从以下几个方面进行说明,恳请各位老师和同学批评指正。

  一、教材分析

  (一)本节内容在全书及章节的地位

  本节课是人教版八年级数学下册第20章《数据的分析》中,第一节内容。主要让学生认识数据统计中基本统计量,是一堂概念性较强的课,也是学生学会分析数据,作出决策的基础。本节课的内容与学生生活密切相关,能直接指导学生的生活实践。

  (二)教学的目标和要求

  根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:

  知识目标:理解算术平均数、加权平均数的含义,掌握算术平均数、加权平均数的计算方法,明确算术平均数、加权平均数在数据分析中的作用。

  能力目标:会计算一组数据的平均数,培养独立思考,勇于创新,小组协作的能力。

  情感目标:体验事物的多面性与学会全面分析问题的必要性,渗透诚实、进取观念,培养吃苦创新精神。

  (三)教学的重点和难点

  本着课程标准,在吃透教材基础上,我觉得本节课的重点是:

  教学重点:算术平均数、加权平均数的概念以及其计算和确定方法;

  教学难点:平均数的计算,加权平均数的理解和运算。

  二、学生分析

  1、学生与教材

  (1)小学已学过平均数(2)生活接触过平均数

  2、学生的特点(心理正处于一个重要的转折时期)

  (1)他们一方面好奇心强,爱说爱动、争强好胜、学习的动力多来自兴趣激情,收获多来自“无意注意”。

  (2)另一方面,他们的自觉性差、自控能力弱、情绪起伏较大,动力和效果都不稳定。

  下面,为了讲清重点、难点,结合学生的心理特征,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

  三、教法

  数学是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我主要是以问题的方式启发学生,以生动有趣的实例吸引与激励学生;在整个过程中采用情境教学法。同时,注重培养学生阅读理解能力与小组协作能力,在教学过程中主要以学生“探究思考”“小组讨论”“相互学习”的学习方式而进行。采用了探究式的教学方法,整个探究式学习过程充满了师生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

  四、学法

  数学作为基础教育学科之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。我采用着重于学生探索研究的启发式教学方法,结合师生共同讨论、归纳。在课堂结构上,根据学生的认知水平,我设计了以下6个成次的学法,①创设情境——引入概念②对比讨论——形成概念③例题讲解——深化概念④即时训练—巩固新知⑤总结反思——提高认识⑥任务后延——自主探究,它们环环相扣,层层深入,从而顺利完成教学目标。接下来,我再具体谈一谈这堂课的教学过程:

  五、教学程序及设想

  (一)创设情境——引入概念

  长期以来,很多学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

  首先由学生的平均成绩、平均年龄引入,复习算术平均数的求法。接着,我将以课本136页的问题一为例,激发学生的学习兴趣。

  (二)对比讨论——形成概念

  在学生计算出以上问题的平均数后,小组讨论研究,看谁做的对,学生得出自己的见解后,老师提问,然后引导对比分析以上两个问题的相同点与不同点,从而讨论归纳出加权平均数的概念。

  (三)例题讲解——深化概念

  接着以所学知识解决一个实际问题,一个很贴近实际的应聘问题,第一问设计很简单,用算术平均数易求,接着出示第二问,给每个数赋上“权”,让学生探讨用刚刚学到的知识解决,学生都有一种跃跃欲试的感觉,这样学生就很容易深化学生对概念的理解。

  (四)即时训练——巩固新知

  为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的讨论研究,真正掌握算术平均数、加权平均数的计算方法,在教师的引导下加深了对新知识的巩固和提高。

  (五)总结反思——提高认识

  由学生总结本节课所学习的主要内容:⑴算术平均数、加权平均数的概念;⑵算术平均数、加权平均数的计算和确定方法。让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质。

  (六)任务后延——自主探究

  学生经过以上五个环节的学习,已经初步掌握了算术平均数、加权平均数的计算和确定方法,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的训练题,其中包括了必做题和选做题,留给学生课后自主探究,这样既使学生掌握基础知识,又使学有余力的学生有进一步发展的空间和余地,这样也充分反映了新课改的精神,就是让不同的学生在数学上得到不同的发展。

  以上是我教学的设计过程。在整个过程中我非常强调的一点是让学生从已有的生活经验出发,把这些生活中的问题抽象成数学的模型,并能加以解释和应用它。

  六、简述板书设计。

  我将黑板分为了四个板块,左边的一块用以引出概念,中间左边的一块我将书写教学的重点与难点,并用星号加以标注,而剩余两块用以向学生讲解例题。

  以上是我说课的所有内容,不足之处,希望各位评委老师提出宝贵意见。谢谢!

八年级数学说课稿6

  各位领导、老师们:

  大家好!

  今天我说课的内容是义务教育课程标准实验教科书《数学》八年级上册第十二章12.3.1等腰三角形性质第一课时。下面,我从教材分析、教法分析、学法分析、教学过程、教学反思五个方面来汇报我对这节课的教学设想。

  一、教材分析

  1、教材的地位与作用:

  本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

  2、教学目标:

  知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。

  过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

  解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。

  情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  (根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)

  3、教学重点与难点:

  重点:等腰三角形的性质的探索和应用。

  难点:等腰三角形性质的推理证明。

  二、教法设计:

  教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,组织学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。

  三、学法设计:

  在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。

  四、教学过程:

  根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程:

  1、创设情景:

  首先向同学们出示精美的建筑物图片,并提出问题串:(1)什么是轴对称图形?这些图片中有轴对称图形吗? (2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:(3)a.等腰三角形是轴对称图形吗?b.等腰三角形具备哪些性质呢?引出本节课的课题-我们这节课来探究等腰三角形的性质。--板书课题。

  2、动手操作,大胆猜想:

  ①拿出课下制作的等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)

  ③分组讨论。(看哪一组气氛最活跃,结论又对又多.)

  然后小组代表发言,交流讨论结果。

  ④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?

  (教师引导学生进行总结归纳得出性质1,2)

  性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

  性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)

  (设计意图:由学生自己动手折纸活动,根据等腰三角形轴对称性,大胆猜测等腰三角形的性质,培养学生的观察分析、概括总结能力。也发展了学生的几何直观。教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2。培养了学生进行合情推理的能力。)

  3、证明猜想,形成定理:

  你能证明等腰三角形的性质吗?

  对于这种几何命题的证明需要三大步骤:分析题设结论,画出图形写出已知和求证,最后进行推理证明。这对于八年级学段的学生难度较大,为了突破难点,我决定设计以下三个阶梯问题:

  (1)找出“性质1”的题设和结论,画出的图形,写出已知和求证。

  (2)证明角和角相等有哪些方法?(学生可能会想到平行线的性质,全等三角形的性质)

  (3)通过折叠等腰三角形纸片,你认为本题用什么方法证明∠B=∠C,写出证明过程。

  问题1的设计使得学生顺利地将文字语言转化为符号语言,帮助学生顺利地写出已知和求证;

  问题2提供给学生了解题思路,引导学生用旧的知识解决新的问题,体现了数学的转化思想。找到新知识的生长点,就是三角形的全等。

  问题3的设计目的:因为辅助线的添加是本题中的又一难点,因此让学生对折等腰三角形纸片,使两腰重合,使学生在形成感性认识的同时,意识到要证明∠B=∠C,关键是将∠B和∠C放在两三角形中去,构造全等三角形,老师再及时设问:你认为可以通过什么方法可以将∠B和∠C放在两个三角形中去呢?再次让学生思考,由于对知识的发生,发展有了充分的了解,学生探讨以后可能会得出以下三种方法:

  (1)作顶角∠BAC的平分线,

  (2)作底边BC的中线,

  (3)作底边BC的高。以作顶角平分线为例,让一生板演,其他学生在练习本上写出完整的证明过程。以达到规范学生的解题步骤的目的。其他两种证法,让学生课下证明。这样,学生就证明了性质1,同时由于△BAD≌△CAD,也很容易得出等腰三角形的顶角平分线平分底边,并垂直于底边。用类似的方法还可以证明等腰三角形底边的中线平分顶角且垂直于底边,等腰三角形底边上的高平分顶角且平分底边,这也就证明了性质2。

  (设计意图:教师精心设计问题串引导学生通过动手,观察,猜想,归纳,猜测出等腰三角形的性质,发展了学生的合情推理能力,同时也让学生明确,结论的正确性需要通过演绎推理加以证明。这样把对性质的证明作为探索活动的自然延续和必要发展,使学生感受到合情推理与演绎推理是相辅相成的两种形式,同时感受到探索证明同一个问题的不同思路和方法,发展了学生思维的广阔性和灵活性。)

  (4)你能用符号语言表示性质1和性质2吗?

  (设计意图:把文字语言转换为符号语言,让学生建立符号意识,这有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。——

  4、性质的应用:

  例一:在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______

  变式练习:

  1、在等腰中,∠A=50°,则 ∠B=___,∠C=___

  2、在等腰中,∠A=100°,则∠B=___,∠C=___

  设计意图:此例题的重点是运用等腰三角形“等边对等角”这一性质和三角形的内角和,突出顶角和底角的关系,如

  例一,学生就比较容易得出正确结果,对变式练习(1)、(2)学生得出正确的结果就有困难,容易漏解,让学生把变式题与例一进行比较两题的条件,让学生认识等腰三角形在没有明确顶角和底角时,应分类讨论:变式1(如图)①当∠A=50°为顶角时,则∠B=65°,∠C=65°。②当∠A=50°为底角时,则∠B=50°,∠C=80°;或∠B=80°,∠C=50°。变式2①当∠A=100°为顶角时,则∠B=40°,∠C=40°。②当∠A=100°为底角时,则△ABC不存在。由此得出,等腰三角形中已知一个角可以求出另两个角(顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°)。

  例二:在等腰△ABC中,AB=5,AC=6,则△ABC的周长=_______

  变式练习:在等腰△ABC中,AB=5,AC=12,则 △ABC的周长=______

  (设计意图:此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,并强调在没有明确腰和底边时,应该分两种情况讨论。如例二,①当AB=5为腰时,则三边为5,5,6;②当AB=5为底时,则三边为6,6,5。变式练习①:当AB=5为腰时,三边为5,5,12;②当AB=5为底时,三边为12,12,5。此时同学们就会毫不犹豫地得出三角形的周长,这时老师就可以提出质疑,让同学们之间讨论(学生容易忽视三角形三边关系,看能否构成一个三角形)。

  例三、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。

  (例3是课本例题,有一定难度,让学生展开讨论,老师参与讨论,认真听取学生分析,引导学生找出角之间的关系,利用方程的思想解决问题,并书写出解答过程。本题运用了等腰三角形性质1,并体现了利用方程解决几何问题的思想。)

  例四:

  在△ABC中,点D在BC上,给出4个条件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2个条件作题设,另外2个条件作结论,你能写出一个正确的命题吗?看谁写得多。(分组讨论抢答)

  5、巩固提高

  (1)等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为度。

  (2)如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30。求∠1和∠ADC的度数。

  (3)课本本章数学活动三“等腰三角形中相等的线段”

  设计意图:

  (1)题运用等腰三角形的性质1及等腰三角形一腰上的高的画法,由于题目没有图,要用到分类讨论的数学思想,学生能正确画出锐角和钝角三角形两种图形就容易得出结果,也渗透了一题多解。

  (2)题同时运用了等腰三角形的性质1,性质2,还有三角形的内角和这三个知识点,培养学生对于知识的灵活运用,“讨论”是本章的数学活动3“等腰三角形中相等的线段”。与等腰性质的证明思路类似,先通过等腰三角形的对称性猜想距离是相等的,然后通过做辅助线构造全等三角形来进行严密的推理。更加说明了合情推理和演绎推理是相辅相成的。

  6、课堂小结:不仅仅说你收获了什么,而是让学生从知识上,思想方法上,以及辅助线的做法上等方面具体总结一下。然后教师结合学生的回答完善本节知识结构。学生对于自己的疑惑提出小组内交流,还没解决则全班交流。

  7、布置作业:

  P55练习1、2、3题

  P56习题1、4、6,(选做7,8题)

八年级数学说课稿7

  一、教材分析:

  本节的教学内容是第13章第2节的第5小节,在本节课之前,学生已经进行了“边角边”、“角边角”、“角角边”的学习探索。三角形全等的证明既是几何推理证明的起始部分,对学生的后续学习起着铺垫作用,是后面等腰三角形、四边形与特殊四边形的学习基础,同时也是培养提高学生逻辑思维能力的良好素材,对学生的演绎推理能力锻炼有非常重要的作用。

  二、学生情况分析

  在本节学习之前,学生已经经历了一周的推理证明的训练,所以学生的证明能力已经有所提升,解题思路也有所凝练,相对而言储备了一定的方法和技巧,但是对于辅助线的引用练习的不是很多,因此学生还没有什么经验。

  三、教学目标、重点和难点

  (一)教学目标:

  1、让学生通过实践操作探索出“边边边”的基本事实,并掌握其推理格式。

  2、能够应用“边边边”的基本事实解决实际问题。

  (二)教学重点:

  掌握“边边边”的基本事实。

  (三)教学难点:

  灵活运用“边边边”解决问题。

  四、教法学法

  (一)教法

  在本节课的课堂教学中我采用讲授、讨论式、演示、互动式、体验式、操作式、谈话、练习等教学方法,凸显学生的主体地位和教师的主导地位,突出课标的四性<实践性、趣味性、自主性、开放性>,适时启发点拨引导,适当采用多媒体教学手段,帮助学生更好地掌握知识、熟练技能、培养学生的能力,

  (二)学法

  我采用自主、探究、合作的学习方法,让学生在动手操作、动脑思考、交流讨论的过程中学习本节课的知识、掌握方法、提高技能、形成能力;达到体验中感悟情感、态度、价值观;活动中归纳知识;参与中培养能力;合作中学会学习。

  五、教学过程

  复习引入:复习已经学过的全等三角形的三种判定方法,为新知做好铺垫;然后引入新课,激发学生的学习兴趣。

  明确目标:简洁明了的学习目标使学生在开始学习之初就能够明确目标,明确努力的方向,做到有的放矢。

  定向学习:在整个自学过程中,我注意用语言引导学生,使其把握住主旨目标,充分利用教材和导学提纲完成自学。由于上一阶段的学习和练习,学生储备了一定的经验,所以要自主完成例1应该是不成问题,而且基础训练的内容学生也能比较容易完成。

  精讲点拨:在“边边边”的简单应用的基础上,再稍加拓展。

  巩固训练:在此环节中我着重加入了对辅助线的引导渗透,对学生的思维能力进行拓展、提升,以确保让尖子生吃的饱。

  六、课后反思

  在教学过程中,我注重调整了自己的“角色”,因为学生已经结合教材进行了自学,所以在课堂上,更应实现学生的自主,故课堂即是学生的演练场,教师就针对学生出现的问题进行点拨、指导,对于共性问题重点提示,引起全体同学重视,从而加深印象。正所谓问题即课题,有疑、有错才有讲解!本节课的教学,按照本人的设计非常顺畅的进行下去了,学生对于我在三角形全等这一部分知识的处理方式,都能够适应、接受,这也反映出这样的教学方式对于学生新知识的接受还是比较适合的。教无定法,不同的知识、不同的学生,可能要采用不同教学方式,需要我们因课因人灵活选择。

八年级数学说课稿8

  一、说教材

  (一)教材的地位和作用

  今天我说课的内容是北师大版数学八年级上册第三章图形的平移与旋转的第一节《生活中的平移》。学生在前面已学习了轴对称及轴对称图形,在此基础上还将学习生活中的旋转与旋转设计图案等内容。同轴对称一样,平移也是现实生活中广泛存在的现象,是现实世界运动变化的最简捷的形式之一,它不仅是探索图形变换的一些性质的必要手段,而且也是解决现实世界中的具体问题以及进行数学交流的重要工具。为综合运用几种变换(平移,旋转,轴对称,相似等)进行图案设计打下基础。《生活中的平移》对图形变换的学习具有承上启下的作用。

  (二)教学目标

  根据上述教材分析,以及新课程标准,考虑到学生已有的认知结构、心理特征,制定如下教学目标

  知识目标:

  通过具体实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。

  能力目标:

  通过探究归纳平移的定义,特征,性质,积累数学活动经验,提高学生的科学思维能力.

  情感目标:

  经历观察,分析,操作,欣赏以及抽象,概括等过程,经历探索图形平移基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识.

  (三)教学重点与难点

  平移是现实生活中广泛存在的现象,它不仅是探索图形变换的一些性质的必要手段,而且也是解决现实世界中的具体问题以及进行数学交流的重要工具。探索平移的基本性质,认识平移在现实生活中的广泛应用是学习本节内容的重点。

  平移特征的获得过程,教科书中仅用了一段文字,很少的篇幅,对于这个特征,不是要学生死记硬背,而是要学生具备一定的探究归纳能力,对八年级的学生来说,有一定的难度,因此本课的难点是平移特征的探索及理解。

  上面是对教材的地位与作用、教学目标以及教学重难点的分析,接下来我将说说学情:

  二、说学情

  1.学生已经学习学习了轴对称及轴对称图形,对图形的变换已经有了了解,有了一定的学习基础。

  2.八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习。

  下面为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:

  三、说教法与学法

  基于教材特点与学生情况的分析,为有效开发各层次学生的潜在智能,制定教法、学法如下:

  1.遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、类比、归纳、学习。

  2.借用多媒体课件与实物辅助教学,力求使每个学生都能在原有的基础上得到发展,既满足了学生对新知识的强烈探索欲望,又排除学生许学习几何方法的缺乏,和学无所用的顾虑,让他们在学习过程中获得愉快与进步。

  四、说教学过程

  课堂结构:(一)创景引趣 (二)探究归纳 (三)反馈练习 (四)实际运用 (五)感情点滴 (六)布置作业六个部分.

  (一)创景引趣

  课开始,我先由学生很熟悉的生活经历引入,让学生在轻松,愉快的心情下开始学习。如问同学们,你们小时候去过游乐园吗,在游乐园中你们玩过哪些游乐项目,在玩这些游乐项目时你们想过什么,你们想过它里面蕴含着数学知识吗?现在,我就展示几幅画面,让大家在重温美好童年生活的同时,找一找这些项目中,哪些项目的运动形式是一样的 (课件展示),观看游乐园内的一些项目,如:旋转木马、荡秋千、小火车、滑梯等等,引导学生发现这些项目有什么特征,从而引出本节课研究内容:生活中的平移。

  (二)探究归纳

  在引入的基础上,探索新知,出示课件观看几个运动的图片,如:手扶电梯上的人,缆车沿索道缓缓上山或下山,传送带上的商品,大厦里的电梯,辘轳上的水桶。

  分小组讨论以上几种运动现象有什么共同特点,鼓励学生敢于在小组,班上交流自己的见解和探索的规律,培养学生自主探索,合作交流等良好的学习习惯。在自主探究合作交流中学生的自豪感和成功感得到升华,也增强了学习数学的自信心和创新能力。通过观察生活实例,让学生对平移运动形成直观上的初步认识。同时,通过两个问题的提出,帮助学生理解平移运动不会改变物体的大小,形状以及在平移过程中,物体上的每个部位都沿相同方向移动了相同的距离。通过课件演示以及让学生亲自参与,既使学生理解了平移运动的两大要素是方向和距离,也增强了学生的动手能力。借助于课件动态演示,有力启发学生,培养学生兴趣,使学生思维逐步展开,从而突破了学生学习的难点。为达到本课教学目的奠定了坚实的基础。课件将图形的平移运动分解为点,线,面的平移运动,利用不同颜色区分让学生能清晰而准确地找出对应点,对应线段及对应角, 把平移的性质设计成了四个问题,深刻理解平移的'性质,并能全面地对平移的性质进行概括。使重点突出,难点突破。

  (三)反馈练习

  学生对所学知识是否掌握了呢 为了检测学生对本课教学目标的达成情况,进一步加强知识的应用训练,我设计了三组题目。第一组题走进知识平台;第二组题跨入知识阶梯;第三组题攀登知识高峰。由易到难,由简单到复杂,满足不同层次学生需求,针对解答情况,采取措施及时弥补和调整。

  (四)知识拓展

  为了活跃课堂气氛,增强知识的趣味性和综合性,让学生举生活中平移实例。由学生在格纸上平移图形和动手在电脑上再现平移过程,再次激起学生的探究欲望。通过走进生活的图片欣赏引出下一节内容,并进一步使学生认识:数学源于生活,并运用于生活.这就将枯燥的数学问题赋予有趣的实际背景使内容更符合学生的特点,既激发了学生兴趣,又轻松愉悦地应用了本节课所学知识。使解决数学问题不再是一种负担,而是一种享受,激发学生学习数学的潜能,让学生亲身经历将实际问题抽象成数学模型并进行包括解释与应用的过程,体验数学来源于生活又服务于生活。

  (五)及时总结

  可以从知识获得途径,结论,应用,数学思想方法等几个方面展开,在教师引导下由学生自主归纳完成。如“我发现了什么……我学会了什么……我能解决什么……”等,这样有利于强化学生对知识的理解和记忆,提高分析和小结能力.

  (六)布置作业

  结合学生实际水平,准备布置两部分作业,一部分是必作题体现新课标下落实“学有价值的数学”,达到“人人都能获得必需数学”,另一部分是选做题让“不同的人在数学上得到不同的发展”。

  五、说板书设计

  本节课我将采用重点式的板书。重点式的板书将教材内容中最关键的知识加以概括、归纳,列成条文,按一定顺序板书,这种板书,条理清楚,重点一目了然。

八年级数学说课稿9

  这一节课,是依据苏科版新课程实验教材,八年级数学上册第四章实数,第二节《立方根》的内容设计的。本节内容承接了《平方根》的教材编排模式,与平方根一节一起给学生建立‘开方’的运算模式,为下一节《实数》概念的建立和运算模式的建立打基础。所以,说本节课具有‘承前启后’的作用,应当是合适的。

  说课标

  数学课程标准对“实数”一章中关于本节知识的要求是:①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。②了解立方与乘方会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。因而,本节确立的教学目标,在知识技能方面要求了解立方根的概念,用三次根号表示一个数的立方根。方法方面用类比法学习立方根及开立方运算。情态价值方面则发展求同存异思维。

  (一)学习目标:

  1 、知识目标:

  (1)理解并掌握立方根的概念,会用符号表示一个数的立方根。

  (2)能用立方运算求某些数的立方根,了解开立方与立方互为逆运算。

  (3)理解并掌握正数、负数、0的立方根的特点。

  (4)区分立方根与平方根的不同。

  2 、能力目标:

  (1)通过学习立方根,培养学生理解概念并用定义解题的能力。

  (2)通过用类比的方法探寻出立方根的概念、表示方法及运算。

  (3)通过经历探索和合作交流,归纳总结出平方根与立方根的异同。

  (二)学习重、难点:

  1、学习重点:立方根的概念和求法。

  2、学习难点:理解立方根的性质;比较立方根与平方根的异同。

  说教学法分析

  当前高效课堂的主流就是培养学生的能力,使学生学会学习,学会解决实际问题。在学习过程中让学生自主探索、观察猜测、合作交流、分析推理、归纳总结,充分体现学生的主体地位,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

  说教学重点

  了解立方根的概念性质,会用概念解题。

  说教学难点

  应用时的符号问题

  教具准备

  鉴于需要类比教学,容量大,因此采用多媒体课件教学

  说教学流程

  在教学过程中,我采用班班通辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  1、创设情境复旧导新

  在课堂的引入上采用了一个求立方根的实际应用问题,已知体积,求正方体的棱长。由实际应用问题引入学生易于接受。体现了数学源于生活。

  再对已学过的相似运算---平方根进行复习,为接下来与立方根进行比较打下基础。初步体会类比思想

  2、启发诱导探索新知

  首先出示学习目标,让学生明白本节课我要学什么,怎样学,达到什么要求。接下来结合导学案和教材,导读自学,自主探究。设计意图:学生自学教材通过自学感悟理解新知,体现了学生的自主学习意识。

  最后,我通过三个活动将新知细化

  活动一:立方根的概念

  设计意图:使学生学会“文字语言”与“符号语言”这两种表达方式。整堂课充分发挥学生的主体作用,真正获取知识,解决问题。

  活动二:立方根的性质

  这是本节的一个难点。考虑到这个结论与平方根的相应结论不同,采用了先启发学生思考的办法,安排一个口答题,求一些具体数的立方根,在学生经过观察、思考并有了一些感性认识之后,自己总结出有关正数、0、负数立方根的特点,其后,通过合作探究学生归纳总结出平方根与立方根的异同。强调:用根号式子表示立方根时,根指数不能省略;以及立方根的唯一性。

  3、引导探究延伸新知

  活动三:求一个数的立方根

  (1)表示各数的立方根(定义的理解)

  (2)求下列各式的值(概念、性质、公式的综合运用)

  设计意图:组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果。使学生从中体会到从特殊到一般的数学思想,同时,让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。

  4、归纳小结巩固新知

  设计意图:引导学生对知识要点进行总结,梳理学习思路。

  5、课堂达标拓展延伸

  设计意图:此环节体现出课堂的价值不仅是让学生学会知识,检验新知学习效果,而且培养学习能力,提升素质,达到了兵教兵,兵强兵的目的。

  说板书设计

  立方根

  1、一个数a的立方根可以表示为:

  读作:三次根号a,其中a是被开方数,3是根指数,不能省略。

  2、立方根的性质:

  (1)正数的立方根是正数;

  (2)负数的立方根是负数;

  (3)0的立方根是0。

  3、比较立方根与平方根的异同

  4、黑板右边学生板演、展示。

八年级数学说课稿10

  一、教学目标

  1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算.

  2.会进行简单的二次根式的乘法运算.

  3.使学生能联系几何课中学习的勾股定理解决实际问题.

  二、教学重点和难点

  1.重点:会利用积的算术平方根的性质化简二次根式.

  2.难点:二次根式的乘法与积的算术平方根的关系及应用.

  重点难点分析:

  本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简.积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础.二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起.

  本节难点是二次根式的乘法与积的算术平方根的关系及应用.积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识.要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满足.

  三、教学方法

  从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法.

  1. 由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开.在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。

  2. 积的算术平方根的性质和 ( )及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要

  的作用,所以在教学中对于培养的思维品质有着重要的作用。

  四、教学手段

  利用投影仪.

  五、教学过程

  (一)引入新课 观察例子得到结果

  类似地可以得到:

  由上一节知道一般地,有=(a,b)

  通过上面的例子,大家会发现 =(a,b) 也成立

  (二)新课

  积的算术平方根.

  由前面所举特殊的例子,引导学生总结出:一般地,有 (a≥0,b≥0). 积的算术平方根,等于积中各因式的算术平方根的积.

  要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0.在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积.根据这个性质可以对二次根式进行恒等变形。 化简,使被开方数不含完全平方的因数(或因式):

  1、 2、 3、

  说明:1、当所得二次根式的被开方数的因数(式)中,有一些幂的指数不小于2,即含有完全平方的因式(数),我们就可利用积的算术平方根的性质,并用=a(a)来化简二次根式。

  2、 (a≥0,b≥0)可以推广为 (a≥0,b≥0,c≥0)

  化简二次根式的步骤

  1、将被开方数尽可能分解出平方数;

  2、应用=(a,b)

  3、将平方项利用=化简

  小结:1、积的算术平方根与二次根式的乘法的互逆性;

  2、灵活应用他们进行二次根式的乘法运算及化简二次根式

  作业;由于本节课后习题较少,可适当补充紧贴教材的课外习题

八年级数学说课稿11

  下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。

  一、说教材

  1、 教材内容:我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。

  2、 教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。

  3、 教学目标

  知识目标:(1)、理解分式的乘除运算法则

  (2)、会进行简单的分式的乘除法运算

  能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。

  (2)、能解决一些与分式有关的简单的实际问题。

  情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。

  (2)、培养学生的创新意识和应用意识。

  (3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。

  4、教学重点:分式乘除法的法则及应用.

  5、教学难点:分子、分母是多项式的分式的乘除法的运算。

  二、说教法

  教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。

  1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。

  2、合作式教学,在师生平等的交流中评价学习。

  三、说学法

  学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。

  1、类比学习的方法。通过与分数的乘除法运算类比。

  2、合作学习。

  四、说教学程序

  1、类比学习,探索法则。(约3分钟)

  让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)

  复习:分数的乘除法法则(抽一学生口答)

  猜一猜: ; (a、b、c、d表示整数且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零)

  类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零,a、c中含有字母)

  活动目的:

  让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。

  教学效果:

  通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。

  2、理解法则:(约2分钟)(1)文字叙述:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;

  两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.

  (2)符号表述

  × = ;

  ÷ = × = .

  活动目的:

  两种形式巩固对法则的理解。

  教学效果:

  理解法则,进一步发展学生的符号感。

  3、应用:(约20分钟)

  (1)牛刀小试

  教材74页到76页的例1、做一做、例2.我准备把例1和例2先学习了。再学习做一做。

  例1 计算

  (1) ;

  (2)

  活动目的:

  抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。

  教学效果:

  有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生理解一步的算理。

  例2.计算:

  (1)3xy2÷ ;

  (2) ÷

  活动目的:

  让学生进一步理解类比的学习方法,分式的除法先转化为乘法。

  教学效果:

  因式分解在分式约分中起到重要作用,对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以使运算简化。

  (2)“西瓜问题”

  活动目的:

  能解决一些与分式有关的简单的实际问题。能有条理的进行表达。

  教学效果:

  通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)

  4、随堂练习。(约5分钟)

  76页第一题,共3个小题。

  教学效果:

  在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。 分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。

  5、数学理解(约5分钟)

  教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。

  补充例3 计算(xy-x2)÷

  教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。

  6、课堂小结(约3分钟)

  先学生分组小结,在全班交流,最后老师总结。

  7、作业布置,凝固新知。(约2分钟)

  教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)

  五.说板书设计

  主板书采用纲要式,一目了然。

  一、 分式的基本性质

  1、 文字叙述

  2、 符号表述

  二、应用

  最后,谈谈我的体会。课堂上平等对话,让学生自主掌握数学,发现问题,及时改正。教学是让学生丰富认识。

八年级数学说课稿12

  一说教材

  《等腰三角形的性质》是人教版教科书八年级上册第13章第三节第1课时的教学内容。在此之前,学生们已经学习了等腰三角形的定义以及轴对称,学生已经具备了一定的动手操作能力。这些知识为本节课的学习等腰三角形的性质起到了铺垫的作用。而本节课的知识为以后将为以后学习的四边形及多边形的相关知识奠定了基础。

  二说教学目标

  根据教学大纲和新课程标准的要求,我认真钻研教材,特制定以下三个教学目标:

  1掌握等腰三角形的性质

  2知道等腰三角形的性质的推理过程

  3会灵活运用等腰三角形的性质解决相关的数学问题

  三 说教学重、难点

  结合八年级学生的年龄特点、心理特征和现有的知识结构。我认为本节课的重点是等腰三角形的两个性质即“等边对等角”;“三线合一”。

  由于八年级学生的逻辑推理能力和理解运用能力还较弱,因此等腰三角形的性质的推理过程及会灵活运用等腰三角形的性质解决相关的数学问题是本节课的难点。

  四 说教法和学法

  本节课我采用的教法是启发式教学法、动手操作法。

  学生的学法是:自主探究法、合作讨论法。

  五说教学过程

  本节课我主要是根据“四步五环节”教学法从以下五个环节进行教学的。

  1 复习导入

  通过教师在黑板上画一个三角形(任意取一个点为圆心,适当的长为半径画弧,在所画的弧上任意取两个点顺次连接这三个点所得的三角形是什么三角形?)的方法能确定是所画的三角形是等腰三角形。这样导入可以让学生知道如何用尺规作图做一个等腰三角形,并引导他们回忆等腰三角形的概念及腰、底边、顶角、底角的概念。

  2探究新知

  在同学们已经学习了轴对称的基础上通过对折剪纸观察猜想得出等腰三角形的性质,这样设计既能提高学生的动手操作能了,又能更直观的发现等腰三角形的三条性质即:对称性、等边对等角、三线合一。在此基础上教师在引导学生写出推理过程,同时也提高了学生的逻辑思维能力.

  3理解与运用

  为了让学生熟练的掌握等腰三角形的三个性质,我设计了一道相关证明题,让学生先自主探究不会的同学请教会做的给其讲解进行兵练兵,再找一名学生将解题过程板术黑板上,教师进行点评,以提高学生书写完整、简洁的解题过程的能力。

  4强化巩固

  在这一教学环节中我设计了2道求角度的问题,让学生通过由易到难的探究过程将所学的知识进一步升华,培养学生的探究精神。

  5小结

  设计三个问题让学生通过思考讨论回答出来,从而把本节课的知识系统化。以提高学生的总结概括能力。

  本节课我采用观察法和动手操作法导入新课充分的调动了学生学习的主动性和积极性顺利完成的预定的教学任务,取得了良好的教学效果。

八年级数学说课稿13

  一、说教材

  “数据的分段整理”是苏教版小学数学四年级上册第九单元《统计与可能性》中的内容。分段整理数据是基本的统计活动,在第一学段,学生已经能够按统计对象的某些属性,如品种、形状、颜色、用途……进行分类统计。本单元继续教学把一组数据按大小分成若干段进行统计,并把统计获得的数据填入相应的统计表里。本课时是初步教学分段统计数据,所以例题和习题都明确了数据以及各段的数值范围,不要求学生独立设计分段。本课时内容主要是数据的分段整理。教材通过创设学校准备为鼓号队员购买服装,想请全体学生出谋划策的教学情境,引出怎样购买鼓号服这一学习任务。使学生能想到要按身高数据分段整理,感受分段整理的必要性。然后引导学生自主分段整理数据,完成统计表,分析整理后的数据,根据分析结果解决实际问题。

  《数学课程标准》指出,教师不应只做教材忠实的实施者,而应该做教材的开发者和建设者,要学会创造性地使用教材。为了更加贴近每个学生生活经历,让学生有话可说,我对教材进行了重新开发,把购买鼓号队服改为购买校服。围绕购买校服而产生的一系列问题,引导学生经历“收集数据——分段整理——制作统计表——分析数据”的全过程,而学习重点放在分段整理数据上,整理的方法采用多种方法,在交流比较的过程中逐步优化,突出画“正”字的方法,得到的数据仍然采用单式统计表描述。所以教学中应突出数据分段的必要性、分段方法以及如何分段整理,使学生在活动中掌握这部分知识,形成相关的统计技能。为今后更进一步学习统计图表、概率等知识打好基础。

  二、说学情

  四年级的学生由于在第一学段中对数据统计过程已有所体验,并学会了一些简单的收集,整理和描述数据的方法,能根据统计结果回答一些简单的问题。在此基础上,再次经历统计过程,让学生进一步体会收集和整理数据的必要性,感受统计是解决问题的方法之一。

  根据小学儿童好动、注意力容易分散、求知欲强等心理特征,在教学中,我注重创设与学生生活的环境、知识背景密切相关的,又是学生感兴趣的学习情境。从学生熟悉的事物出发,有效地组织、引导学生进行观察、交流、反思等活动,并使全体学生参与到实践活动之中。

  三、说教法与学法

  《数学课程标准》指出,数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。传统的严格意义上的教师教和学生学,应该不断让位于师生互教互学,彼此形成一个“学习共同体”。

  根据教材内容的特点,结合学生实际,在教学中我灵活采用谈话法、观察法、讨论法、练习法等多种教学方法。引导学生通过搜集全班同学的身高数据、根据服装型号分段、用画“正“字等方法整理、绘制统计表、利用统计数据到服装厂定做校服等。用统计方法解决问题。学生在迫切完成任务和强烈的探究兴趣驱动下,对本来枯燥的统计知识产生一种新鲜感和真实感,每个学生都能自觉地参与到学习中。学生能自然而然地根据已有的生活经验,通过调查访问、探究尝试、合作商讨、交流反思等多种学习方法,真实经历用统计解决问题的全过程,特别是学会了分段整理的方法,从而获得了成功的愉悦体验。

  A、重视激活学生的生活经验

  本课的导入,给学生做校服的情境,使学生能想到要按身高数据分段整理,感受分段整理的必要性。然后引导学生自主分段整理数据。学生经历了统计的全过程,感受到统计表与身边的人和事是息息相关的。最后,布置学生写一份建议书,也是深有教育价值的。

  B、重视引导学生进行分析

  数据统计的全过程有数据收集,数据整理,统计制表,分析数据,得出结论五个环节,其中分析数据是重要的环节,也是课程标准中强调的内容。在“女生1分钟跳绳检测”一题中,我引导学生尝试分析“你看了这张统计表,你知道了什么?”在“空气质量”一题中,我让学生说“看了这些数据,你觉得常州市的空气质量情况如何?为什么?作为一个常州的小市民,你觉得能为改善常州的环境做些什么?”学生的分析是推己及人,丰富多彩的,是符合孩子心理实际的。设计这样的分析,我认为是统计中必不可少的环节,也是对学生进行行为习惯教育的良好载体。

八年级数学说课稿14

  各位评委:

  大家好!今天我说课的题目是《黄金分割》 ,所选用的教材为北师大版八年级数学下册第四章《相似图形》第2节的内容。我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析等七个方面阐述我的设计意图。

  一、教材分析:

  1、教材中的地位和作用

  《相似图形》本章是对图形全等内容的进一步拓广与发展。学习相似图形,离不开线段的比和比例线段,《黄金分割》将从一个崭新的角度加深同学们对比例线段和线段的比的认识,是第一节内容的延续和拓展,因此基于本节课的地位,确定教学目标如下:

  2、教学目标设计:

  知识技能目标:(1)掌握黄金分割的定义及黄金分割点的作法;(2)会进行黄金分割的有关计算。

  过程方法目标:经历黄金分割的引入及黄金分割点作法的探究过程,掌握数形结合法在数学解题中的运用。

  情感态度目标:

  在现实情境中体会黄金分割的文化价值,提高学生对黄金分割价值的审美能力,培养同学们主动参与、积极思考、合作交流的学习品质。增强学生的实践意识和自信心 。

  3、本课重点、难点分析:

  学习重点:黄金分割的定义,并能运用。(理由:核心概念是黄金分割,黄金分割点、黄金比。围绕核心,让学生体会知识的形成过程对学生学习新知识是十分必要的,给学生提供思考、探索、发现、创新的最大空间,可使学生在整个教学过程中始终处于积极的思维状态,进而培养学生的创新意识,因此本节课的重点是认知黄金分割的定义及黄金分割的运用)。

  学习难点:探究线段黄金分割点的作法。(对于黄金分割的作图,可以使用三角板和刻度尺,因为他们所学的尺规作图有限,不易想到,估计接受作图时有困难,所以本节课的难点是黄金分割的作图)。

  二、学情分析:

  从认知状况来说,学生在此之前已经学习了线段的比,对比例性质已经有了初步的认识,但对于黄金分割的理解,(由于其抽象程度较高)估计学生可能会产生一定的困难,所以教学中应予以简单明白的分析,让学生主动参与到教学中。

  三、关于教法与学法:学生是学习的主人,教师是组织者、引导者、合作者。学生对黄金分割了解甚少,为调动学生的积极参与我采用的

  教法是:引导发现法、直观演示法、实验法、讨论法、练习法等多种教学方法优化组合。

  学法是:自主探索、合作交流的学习方式。

  四、教学过程的设计

  设计过程中注重了“探究”、“互动”等环节,总体流程为 “创设问题情境、引入概念---自读探知、合作探究---师生互动、探究作图---应用与拓展—巩固练习等环节。具体教学过程如下:

  一)、创设问题情境、引入问题(2分钟)

  1、欣赏多媒体图片 ,引入课题——黄金分割

  〔设计意图〕唤醒学生对美的感受,营造一个感受美、关注美、探究美的氛围,搭建一个自主体验、合作探究、自主构建的认知平台。

  二)自读探知、合作探究(10分钟)

  1、这堂课从放手让学生度量本课中的五角星点C到点A、点B的距离及AB间的距离,

  〔设计意图〕这样通过学生亲自动手操作、计算,亲自经历知识的形成过程,自己发现AC/AB=BC/AC,形成初步概念,培养学生综合运用线段比的能力和探究的能力,同时养成良好的读书习惯。

  2、然后小组合作,观察、测量、计算手中的正五角星(老师课前准备好的大小不等的共四类),教师引导作有关测量(测量时尽可能精确,减少误差)。测量结果并不相等 引导学生探究问题并阅读课本形成概念。

  同时说明在科学研究中,我们往往要做成千上万次实验,以获得一个较为准确的数值。数学活动也是如此。可以借助计算器帮计算,发现:

  〔设计意图〕“有意义的数学学习不能单纯依赖模仿与记忆,而动手实践,自主探索与合作交流也是重要的数学学习方式”。依据学生已有的知识背景和活动经验,为学生提供了操作、思考与交流的机会。对自读探知的疑惑明了,增强合作交流意识,让学生在合作交流中体验成功与快乐。

  3、 黄金分割的定义:

  在线段AB上,点C把线段AB分成两条线段AC和BC,如果那么称线段AB被点C黄金分割(goldensection),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中≈0.618.

  推导黄金比值。用配方法解得比值为≈0.618

  〔设计意图〕通过探索交流合作过程得出定义就比较容易,但对于初二的学生尚未学习一元二次方程,所以黄金比只要接受事实即可,用配方法解一元二次方程,是为了为学有余力的学生提供学习的空间,也为提供理论依据。突出了本课的重点---黄金分割的定义。

  〔设计意图〕为了使学生对黄金分割有一个更深的认识,通过判断使学生了解由黄金分割可以得到什么。并能进行有关计算,及时发现和补救教与学中的遗漏和不足。

  特别提示1:一条线段有2个黄金分割点。C点靠近A端AC就是较短边。

  特别提示2:黄金比并不为黄金分割所专有,只要任两条线段的比值满足这一常数,就称这两条线段的比为黄金比。黄金比没有单位。

  特别提示3:必须满足位置和数量两个条件,才能判断一个点是一条线段的黄金分割点。

  灵活变形公式计算 较长:全=较短:较长(根据=≈0.618进行计算)(C是线段AB的黄金分割点,AC>AB.分别能计算较长边、较短边、全长、比值)。

  三)师生互动 探究作法 (9分钟)

  问题探究:如何作一条线段的黄金分割点?

  本节难点,突破办法:如何作长度是的线段,是突破此题的关键

  (1)引导学生作长度为、的线段;(2)假设AB=2,就需AC=-1;(3)理解为什么这样作。

  如图,已知线段AB,按照如下方法作图:

  (1)经过点B作BD⊥AB,使BD=AB.

  (2)连接AD,在DA上截取DE=DB.

  (3)在AB上截取AC=AE.则点C为线段AB的黄金分割点.

  〔设计意图〕问题是为了激发学生的兴趣,难点突破是基于学生能够在数轴上作出有关的无理数,构造直角三角形算斜边的方法可以得,引入作法是为了提起学生探索的欲望,同时进一步巩固学生对黄金分割的认识.

  活动1:请同学们仿照老师的作法画出上图.

  活动2:探索作法的正确性.自己有困难时可以互相交流,试着证明一下以上结论.教师参与其中,共同证明,加以提示.

  不失一般性(作法的正确性),设AB=2a,则 BD=DE=a

  还有其他的画法吗?留作学生探讨

  〔设计意图〕活动1锻炼学生动手操作的能力,进一步巩固黄金分割点的作法.估计学生操作不规范予以矫正。活动2 通过上面给出的找黄金分割点的方法,为不同学生的发展创造条件。为学有余力的学生提供足够的材料。在自己的实际证明过程中体会成功的喜悦,而教师在这个环节中扮演着一个合作者、参与者的角色.。

  四)应用拓展(6分钟)

  1、阅读111页“想一想”巴台农神庙. 分组讨论,让学生充分交流,然后得出结果:

  宽与长的比是黄金比的矩形叫做黄金矩形.还有黄金三角形等(在幻灯片中简单提及即可)

  〔设计意图〕通过巴台农神庙介绍黄金矩形,让学生体会其文化价值,扩展学生的知识,简单介绍黄金三角形,同时也加深学生对黄金分割的理解。

  2、再次展示另一组古今图片,介绍黄金分割在现实生活中的广泛运用,加深对本节知识,陶冶学生情操,进一步体会黄金分割的人文价值。

  五)巩固知识,随堂练习(8分钟) (黄金分割点的另外作法)

  练习1、任意作一条线段采用如下方法也可以得到黄金分割点:如图,设AB是已知线线段,在AB上作正方形ABCD;取AD的中点E,连接EB;延长DA至F,使EF=EB;以线段AF为边作正方形AFGH.点H就是AB的黄金分割点.

  你能说说这种作法的道理吗?

  〔设计意图〕(1)让学生掌握更多黄金分割的作法,拓展其思路,(2)进一步判断某一点是否为一条线段的黄金分割点,练习学生的语言组织能力和表达能力.

  六)回顾小结(4分钟)

  现在请同学们回顾本节课所学的内容,说说看你有什么收获或疑惑。

  〔设计意图〕通过学生回忆本节课所学内容,获取新知的途径等方面进行小结,给学生一个充分发挥自己个性的机会,各抒己见,体现了课堂中学生的主体作用。

  七)布置作业(1分钟)

  作业:A类113页:习1、2 B类 113页习 3 C类*为妈妈策划她应穿多高的高跟鞋合适?

  〔设计意图〕作业分层布置,在完成达标的基础上拓宽和加深,加强学生综合能力和创造才能的培养。也是尊重学生个体差异的表现。

  五、关于板书设计

  体现知识之间的联系,有利于知识的系统化。设计板书如下:

  六、教学媒体设计:

  根据本节教学内容的特点,设计制作了多媒体课件,课件分为三部分:第一部分,情境展示。通过展示图片让学生直观感知黄金分割在建筑艺术生活领域的美学价值。第二部分,知识呈现,激发学生学习兴趣,有利于突破教学重点、难点,促使学生乐意投入到现实的探索性的数学活动中去。第三部分,实践应用。目的是提高学生审美情趣,数学源于生活且服务于实践,进一步探究美、创造美,提高课堂效率。

  七、关于教学评价:

  本节课既注重了对双基的评价,又注重了对学生情感态度的评价:

  1、注重对学生双基的评价。如 设计的关于黄金分割定义的判断题;学生对比值的计算等。

  2、注重对学生观察、动手及参与能力的评价。如欣赏各种美丽的图片并观察特点;动手测量并计算线段的比;探讨黄金分割点的作法等。

  3、选择生活中的问题评价学生应用数学的意识和能力。如帮妈妈设计高跟鞋的高度问题。

  以上是我对本节课的设计理念及设计思路,不妥之处,敬请批评指正。

八年级数学说课稿15

  一、教材分析

  1、教材的地位和作用

  本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容。在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。

  2、教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标)。

  知识技能:(1)了解无理数和实数的概念以及实数的分类。

  (2)知道实数与数轴上的点具有一一对应关系。

  数学思考:(1) 经历对实数进行分类的过程,发展学生的分类意识。

  (2) 经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的。

  解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数。

  情感态度:(1) 通过了解数系扩充体会数系扩充对人类发展的作用。

  (2) 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。

  3、教学重点、难点

  重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。

  难点:用数轴上的点来表示无理数。

  二、学情分析

  在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算。课本对学生掌握实数要求不高。只要求学生了解无理数和实数的意义。但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。本节主要引导学生熟知实数的概念和意义,为后面学习打下基础。

  三、教法学法分析:

  教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法、类比法和多媒体辅助教学。

  (1)在教学中通过设置疑问,创设出思维情境,然后引导学生动脑、动手,使学生在开放、民主、和谐的教学氛围中获取知识,提高能力,促进思维的发展。

  (2) 借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的。

  (3)教具:三角板、圆规、多媒体。

  学法分析:我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习、享受学习。因此,在本节课的教学中引导学生“仔细看、动脑想、多交流、勤练习”的学习,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们“会观察”、 “会类比”、“会分析”、“会归纳”的能力。

  四、教程分析:

  针对本节教材的特点,我把教学过程设计为以下五个环节:

  一、创设问题情景,引出实数的概念

  内容:问题:(1)什么是有理数?有理数怎样分类?

  (2)什么是无理数?带根号的数都是无理数吗?

  意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备.

  学生回答:无理数是无限不循环小数.

  带根号的数不一定是无理数.

  3、把下列各数分别填入相应的集合内。有理数集合、无理数集合

  , , , , , , , , , ,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)

  意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念.

  教师引导学生得出实数概述并板书:有理数和无理数统称实数(real number)。教师点明:实数可分为有理数与无理数。最后多媒体展示具体分类,并对有理数和无理数从小数的角度进行说明。

  二、议一议,

  1、在实数概念基础上对实数进行不同分类。

  无理数与有理数一样,也有正负之分,如 是正的, 是负的。

  教师提出以下问题,让学生思考:

  (1)你能把 , , , , , , , , , ,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?

  正数集合:

  负数集合:

  (2)0属于正数吗?0属于负数吗?

  (3)实数除了可以分为有理数与无理数外,实数还可怎样分?

  意图:在实数概念形成的基础上对实数进行不同的分类.上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.提醒学生分类可以有不同的方法,但要按同一标准不重不漏.

  让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数、0、负实数。

  2、了解实数范围内相反数、倒数、绝对值的意义:

  在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么。在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

  例如, 和 是互为相反数, 和 互为倒数。

  三、想一想

  让学生思考以下问题

  1、a是一个实数,它的相反数为 ,绝对值为 ;

  2、如果 ,那么它的倒数为 。

  意图:从复习入手,类比有理数中的相关概念,建立实数的相反数、倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的

  让学生回答后,教师归纳并板书:实数a的相反数为 ,绝对值为 ,若 它的倒数为 (教师指明:0没有倒数)

  增加练习:(多媒体展示)第一组1. 的绝对值是

  2、 a是一个实数,它的绝对值是

  第二组:1、 的相反数是 ,绝对值是

  2、绝对值等于 的数是 , 3、 的绝对值是

  4、正实数的绝对值是 ,0的绝对值是 ,负实数的绝对值是

  例题:求下列各数的相反数、倒数、绝对值

  (1) (2) (3) 学生上黑板完成,教师巡视学生如何书写,对发现的问题及时处理,最后与学生共同纠正。

  明晰:实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用。(媒体展示两个举例)

  四、议一议。

  探索用数轴上的点来表示无理数

  1、每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示 、 和 这样的无理数的点吗?

  2、多媒体展示 的做法和 和 的做法

  如图OA=OB,数轴上A点对应的数是多少?

  让学生充分思考交流后,引导学生达成以下共识:

  探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小.

  (1)A点对应的数等于 ,它介于1与2之间。

  (2)每一个有理数都可以用数轴上的点表示

  (3)每一个无理数都可以用数轴上的点来表示

  (4)每个实数都可以用数轴上的点来表示,每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。

  (4)和有理数一样,在数轴上,右边的点比左边的点表示的数大。

  五、随堂练习(多媒体展示)

  第一组:判断题:

  ①实数不是有理数就是无理数、②无理数都是无限不循环小数. ③无理数都是无限小数④带根号的数都是无理数. ⑤无理数一定都带根号. ⑥两个无理数之积不一定是无理数. ⑦两个无理数之和一定是无理数. ⑧数轴上的任何一点都可以表示实数.

  第二组:

  1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数。

  2、求下列各数的相反数、倒数和绝对值:

  (1) (2) (3)

  3、在数轴上作出 对应的点。

  意图:通过以上练习,检测学生对实数相关知识的掌握情况.

  六、小结

  1、实数的概念

  2、实数可以怎样分类

  3、实数a的相反数为 ,绝对值 ,若 ,它的倒数为 。

  4、数轴上的点和实数一一对应。

  七、作业

  课本习题2. 8 1、2、3题

  结束语:多媒体展示:

  人生的价值,并不是用时间,而是用深度去衡量的。

  ——列夫托尔斯泰

  八、板书设计:

  实数

  1、实数的概念 4、实数与数轴上的点的关系

  2、实数的分类 5、例题

  3、实数a的相反数为 , 6、学生练习

  绝对值 ,若 ,它的倒数为

【八年级数学说课稿】相关文章:

八年级数学的说课稿06-16

八年级数学《菱形》说课稿11-05

八年级数学《除法》说课稿09-01

八年级数学的优秀说课稿01-17

八年级数学说课稿06-10

八年级数学下册的说课稿06-10

八年级数学说课稿11-21

八年级数学菱形说课稿08-06

八年级数学说课稿09-13

八年级数学《菱形》说课稿范文11-05