- 相关推荐
数学建模范文(范例15篇)
数学建模范文1
随着社会进步、科技创新和经济产业结构的不断调整,我国对高素质高技能应用型人才的需求正在不断扩大,高等职业教育的高规格人才培养显得尤其重要。社会上各行各业的工作人员,需要善于运用数学知识和数学思维方法来解决实际问题,方能为公司赢得经济效益和社会效益。面临新教育态势的压力,面对数学基础薄弱的学生,如何在有限教学期限内快速提升高职数学课的教学品质,成为高职高等数学教学改革的焦点。
一、高等职业教育数学课教学现状与分析
经过查阅大量文献资料、学生学情调研和教师座谈研讨,可以将目前高等职业教育数学课教学现状归因为课程特点、教师和学生三个方面。
1.数学课的特点。数学是一门与现实世界紧密联系的科学语言和基础的自然学科,其形式极为抽象。学生学到数学概念、方法和结论,并未掌握数学学科精髓,未使数学成为解决实际问题的利器。
2.教师方面。课堂上,教师卖力的教授“有用”的理论和方法,但学生学得吃力且效果不佳。现在,部分教师将实际生活中的鲜活例子融入数学课的教授,打破了数学教学体系和内容自我封闭的僵局,但有些教师将“数学教育是一种素质教育”阻碍为抽象、深奥的课程,严重挫伤了学生学习的积极性。
3.学生方面。就高职生学情而言,生源大多来自高考第五批等录取批次,普遍不晓得数学理性思维对人思维能力培养的重要性,高职生学习目标不明确,学习习惯尚未养成,学习动力不足。此外,面对大量抽象符号和逻辑推理,形象思维强的高职生极易产生抵触心理。上述分析表明,要想实现“数学教育本质上是一种素质教育,数学的教学不能完全和外部世界隔离开来”,就需要改变数学教育按部就班的静态教学现状,创新教学模式,激发学生的主体参与意识,方能形成生动、活泼、有趣的数学课堂。
二、数学建模在高等职业教育人才培养过程中的意义和作用
从公元前3世纪的欧几里得几何,开普勒的行星运动三大规律到近代的流体力学等重要方程,数学建模的悠久历史可见一斑。
1.数学建模的桥梁作用。随着大数据时代的到来,大量数据爆炸性的涌入银行、超市、宾馆、机场的计算机系统,都需要进行归纳整理、去伪存真、分析和汇总。因此,需要在实际问题和数学方法两者之间架设一个桥梁,这个桥梁就是数学模型。
2.数学建模思想融入高职数学课堂的意义。鉴于高等职业教育数学课教学现状与分析,结合数学建模进入高等院校数学课堂时机的日渐成熟,以及高等职业教育旨在培养高职生如何“用数学”而非“算数学”的目标,将数学建模思想融入高职数学课堂有着积极肯定的意义。
(1)时机成熟。随着大型快速计算机技术及数学软件的快速发展,早期大型水坝的应力计算、航空发动机的涡轮叶片设计等数学模型中的数学问题迎刃而解,数学建模与科学计算的完美结合成为数学科学技术转化的主要途径。计量经济学、人口控制论等新兴的交叉学科为数学建模提供了广阔的应用新天地。
(2)目标明确。数学建模的切入搭建了数学和外部世界的桥梁,解开了数学课堂教学的困境,让高职生以数学为工具去分析、解决现实生活中实际问题的目标切实可行。面对工程技术、经济管理和社会生活等领域中的实际问题,拥有敏锐洞察力的高职生面对现实问题的挑战,主动好奇的参与到资料收集、调查研究过程中来,能够摆脱惯性思维模式,敢于向传统知识挑战,尝试多样解题方式,不仅激发了学习动机,提升了数学知识水平,更有助于学生创新精神和能力的培养,让其在体会数学建模魅力和实用性的同时,渗透数学应用能力。
三、数学建模在高等数学教学中的应用实践
学生走上工作岗位后,无形中会利用数学建模思想来解决实际问题。那么,如何有效的将数学建模“植入”高数课程教学,则需要一系列科学合理有序的教学改革方可取得成效。
(1)融入数学建模思想的高职特色教材。作为教学载体,高职数学教材应从应用性职业岗位需求出发,以专业为服务对象,以实践操作为重点,以能力培养为本位,以素质培养为目的撰写情境式案例驱动的高职特色教材。
(2)构建服务专业的高职数学教学模式。以学校专业需求为服务出发点,制定专业特色鲜明的数学课程教学新体系,搭建课程的“公有”模块和“选学”模块,加强专业针对性。与服务专业类似,对于不同年级、不同数学基础学生的需求,提供个性化、分层化、系列化的教学内容,显得尤为关键。
(3)培养数学应用意识的案例教学方法。历届全国大学生数学建模竞赛参赛数量和规模的扩张使我们懂得:以热点案例出发,能够激发学生的求知欲,在求解过程中自然引出系列数学知识点,通过数学建模,让学生体会数学是刻画现实世界的数学模型,品味数学乐趣,趣化学习过程,强化数学知识应用意识,树立学生主体意识并培养学生创新意识和能力。
(4)营造数学应用意识的数学实验氛围。利用数学软件,通过寥寥数行代码解决曾经无从下手的复杂问题,必会吸引学生从耗费时间的复杂计算转移到数学建模思想、数学方法的理解和应用,培养以数学和计算机分析和解决实际问题的能力,提高数学应用意识。
(5)指导学生参加全国大学生数学建模竞赛。历届数学建模竞赛从内容到形式,都是一场与真实工作环境接近的真刀真枪的历练,要求学生团队综合运用数学及其他学科知识、使用计算机技术通过数学建模来分析、解决现实问题。从“乘公交,看奥运”、“世博会影响力的.定量评估”到“SARS的传播”、“饮酒驾车”,这些开放、挑战性问题,必然会提高学生的洞察力、想象力、创造力和协作精神。
四、数学建模在高等数学教学中的实践效果
自20xx伊始,将数学建模和数学实验引入高职数学课程教学中以来,学生主动学习意愿增强,学习效果显著提升。效果主要表现实际问题求解的多样性和开放性使得学生思维得以激活和解放,解题的自由使得互联网应用达到最优化。学院连续多年组织学生参加北京市高职高专大学生数学竞赛多次获得一、二、三等奖,在全国大学生数学建模竞赛中获得多项北京市一等奖,近两年获得国家二等奖2项、国家一等奖1项的佳绩。经过共同努力,应用数学基础获批为国家精品资源共享课。需要强调三点:首先,案例教学中要科学合理的训练学生的“双向翻译”能力,要培养学生应用数学语言把实际问题翻译为明确的数学问题,再把数学问题的解翻译成常人能理解的语言。其次,所有教学活动要以学生为中心,并且离不开教师煞费苦心精心设计的教学活动,因为数学建模、指导数学实验和辅导学生参加竞赛需要教师掌握算法、优化、统计、数学软件、计算机编程等综合能力,因而教师尤为关键。再者,学院领导对数学建模、数学实验在人才培养过程中的重要性要有清晰充分的认识,才会有力度的支持数学教学改革。
五、结语
将数学建模思想和方法融入高职数学课程教学是一种先进的教育教学改革理念,是提升高职数学教学品质的关键,需要广大教师踏踏实实的钻研和工作,真正讲好每一个案例,为培养具备数学应用意识的高规格人才而努力。
数学建模范文2
一.前期准备(建模储备)
1.工欲善其事,必先利其器。
各种软件的成功安装,团队成员软件版本一致性。
软件(Excel、matlab、word、latex、WPS等等)熟练掌握。
2.必要数学知识
让你的数学知识足够让你进行知识的获取与获取知识后接下去的快速学习。
各种算法。
3.建模算法与编程知识(思想的具体实现)
了解各项算法。
各种算法以及编程具体实现,提前将代码准备好。
知道何种问题用何种算法,编程可以直接拿来用。
4.资料获取能力(文件检索)
各种网站与论坛(数学中国、校苑数模等)的资源的利用。
(可以建群讨论)(注册收集体力从而下载东西)
Google搜索引擎的真正使用方法,资源搜索方法。
中国知网等学术论文获取方法。
谷歌学术,百度学术。
5.建立模型能力(思想)
建立模型的能力才是整个数学建模的核心,模型从分析到实现是需要过程的。团队可以一起讨论,相信自己,结合找到的学术论文进行初步建模构想,再搜集资料。
获取知识,搜索资料,最好在前人学术研究的基础上加以改进。利用好学术论文。
建立模型不是一蹴而就的,团队分析,最后一人总结数学思想建模,可以分模块分部建立,有一人编程实现。
6.文档写作能力(格式)
充分研究以前优秀作文。格式,语言使用。
对自己模型的表达。
论文010203按时间,改一次,另存为一次。
7.对所参加比赛要求与评判的了解
将比赛需要的所有东西准备好。
对时间的把握。
对比赛评判习惯的把握。
提前了解题型,早做准备。
参赛队应该尽可能多的研读和实践历年获奖论文及其中的模型和求解算法,并进行一次全真模拟训练磨合队伍。
二.人员分工合作
数学员:数学方法与思想
程序员:精通算法的实现,调试程序
写手:论文的实现
数学模型的组队非常重要,三个人的团队一定要有分工明确而且互有合作,三个人都有其各自的特长,这样在某方面的问题的处理上才会保持高效率。
三个人的分工可以分为这几个方面:
1.数学员:
学习过很多数模相关的方法、知识,无论是对实际问题还是数学理论都有着比较敏感的思维能力,知道一个问题该怎样一步步经过化简而变为数学问题,而在数学上又有哪些相关的方法能够求解,他可以不会编程,但是要精通算法,能够一定程度上帮助程序员想算法,总之,数学员要做到的是能够把一个问题清晰地用数学关系定义,然后给出求解的方向;
2.程序员:
负责实现数学员的想法,因为作为数学员,要完成大部分的模型建立工作,因此调试程序这类工作就必须交给程序员来分担了,一些程序细节程序员必须非常明白,需要出图,出数据的地方必须能够非常迅速地给出。
3.写手:
在全文的`写作中,数学员负责搭建模型的框架结构,程序员负责计算结果并与数学员讨论,进而形成模型部分的全部内容,而写手要做的。就是在此基础之上,将所有的图表,文字以一定的结构形式予以表达,注意写手时刻要从评委,也就是论文阅读者的角度考虑问题,在全文中形成一个完整地逻辑框架。同时要做好排版的工作,最终能够把数学员建立的模型和程序员算出的结果以最清晰的方式体现在论文中。因为论文是评委能够唯一看到的成果,所以写手的水平直接决定了获奖的高低,重要性也不言而喻了。三个人至少都能够擅长一方面的工作,同时相互之间也有交叉,这样,不至于在任何一个环节卡壳而没有人能够解决。因为每一项工作的工作量都比较庞大,因此,在准备的过程中就应该按照这个分工去准备而不要想着通吃。这样才真正达到了团队协作的效果。
三.数学建模过程
1.看到问题、分析问题、理解题意。
2.寻找资料,查找相关知识。
3.思考可使用算法模型,想出问题解决思路。
4.列出模型框架。
5.进行模型与算法的具体实现过程。
6.对模型的优化与检查。
7.论文的整理。
8.摘要论文的批判与检查。
9.提交。
四.对数学建模的理解
利用数学方法解决实际问题,对数学知识的了解与熟悉,快速查找学术知识并运用。
论文的整理,让他人理解。
数学好:数学思想。
编程好:调试程序与算法的实现。
整理能力:文档表述清晰。
五.我下一步的努力
1、数学模型的了解与掌握:
《数学模型》 姜启源版
《数学建模与数学实验》 赵静版
(认真读完上述两本数学建模书籍)
各种网络上找到的书籍,关于算法与模型的简单看看。
2、各种数学工具的安装与使用
Matlab的安装与使用
Excel的进一步了解
Word的进一步熟悉
各种我不知道的数学工具:spss,latex……
3、算法的掌握与实现
将看过算法都整理起来,便于比赛时直接用。
4、多看与研究比赛获奖论文
研究思想,感受过程。
5、研究模板,写作排版与论文整理方法
6、万事俱备,自己亲身实践数学建模
数学建模范文3
数学核心素养是数学课程的基本理念和总体目标的体现,可以有效地指导数学教学实践。《普通高中数学课程标准(实验)》修订稿提出了数学学科的六种核心素养,即数学抽象、直观想象、数学建模、逻辑推理、数学运算和数据分析。其中,数学建模是六大数学核心素养之一。提升数学核心素养,要求数学教师在课堂教学中强化学生的建模意识。教师在教学中通过设置数学建模活动,培养学生的建模能力。
一、数学建模的含义
数学建模是将实际问题中的因素进行简化,抽象变成数学中的参数和变量,运用数学理论进行求解和验证,并确定最终是否能够用于解决问题的多次循环。数学建模能力包括转化能力、数学知识应用能力、创造力和沟通与合作能力。
二、数学建模能力的培养与强化
1.精心设计导学案,引导学生通过自主探究进行建模
在新授课前,教师设计前置性学习导学案,为学生扫除知识性和方向性的障碍。通过导学案,引导学生去探究问题的关键,对模型的构建先有一个初步的自主学习过程。通过自主学习探究,让学生充分暴露问题,提高模型教学的针对性。在前置性学习导学案设计的问题的启发与引导下,学生会逐步学习、研究和应用数学模型,形成解决问题的新方法,强化建模意识和参与实践的意识。例如,教师在引导学生构建关于测量类模型时,设计的导学案应提醒学生对测量物体进行抽象化理解,并掌握基本常识。教师应鼓励学生采用多种不同的测量方式,分析并优化所得数据。通过引导学生自主探究,让学生探索并归纳不同条件下的模型建立的方法,培养学生的建模维能力。
2.在教学环节中融入数学模型教学
教师在教学的各个环节都可以融入数学模型教学。例如,教师在新课教学时,应注意渗透数学建模思想,让学生将新授课中的数学知识点与实际生活相联系,将实际生活中与数学相关的案例引入课堂教学,引导学生将案例内化为数学应用模型,以此激发学生对数学学习的兴趣。在不同教学环节,教师通过联系现实生活中熟悉的事例,将教材上的内容生动地展示给学生,从而强化学生运用数学模型解决实际问题的能力。
教师通过描述数学问题产生的背景,以问题背景为导向,开展新授课的学习。教师在复习课教学环节,注重提炼和总结解题模型,培养学生的转换能力,让学生多方位认识和运用数学模型。相对而言,高中阶段的数学问题更加注重知识的综合考查,对思维的灵活性要求较高。高中阶段考查的数学知识、解题方法以及数学思想基本不变,设置的题目形式相对稳定。因此,教师应适当引导,合理启发,对答题思路进行分析,逐步系统地构建重点题型的解题模型。
3.结合教学实验,开展数学建模活动
教师在开展数学建模活动时,应结合教学实验。开展活动课和实践课,可以促使学生进行合作学习。教师要适时进行数学实验教学,可以每周布置一个教学实验课例,让学生主动地从数学建模的角度解决问题。在教学实验中,以小组合作的形式,让学生写出实验报告。教师让学生在课堂上进行小组交流,并对各组的交流进行总结。教学实验可以促使学生在探索中增强数学建模意识,提升数学核心素养。
4.在数学建模教学中,注重相关学科的联系
教师在数学建模教学中,应注重选用数学与化学、物理、生物等科目相结合的跨学科问题进行教学。教师可以从这些科目中选择相关的应用题,引导学生通过数学建模,应用数学工具,解决其他学科的难题。例如,有些学生以为学好生物是与数学没有关系的,因为高中生物学科是以描述性的语言为主的。这些学生缺乏理科思维,尚未树立理科意识。例如,学生可以用数学上的概率的相加和相乘原理来解决生物上的一些遗传病概率的.计算问题,也可以用数学上的排列与组合分析生物上的减数分裂过程和配子的基因组成问题。又如,在学习正弦函数时,教师可以引导学生运用模型函数,写出在物理学科中学到的交流图像的数学表达式。这就需要教师在课堂教学中引导学生进行数学建模。因此,教师在数学建模教学中,应注意与其他学科的联系。通过数学建模,帮助学生理解其他学科知识,强化学生的学习能力。注重数学与其他学科的联系,是培养学生建模意识的重要途径。
总之,教师在数学教学过程中,应以学生为本,精心设计导学案,鼓励学生自主探究和应用数学模型。通过建模教学,让学生形成数学问题和实际问题相互转化的数学应用意识和建模意识。教师通过强化数学建模意识,让学生掌握数学模型应用的方法,可以使学生奠定坚实的数学基础,提升数学核心素养。
参考文献:
[1]郑兰,肖文平.基于问题驱动的数学建模教学理念的探索与时间[J].武汉船舶职業技术学院学报,20xx(4).
[2]王国君.高中数学建模教学[J].教育科学(引文版),20xx(8).
[3]李明振,齐建华.中学数学教师数学建模能力的培养[J].河南教育学院学报(自然科学版),20xx(2).
数学建模范文4
在得知xxxx年全国大学生数学建模竞赛中,我们队(队员:)获得xxxx省赛区二等奖的时候,我并不喜出望外,反而觉得有点遗憾,有点可惜,因为我们没有完全发挥出水平,这样成绩对我们来说并不理想。其实这也是在我的预料之中的。以下是我个人在这次比赛中的感受:
在数模竞赛中想获得好成绩,进军全国评选并非易事。首先模型要建得好,其次文本要写得好,即叙述要简洁,文字要流畅,逻辑严谨。可要做到这两点并不容易,每个问题涉及的知识面很广,要求有扎实的数学基础,需要掌握高等数学,线性代数,离散数学,概率与数理统计理论,有时还要涉及物理等等方面的知识,这有赖于我们平时不懈的努力和刻苦的`学习钻研。此外,开始建立的模型并不是最优的,需要反复修改,不断优化,最后才能求出最优解。建立好数学模型后,接下来是写文本,文本必须简洁,让人容易看懂,如果文本写得不好,不能把模型正确表达出来,也不能取得好成绩。因为文本在评分中占了很大的比例,直接影响我们的论文是否能够获得高分。
比赛的形式是以三人为一对的,队员之间分工合理、科学与否直接影响比赛成绩。如果能充分发挥各个队员的优势,那么这是最好的。例如,文笔好的负责写文本,数学好的负责建立模型,查资料,编程好的负责编程求解。也就是团队精神,在意见有分歧的时候,要顾全大局,而不要各做各的,互不谦让,这一点无论做什么都是至关重要的。
在这次比赛中,我们队合作得很愉快,配合也很默契,所以我们很顺利的建立了模型,并求出了模型的解。在与同学们和老师讨论过程中,我们发现很多他们讨论的问题,是我们小组讨论过,并证明过不是最优解的模型。可以说我们是最早建立模型的,并得出模型的解的。但我总觉得我们的文本写得不理想,不满意,这也没办法,因为我们花在第三个问题的时间太多了。以至到快要交卷的时候我们还忙于修改文本。
我已参加过两次比赛,两次的成绩都不错,因此我们组比别人有优势,有参赛的经验,除外,对于做题我们都很有经验,知道如何去查资料,怎样与指导老师讨论问题,可以说,有一种居高临下的感觉,游刃有余。
虽然我们没在全国上获奖,但我们已经尽了力,结果如何,都无怨无悔。最后我要感谢广州大学给我们提供这么一个参赛的机会,学校为了这次比赛,准备了很多人力物力,在比赛前一个月组织参赛的学生集训,这是我校在这次比赛中取得好成绩的原因之一。很多老师为了这次比赛花了很多心血,而且在比赛的最后一天,一些老师还陪着学生一起通宵达旦,这是难能可贵的精神,我想在我们学校应该大力发扬。预祝我校在今年的全国大学生数学建模取得更优异的成绩。
数学建模范文5
一、充分发挥学生主观能动性并对问题进行简化、假设
学生的想象力是非常丰富的,这对数学建模来说是很有利的。所以教学时要充分发挥学生的想象力,让学生通过小组合作来进一步加深对问题的理解。我们要求的是两车相遇的时间,那么我们可以通过设一个未知数来代替它。根据速度×时间=路程,可以假设时间为x小时,根据题意列出方程:65x+55x=270
二、学生对简化的问题进行求解
第三步,就是要给刚才列出的方程,进行变形处理,变成学生熟悉的,易于解答的算式,如上题可以通过乘法分配律将等式写成120x=270,利用乘法算式各部分间的关系,积÷一个因数=另一个因数,得x=2.25。有的方程并不是通过一步就能解决,这时就显示了简化的重要性,需对方程进行一定的变形、转化。
三、展示和验证数学模型
当问题解决后,就要对建立的模型进行检验,看看得到的模型是否符合题意,是否符合实际生活。如上题检验需将x=2.25带入原式。左边=65×2.25+55×2.25=270,右边=270。左边=右边,所以等式成立。在这个过程中,可以体现出学生的数学思维过程与其建模的逻辑过程。教师对于学生的这方面应进行重点肯定,并鼓励学生对同学间的数学模式进行点评。一般而言,在点评时要求学生把相互间的模式优点与不足都要尽量说出来,这是一种提高学生对数学语言运用能力与表达能力的训练,也能让学生在相互探讨的过程中,得以开启思路,博采众长。
四、数学模型的应用
来自于生活实际的数学模式其建模的目的是为了解决实际问题。所以立足于此,建模的实际意义应在于其应用价值。模型应具有普遍适应性,不能是一个模型只能解决一个实际问题,这样的模型是不符合要求的。所以在建模时需要考虑要建的模型是否有实用价值,是否改变一下,还能通过怎样的方法进行解题,如果数学模型只适合一题,不适合相关题,就没有建立模型的必要。如给出这样的题目:两地之间的路程是420千米,一列客车和一列货车同时从两个城市相对开出,客车每小时行55千米,火车的速度是客车的1011,两车开出后几小时相遇?我们就可以通过刚才的'模型来解题。设两车开出后x小时相遇。55x+55×1011x=420解得x=4将x=4代到方程的左边=55×4+55×1011×4=420,右边=420,左边=右边,所以x=4是方程的解,符合题意。这样,完整的数学模型就建立了。为以后相似类型的题建立了一个模型,遇到这样的题就可以通过这个模型来做。在小学数学教学中,许多内容都可以在学生的生活实际中找到背景。在数学建模活动中,向学生展示的也是他们身边的事,解决的又是他们碰到的实际问题。因此,让学生从生活实际出发,创建数学模型,不仅能够激发起他们学习数学的兴趣,让他们觉得学有所用,更能培养他们的数学眼光,在碰到问题的时候,能够从数学的角度加以思考,而且能够给他们以后学习打下基础。再者,在数学思想中,数学知识得以形成与体现。而数学概念则是根据数学知识的现象所总结出来的。相关的数学规律与数学问题的解决,更是一种对于数学思想的实际应用。总的来说,建模思想可以帮助学生更进一步地感悟数学思想,积累数学经验,起到举一反三、触类旁通的作用。既然,建模具有种种优点,其有效运用能为小学数学教学提供许多帮助,那么何不以此为契机,形成更为开放的数学教学体系和手段,培养更具主动意识和操作能力的学生呢?
数学建模范文6
不知不觉一个学期的工作走向了尾声,本学期我社团在院领导及老师的带领下开展各项活动,并取得了一些成绩,同时也发现了新的问题,现将本学期的工作进行总结如下:
一、制度建设
本学期社团工作一开始,我们就针对上学期工作中出现的问题对章程进行了进一步完善。而且为了让成员更加了解社团、进一步严明纪律以更好的提高社团的工作效率,通过理事会研究决定将章程书面化,并由部长组织部内成员学习。
二、机构建设
为了更好地参加9月份“全国数学建模大赛”,协会建立了学习群并开展了相应的培训。
三、基础工作
1、加强成员之间的交流;
2、做好数学建模及数学实验选修课的工作;
3、了解“数学建模大赛”的动态;
4、做好“数学建模大赛”的报名及培训工作。
四、举办活动
(一)数学建模选修及数学实验选修开展工作
数学建模及实验是我社团指导老师针对我学院及社团的需要开设的选修课程,有助于成员学习并了解更多的.建模知识。
(二)思维锻炼及团队意识培养活动古希腊雅典神庙上有句箴言:“认识你自己。”古罗马大哲西塞罗说:“每个人都对自己了解最少。”他们的提示适用于我们对右脑的认识和对自己的了解。那么我们又要如何的去锻炼我们的思维呢?一根线,一张纸,几根细竹,几笔色彩,就构成了理想的框架。理想期待同学们放飞,期待青年娇子傲视大地,向目的地奔驰。放风筝的户外活动让同学们放飞了梦想,并树立了为实现梦想而努力奋斗的信心。数独技巧讲座更是了大家缓解紧张的学习和生活带来的压力,感受到了数学的乐趣,展现了社团成员们的昂扬风貌。
(三)首届“大明眼镜”杯数独大赛
为响应我党建党90周年及我学院成立10周年,我社联合兄弟社团特举办首届数独大赛。通过此次比赛丰富我校大学生的课余生活,拓展大家的思维能力,增强同学们的逻辑思维能力和推理能力,让大家对数学的学习兴趣更加浓厚。本次比赛共有180余人参加,经过紧张激烈的角逐之后,最后信息学院的李凯跃同学以17秒的优势夺冠,获得二等奖的是理学系戈苑、李小丽同学;三等奖信息学院王健、理学系董全苗、王通同学;优秀奖信息学院赵鹏飞、庞浩淼、苗成森及管理学院柴晓玲、王蕊同学。
(四)“全国数学建模大赛”的报名及培训
6月份我社团在理学系的带领下面向全院展开了“全国数学建模大赛”的报名工作,并于7月8号到7月14开展为期一星期的第一期集训,使同学们自身有了一定的提高,为9月9日到12日的比赛打好基础。
五、反思
总体而言,通过本学期多次活动的举办,使我社团在各方面都有了一个很大的提高。首先理事会成员的组织能力与责任心上得到了进一步的提高,再就是为我社团培养出来一大批责任心强的创业人才,并且在工作任务的分配上也能使每一个会员都有事可干。总而言之,我们这一学期的进步是巨大的,但是还是存在几点瑕疵:
1、部分理事会成员的领导能力有待提高;
2、大型活动的组织能力上还有待提高;
3、社团内成员的凝集力还是不够;
4、社团的执行力还差的远;
5、各部门间的配合严重不足。
上面的四点也就是本学期我们暴漏出的问题,也是影响我社团进步的关键因素之所在。希望我们能在下一学期中得到改进,让我社团能够“百尺竿头更进一步”。
数学建模范文7
到目前为止,我们已经学习科学计算与数学建模这门课程半个学期了,渐渐的对这门课程有点了解了。我觉得开设数学建模这一门学科是应了时代的发展要求,因为,随着科学技术的发展,特别是计算机技术的飞速发展和广泛应用,科学研究与工程技术对实际问题的研究不断精确化、定量化、数字化,使得数学在各学科、各领域的作用日益增强,而数学建模在这一过程中的作用尤为突出。在前一阶段的学习中我了解到它不仅仅是参加数学建模比赛的学生才要学的,也不仅仅是纯理论性的研究学习,这门课程是在实际生产生活中有很大的应用,突破了以前大家对数学的误解,也在一定程度上培养了我们应用数学工具解决实际问题的能力。
具体结合教材内容说,在很多时候课本里的都是引用实际生产生活的例子,这样我们更能够切切实实感受到这门课程对实际生产生活的帮助,而并非是我们空想着学这门课有什么作用啊,简直是浪费时间啊什么的。
现在我就说说我到目前为止学到了什么,首先,我知道了数学建模的基本步骤:第一步我们肯定是要将现实问题的.信息归纳表述为我们的数学模型,然后对我们建立的数学模型进行求解,这一步也可以说是数学模型的解答,最后一步我们要需要从那个数学世界回归到现实世界,也就是将数学模型的解答转化为对现实问题的解答,从而进一步来验证现实问题的信息,这一步是非常重要的一个环节,这些结果也需要用实际的信息加以验证。
这个步骤在一定程度上揭示了现实问题和数学建模的关系,一方面,数学建模是将现实生活中的现象加以归纳、抽象的产物,它源于现实,却又高于现实,另一方面,只有当数学模型的结果经受住现实问题的检验时,才可以用来指导实践,完成实践到理论再回归到实践的这一循环。
在课本第二章的时候我们开始接触实际问题,在第二章片头我们看到的就是某城市供水量的预测问题,在这一章里,老师通过城市供水量的预测问题介绍了求函数近似表达式的插值法和拟合法、城市供水量预测的简单方法、供水量增长率估与数值微分,其中插值法主要介绍Lagrange法、Newton法、分段低次插值和三次样条插值。至此我们才真正体会了数学建模对实际生产的帮助。
但同时,我们也发现,要学好数学建模这一门学科,或者说应用数学建模的知识去解决其他问题,不仅仅只要求我们有扎实的数学知识,还需要我们学习更多的数学分支学科,例如有时候我们还需要其他的数学软件来帮我们解决问题,同时还要考察实际情况学会从实际问题中提炼数学问题。
总的来说,学习数学建模这一门学科对我们的帮助很大,因为它不仅增强了我的知识面,我们可以在学习这一门学科的过程中锻炼我们学习积极性,逐步培养很强的自学能力和分析、解决问题的能力,这对于我们师范生以后走上教育工作岗位也是很有帮助的。
数学建模范文8
随着社会经济的飞速发展,数学在各种领域中所发挥的作用也越来越显著“高技术实质即数学技术”这一观点广受肯定,有关数学的应用性也备受社会各界关注和重视。为了反映社会及经济发展的需要,我国教育在培养学生时,除了要求其掌握理论知识以外,还要求其能够利用数学思想及方法,及时发现和解决实际中所遇到的各类问题,最终成为同社会及经济发展相适应的应用型人才。而这种利用数学思想分析实际问题,找到数学关系及规律,并将该问题转变为数学问题,构建相应的数学模型,从而解决问题的过程即数学建模。为此,各高校在培养应用型人才时,必须注重加强学生数学建模能力的提升。
一、对高校应用型人才培养的认识
所谓的“应用型人才”,指的是能够利用所学知识及专业技能在社会及经济活动中予以正确实践的专业化人才,也是具备生产一线基础知识及技能,专门从事一线生产的人才。社会对于应用型人才提出了如下要求:不仅具备扎实的基础,宽泛的知识面,较强的应用能力,还具有较高的素质,拥有创新及团队合作意识。其突出特点即知识面宽广、理论基础深厚,可以讲所学知识正确地应用于相关行业领域,同时,能够适应市场经济发展对于人才需求的逐步变化,还具有进一步接受教育与汲取新知识的能力,能够逐步扩展同职业相关的学科能力。
随着我国各大高校扩招力度逐步加大,高等教育正在逐步朝着大众化趋势发展,传统学术型或研究型人才培养模式面临着越来越严峻的挑战,为此,不少发达国家纷纷提出了“培养应用型人才,发展应用型高校”等战略方针。其中,德国早在上个世纪70年代就已经成立了首座应用型科技大学,专门培养和发展应用型人才,并受到了普遍的欢迎,此外,美、英、日也纷纷建立了应用型高校。近些年来,我国各大院在培养应用型人才方面也取得了显著的成果,但由于认识方面存在不足,因此,应用型培养方案及实施过程仍存在诸多问题,培养模式有待进一步完善。经多年探索,结合数学在各个领域中的广泛应用及培养应用型人才的相关要求,借助于数学建模加快高校应用型人才的培养具有十分重要的作用。
二、数学建模对我国高校应用型人才培养的现实作用分析
数学建模需要利用数学知识、语言及方法,对实际问题进行刻画,对于已建立的模型通过推理、证明、计算等,并通过数学软件来求解,对求出的结果同实际问题相似合。具体而言,数学建模对我国高校应用型人才培养的作用表现在如下方面:
(一)有助于团队合作意识的培养
鉴于实际问题往往相对复杂,因此,数学建模时需要搜集大量的数据及信息,并对这些数据进行筛选、分析和处理,建模时通常需要对模型进行假设、建立、求解,并对模型的计算进行设计,利用计算机软件对结果进行分析和检验,将结果同实际问题进行拟合,此过程在短暂的时间内,仅仅依靠一个人的力量是很难完成的,因此,数学建模过程往往需要组建一个团队,要求学生相互之间、师生间以及与社会间进行有效地沟通与合作。因此,数学建模有助于培养学生的团队合作意识,这方面恰恰是社会对于应用型人才培养的最基本要求之一。
(二)有助于创新能力的培养
由于数学建模过程中所涉及的数据多数杂乱无章,因此,要求学生能够有效地进行筛选,去粗取精,经过一系列归纳、整理、加工、提炼与总结,对已知条件进行量化,并对数学关系进行恰当描述,最终组建出相应的.数学模型,再通过所学理论及方法对该模型进行求解。为了简化实际问题,必须针对各种因素进行分析,对其中可忽略不计的因素进行判断,这要求学生必须对实际问题具有深刻地理解,明确研究目标及数学背景,以完成这一创造性的过程。此外,数学模型必须对实际问题进行真实、近似地刻画,以求所构建模型能够近乎完美、全面地表达这一实际问题,同时,还要求该模型容易求解,为此,必须对该模型进行不断改善,要求学生可以进入更深的知识层面中,反复产生更多新问题,往复循环,从而实现学生创新能力地逐步提高,满足应用型人才的相关要求。
(三)有助于学生综合素质及能力的培养
数学建模实质上就是综合运用数学知识及方法解决社会实践问题的过程,要求学生除了具备扎实的数学基础及逻辑思维能力以外,还对实际问题的背景具有一定的了解,能够对所具备的各类知识进行融会贯通。数学建模数据庞大而又复杂,因此,处理数据不仅需要分析和综合,还需要抽象、概括、比较、类比等多个过程,经过如此种种的培养,学生应变能力、全面分析及综合思考能力均得到了有效地提高,逐步加强了个人的综合素质及能力培养,这也是成为应用型人才的基本要求。
(四)有助于学生实践操作能力的培养
通常而言,以实际问题为依据所抽象和建立起的数学模型往往十分复杂,因此,数学模型求解过程也很困难,甚至难以求出解析解,即使可以求得也因过于复杂而缺乏足够的应用价值。因此,求解数学模型时需对计算方法进行设计和编写,利用数学软件对该数值解进行计算,要求学生必须具备数学软件及计算机操作及运用能力,经这些过程的锻炼,学生实践动手能力也势必得到了大幅度地提高。此外,数学建模需进行调研,对数据进行广泛搜集和补充,此即培养应用型人才中所格外关注的践性。
(五)全面体现了理论知识的实践应用性
数学建模中存在许多较为典型的案例,例如,“最优化捕鱼策略”,“投资收入及风险”等等,这些都凸显了数学知识强大的应用性。因此,数学建模已经成为数学应用的必经之路,也是将数学和社会实践联系起来的枢纽和桥梁。数学建模需借助于数学知识及方法,对所需解决的问题进行刻画,同时,数学建模还必须对所计算的结果同实际问题相似合,其全面体现了数学理论知识的实践应用性,这方面同社会对于应用型人才培养的要求是相互契合的。
(六)有助于学生自主学习及表达能力的培养
数学建模要求学生自主分析、探索和解决问题,无论是数据收集、补充、完善,还是构建模型,都需要学生主动参与其中,独立解决求解等过程,此外,建模需要全面运用各个专业学科知识,掌握不同的背景资料,科学判断和取舍相关数据,同时,要求自主查询实际问题所涉及到的知识及资料,所有这些都为培养学生的自主学习能力提供了良好的条件。数学建模过程要求采用学生自己的语言对实际问题进行描述和解决,需要深度地沟通和交流,也需要对论文进行写作,因此,这些也提高了他们的语言组织及表达能力。在培养应用型人才时,一个显著特点即要求其具备继续教育及汲取新知识的能力,能够拓展同职业相关的理论专业知识及技能,而数学建模培养了学生的自主学习及语言表达能力,为他们进一步汲取新知识、提高新技能打下了坚实的基础。
可以这样说,经过数学建模的系统化训练,学生收获了探索实际问题的真实体验,提高了信息收集、筛选、分析及运用能力,明白了分享与合作的重要性,锻炼了洞察力、意志力、自主学习、语言表达、专业知识综合运用、分析及解决问题的能力等等,所有这些都满足应用型人才培养目标,同应用型人才培养模式的要求保持一致。因此,数学建模在高校应用型人才培养过程中发挥着巨大的作用。
三、提高大学生数学建模能力的若干建议
(一)设立专门的数学建模课程
高校应设立专门的数学建模课程,要求数学教师必须具备足够的数学建模知识及能力,一方面,能够在课堂教学过程中渗透数学建模思想及应用的重要性;另一方面,可以将数学建模和学科知识理论相结合,游刃有余地引导学生学习和应用数学知识及方法。利用实践问题及典型案例,灵活穿插于课程教学之中,使学生逐步提高数学建模能力,并对数学建模产生浓厚的兴趣。
(二)将应用型人才培养目标与数学建模相结合
要明确学生的主体地位,无论教学还是数学建模竞赛辅导,都必须将课堂主体这一地位让出来,让学生自主进行案例阅读、信息搜集及处理、模型建立及讨论,将大家从被动接受转变为主动探索与思考,提高其学习兴趣,同时,充分发挥其潜力,提高其独立思考及解决问题的能力,逐步提高自身的综合素质,不断朝着应用型人才方向发展。应用型人才培养要体现专业优势,它与数学建模是紧密联系的。在实际培养过程中,要以数学科目为基础,运用数学软件等工具,为数学建模提供必要的支持,并为日后在社会实践中的应用打下良好的基础。
(三)抓好建模教学两大阶段
一是在全校范围内开设建模课程,便于有兴趣的学生学习基础性的建模知识,接触简单的问题及模型,了解数学建模课程的基本方法和内容;二是暑期强化培训阶段,为了更好地应对数学建模竞赛,必须对学生的数学建模能力进行强化锻炼,提高其数学应用能力。在这两个阶段内,教师的作用至关重要,暑期培训主要针对的是有一定专业基础、自主动手能力较强、建模积极性较高的学生。因此,在这个阶段,应选择历届数学建模竞赛题向学生进行讲解,由拥有丰富经验的教师进行专题报告,同时,组织大学生对竞赛进行模拟,由往届学生传授竞赛经验,使学生自主寻找解决问题的方法,提高创新能力。
(四)设立数学建模小组及建模协会
在教学培养中设立数学建模竞争小组,依据现有师资力量,对不同资质、兴趣、特长和专业的教师进行分组。不同类型小组负责指定工作内容,要保证培训、学习和竞赛目标的高效完成。此外,还可设立相应的建模协会,组建对外开放的数学建模实验室,建模协会每年定期在校园内举报建模竞赛,请教师或历届获奖学生进行建模知识讲座,对数学建模进行宣传,培养大学生的学习兴趣,为优秀参赛人员的选拔奠定基础,这样不仅丰富了学生业余文化生活,还提高了其科研水平。
数学建模范文9
摘要:不知不觉中,数学建模已经成为在学生中一个非常热门的名词随着各类数学建模大赛的如火如荼,数学建模的概念已经逐步走入到我们中学生的视线中。很多同学对于数学、对于数学建模的理解还存在着很多偏颇之处,认为数学这门学科太过深奥,比较难以学习领悟透彻,本文通过自身的理解,简要介绍了数学建模的概念与过程,体现了数学思想在问题解决过程中的指导作用,同时揭开数学建模的神秘面纱,让数学以更加平易近人的方式成为我们数学的工具。
关键词:数学建模;过程;应用
数学是一门高度的抽象并且严密的科学这没错,但是同样的数学中的许多结论与方法,我们可以很好的应用在生活中的方方面面。数学应该是理工科学生最重要的一门基础学科,然而我们大部分的同学,甚至我自己常常都会有“不知道学了数学有什么用,学会了微分与导数日常生活也用不到”的困惑,除了备战考试,“学而无趣”、“学而无用”的现象还是非常明显的。但是伴随着现代社会的高速发展,我们所掌握的科学技术水平也在稳步提高,数学本身的发展也是日新月异。时至今日,数学在其他各个学科之中的应用已经显得尤其重要。如何通过灵活的应用所掌握的数学知识去解决各类生产生活中遇到的实际问题时,建立合理地数学模型就成为至关重要的一点。
一、数学建模的概述
人们在对一个现实对象进行观察、分析和研究的过程中经常使用模型,如科技馆里的各类机械模型、水坝模型、火箭模型等,实际上,我们常常接触到的照片、玩具、地图、电路图实验器材等都是模型。通过使用一定的模型,可以能够概括、集中以及更直观的反映现实对象的一些特征,进而可以帮助人们迅速、有效地了解并掌握所研究的对象。而随着现代计算机技术与理论的日渐成熟,以及我们研究对象逐步复杂化、抽象画,可以通过计算机模拟的数学模型应运而生。其实数学模型不过是更抽象些的模型,而数学建模就是建立这一模型的过程,并且能够将建模后计算得到的结果来解释实际问题,同时接受实际的检验。当我们需要对一个实际问题从定量的角度分析和研究时,就需要通过深入调查研究、了解对象信息,并作出作出简化假设、分析内在规律,然后用数学的符号和语言,把这一问题表述为数学式子即为数学模型。这一数学模型再经过反复的检验和修正最终得到的模型结果来解释实际问题,并且可以接受实际的检验。当今时代,数学的应用已经不仅局限在工程技术、自然科学等领域,并以空前的广度和深度向环境、人口、金融、医学、地质、交通等崭新的领域渗透,形成了所谓的数学技术,并成为现代高新技术的重要组成。这其中,建立研究对象的数学模型并计算求解成为首要的和关键的步骤。数学建模和计算机技术在知识经济时代为科学研究提供了重要的帮助。
二、数学建模的过程
数学建模的过程可粗略以上方框图表示,其具体步骤可以概述为:1)通过分析问题的实际情况,可以充分了解所面临问题的背景,去大胆分析并且暴漏出问题的本质,针对研究对象提出问题。2)忽略非主要因素,直接列出研究的对象的关键问题。将复杂问题简化,抓住关键点,大大提高问题解决的效率。3)通过应用数学公式与理论,寻找客观规律。必要时可以借助计算机软件,形成合适的数学模型。4)通过运作已建立的数学模型,产生结果,进而通过结果的对比判断所建立的数学模型是否真正符合实际的客观规律。这是一个动态的检验、修改的过程,通常需要多次的模拟和完善才能够建立起合理有效的数学模型。5)将建成的数学模型规律转化为解决实际生活中的各种问题的方法,进而可以直接或间接地提高生产、生活效率。数学建模其实就是连接数学理论知识和数学实际应用两者之间的一条纽带。总有一些同学将数学建模看得多么的'高深莫测,其实我们在以前的日常的学习中早就已经接触过了数学建模。现在经常被我们当成搞笑段子来讲的一些小学学习数学的阶段做过的很多应用题,实际就是一种简单的数学建模。数学建模的确切的含义目前尚无定论,但比较莫忠一是的看法为:通过将实际问题的抽象化,归纳并简化问题,进而确定变量跟参数,运用数学的理论和方法,逐步确立比较合理的数学模型;然后再应用数学与其他相关学科中的理论和方法借助计算机等相关技术手段,建立起数学模型;接着我们会对此模型进行反复地验证,分析讨论,不断地对其进行修正,逐渐地改进使它更加的规范化。简单来说,数学建模就是以现实作为背景,用数学科学理论作依托,解决实际生产生活中问题的过程。因而,可以说我们所熟知的任何一个数学上的概念、定理、命题或者结构,都可以看作是数学模型。
三、数学建模的应用与总结
进入计算机技术引领的20世纪,随着电子计算机的出现与飞速发展,数学以前所未有的广度和深度向各个领域渗透,而数学建模正是这其中的纽带。在统工程技术领域诸如机械、电机、土木、水利等方面,数学建模已展现了其重要作用。建立在数学模型和计算机模拟基础上的新型技术,已经凭借其快速、经济、方便的优势,大量地替代了传统工程设计中的现场实验和物理模拟等手段。高科技时代下的技术本质上已经成为一种数学技术,源于支撑现代科技的计算机软件是数学建模、数值计算和计算机图形学相结合的产物在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。马克思说过,一门科学只有成功地运用数学时,才算达到了完善的地步。展望21世纪,数学必将大踏步地进入所有学科,数学建模将迎来蓬勃发展的新时期。
数学建模范文10
摘要
文章分析了大型建筑物内人员疏散的特点,结合我校1号教学楼的设定火灾场景人员的安全疏散,对该建筑物火灾中人员疏散的设计方案做出了初步评价,得出了一种在人流密度较大的建筑物内,火灾中人员疏散时间的计算方法和疏散过程中瓶颈现象的处理方法,并提出了采用距离控制疏散过程和瓶颈控制疏散过程来分析和计算建筑物的人员疏散.
关键字
人员疏散 流体模型 距离控制疏散过程
问题的提出
教学楼人员疏散时间预测
学校的教学楼是一种人员非常集中的场所,而且具有较大的火灾荷载和较多的起火因素,一旦发生火灾,火灾及其烟气蔓延很快,容易造成严重的人员伤亡.对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别,结合1号教学楼的结构形式,对教学楼的典型的火灾场景作了分析,分析该建筑物中人员疏散设计的现状,提出一种人员疏散的基础,并对学校领导提出有益的见解建议.
前言
建筑物发生火灾后,人员安全疏散与人员的生命安全直接相关,疏散保证其中的人员及时疏散到安全地带具有重要意义.火灾中人员能否安全疏散主要取决于疏散到安全区域所用时间的长短,火灾中的人员安全疏散指的是在火灾烟气尚未达到对人员构成危险的状态之前,将建筑物内的所有人员安全地疏散到安全区域的行动.人员疏散时间在考虑建筑物结构和人员距离安全区域的远近等环境因素的同时,还必须综合考虑处于火灾的紧急情况下,人员自然状况和人员心理这是一个涉及建筑物结构、火灾发展过程和人员行为三种基本因素的复杂问题.
随着性能化安全疏散设计技术的发展,世界各国都相继开展了疏散安全评估技术的开发及研究工作,并取得了一定的成果(模型和程序),如英国的CRISP、EXODUS、STEPS、Simulex,美国的ELVAC、EVACNET4、EXIT89,HAZARDI,澳大利亚的EGRESSPRO、FIREWIND,加拿大的FIERA system和日本的EVACS等,我国建筑、消防科研及教学单位也已开展了此项研究工作,并且相关的研究列入了国家“九五”及“十五”科技攻关课题.
一般地,疏散评估方法由火灾中烟气的性状预测和疏散预测两部分组成,烟气性状预测就是预测烟气对疏散人员会造成影响的时间.众多火灾案例表明,火灾烟气毒性、缺氧使人窒息以及辐射热是致人伤亡的主要因素.
其中烟气毒性是火灾中影响人员安全疏散和造成人员死亡的最主要因素,也就是造成火灾危险的主要因素.研究表明:人员在CO浓度为4X10-3浓度下暴露30分钟会致死.
此外,缺氧窒息和辐射热也是致人死亡的主要因素,研究表明:空气中氧气的正常值为21%,当氧气含量降低到12%~15%时,便会造成呼吸急促、头痛、眩晕和困乏,当氧气含量低到6%~8%时,便会使人虚脱甚至死亡;人体在短时间可承受的最大辐射热为2.5kW/m2(烟气层温度约为200℃).
疏散影响因素
预测烟气对安全疏散的影响成为安全疏散评估的一部分,该部分应考虑烟气控制设备的性能以及墙和开口部对烟的影响等;通过危险来临时间和疏散所需时间的对比来评估疏散设计方案的合理性和疏散的安全性.疏散所需时间小于危险来临时间,则疏散是安全的,疏散设计方案可行;反之,疏散是不安全的,疏散设计应加以修改,并再评估.
人员疏散与烟层下降关系(两层区域模型)示意图
疏散所需时间包括了疏散开始时间和疏散行动时间.疏散开始时间即从起火到开始疏散的时间,它大体可分为感知时间(从起火至人感知火的时间)和疏散准备时间(从感知火至开始疏散时间)两阶段.一般地,疏散开始时间与火灾探测系统、报警系统,起火场所、人员相对位置,疏散人员状态及状况、建筑物形状及管理状况,疏散诱导手段等因素有关.
疏散行动时间即从疏散开始至疏散结束的时间,它由步行时间(从最远疏散点至安全出口步行所需的时间)和出口通过排队时间(计算区域人员全部从出口通过所需的时间)构成.与疏散行动时间预测相关的参数及其关系见图3.
与疏散行动时间预测相关的参数及其关系
模型的分析与建立
我们将人群在1号教学楼内的走动模拟成水在管道内的流动,对人员的个体特性没有考虑,而是将人群的疏散作为一个整体运动处理,并对人员疏散过程作了如下保守假设:
u 疏散人员具有相同的特征,且均具有足够的身体条件疏散到安全地点;
u 疏散人员是清醒状态,在疏散开始的时刻同时井然有序地进行疏散,且在疏散过程中不会出现中途返回选择其它疏散路径;
u 在疏散过程中,人流的流量与疏散通道的宽度成正比分配,即从某一个出口疏散的人数按其宽度占出口的总宽度的比例进行分配
u 人员从每个可用出口疏散且所有人的疏散速度一致并保持不变.
以上假设是人员疏散的一种理想状态,与人员疏散的实际过程可能存在一定的差别,为了弥补疏散过程中的一些不确定性因素的影响,在采用该模型进行人员疏散的计算时,通常保守地考虑一个安全系数,一般取1.5~2,即实际疏散时间为计算疏散时间乘以安全系数后的数值.
1号教学楼平面图
教学楼模型的简化与计算假设
我校1号教学楼为一幢分为A、B两座,中间连接着C座的建筑(如上图),A、B两座为五层,C座为两层.A、B座每层有若干教室,除A座四楼和B座五楼,其它每层都有两个大教室.C座一层即为大厅,C座二层为几个办公室,人员极少故忽略不考虑,只作为一条人员通道.为了重点分析人员疏散情况,现将A、B座每层楼的10个小教室(40人)、一个中教室(100)和一个大教室(240人)简化为6个教室.
原教室平面简图
在走廊通道的1/2处,将1、2、3、4、5号教室简化为13、14号教室,将6、7、8、9、10号教室简化为15、16号教室.此时,13、14、15、16号教室所容纳的人数均为100人,教室的出口为距走廊通道两边的1/4处,且11、13、15号教室的出口距左楼梯的距离相等,12、14、16号教室的出口距右楼梯的距离相等.我们设大教室靠近大教室出口的100人走左楼梯,其余的140人从大教室楼外的楼梯疏散,这样让每一个通道的出口都得到了利用.由于1号教学楼的A、B两座楼的对称性,所以此简图的建立同时适用于1号教学楼A、B两座楼的任意楼层.
简化后教室平面简图
经测量,走廊的总长度为44米,走廊宽为1.8米,单级楼梯的宽度为0.3米,每级楼梯共有26级,楼梯口宽2.0米,每间教室的面积为125平方米. 则简化后走廊的1/4处即为教室的出口,距楼梯的距离应为44/4=11米.
对火灾场景做出如下假设:
u 火灾发生在第二层的15号教室;
u 发生火灾是每个教室都为满人,这样这层楼共有600人;
u 教学楼内安装有集中火灾报警系统,但没有应急广播系统;
u 从起火时刻起,在10分钟内还没有撤离起火楼层为逃生失败;
对于这种场景下的火灾发展与烟气蔓延过程可用一些模拟程序进行计算,并据此确定楼内危险状况到来的时间.但是为了突出重点,这里不详细讨论计算细节.
人员的整个疏散时间可分为疏散前的滞后时间,疏散中通过某距离的时间及在某些重要出口的等待时间三部分,根据建筑物的结构特点,可将人们的疏散通道分成若干个小段.在某些小段的出口处,人群通过时可能需要一定的排队时间.于是第i 个人的疏散时间ti 可表示为:
式中, ti,delay为疏散前的滞后时间,包括觉察火灾和确认火灾所用的时间; di,n为第n 段的长度; vi,n 为该人在第n 段的平均行走速度;Δtm,queue 为第n 段出口处的排队等候时间.最后一个离开教学楼的人员所有用的时间就是教学楼人员疏散所需的疏散时间.
假设二层的15号教室是起火房间,其中的人员直接获得火灾迹象进而马上疏散,设其反应的滞后时间为60s;教学内的人员大部分是学生,火灾信息将传播的很快,因而同楼层的其他教室的人员会得到15号教室人员的警告,开始决定疏散行动.设这种信息传播的时间为120s,即这批人的总的滞后时间为120+60=180秒;因为左右两侧为对称状态,所以在这里我们就计算一面的.一、三、四、五层的人员将通过火灾报警系统的警告而开始进行疏散,他们得到火灾信息的时间又比二层内的其他教室的人员晚了60秒.因此其总反应延迟为240秒.由于火灾发生在二楼,其对一层人员构成的危险相对较小,故下面重点讨论二,三,四,五楼的人员疏散.
为了实际了解教学楼内人员行走的状况,本组专门进行了几次现场观察,具体记录了学生通过一些典型路段的时间.参考一些其它资料[1、2、3] ,提出人员疏散的主要参数可用图6 表示.在开始疏散时算起,某人在教室内的逗留时间视为其排队时间.人的行走速度应根据不同的人流密度选取.当人流密度大于1 人/ m2时,采用0. 6m/ s 的疏散速度,通过走廊所需时间为60s ,通过大厅所需时间为12s ;当人流密度小于1 人/m2 时,疏散速度取为1. 2m/ s ,通过走廊所需时间为30s ,通过大厅所需时间为6s.
人员疏散的若干主要参数
Pauls[4]提出,下楼梯的人员流量f 与楼梯的有效宽度w 和使用楼梯的人数p 有关,其计算公式为:
式中,流量f 的单位为人/ s , w 的单位为mm.此公式的'应用范围为0. 1 < p/ w < 0. 55 .
这样便可以通过流量和室内人数来计算出疏散所用时间.出口的有效宽度是从通道的实际宽度里减去其两侧边界层而得到的净宽度,通常通道一侧的边界层被设定为150mm.
3 结果与讨论
在整个疏散过程中会出现如下几种情况:
(1) 起火教室的人员刚开始进行疏散时,人流密度比较小,疏散空间相对于正在进行疏散的人群来说是比较宽敞的,此时决定疏散的关键因素是疏散路径的长度.现将这种类型的疏散过程定义为是距离控制疏散过程;
(2) 起火楼层中其它教室的人员可较快获得火灾信息,并决定进行疏散,他们的整个疏散过程可能会分成两个阶段来进行计算: 当f进入2层楼梯口流出2层楼梯口时, 这时的疏散就属于距离控制疏散过程;当f进入2层楼梯口> f流出2层楼梯口时, 二楼楼梯间的宽度便成为疏散过程中控制因素.现将这种过程定义为瓶颈控制疏散过程;
(3) 三、四层人员开始疏散以后,可能会使三楼楼梯间和二楼楼梯间成为瓶颈控制疏散过程;
(4) 一楼教室人员开始疏散时,可能引起一楼大厅出口的瓶颈控制疏散过程;
(5) 在疏散后期,等待疏散的人员相对于疏散通道来说,将会满足距离控制疏散过程的条件,即又会出现距离控制疏散过程.
起火教室内的人员密度为100/ 125 = 0.8 人/m2 .然而教室里还有很多的桌椅,因此人员行动不是十分方便,参考表1 给出的数据,将室内人员的行走速度为1.1m/ s.设教室的门宽为1. 80m.而在疏散过程中,这个宽度不可能完全利用,它的等效宽度,等于此宽度上减去0. 30m.则从教室中出来的人员流量f0为:
f0=v0×s0×w0=1.1×0.8×4.7=4.1(人/ s) (3)
式中, v0 和s0 分别为人员在教室中行走速度和人员密度, w0 为教室出口的有效宽度.按此速度计算,起火教室里的人员要在24.3s 内才能完全疏散完毕.
设人员按照4.1 人/ s 的流量进入走廊.由于走廊里的人流密度不到1 人/ m2 ,因此采用1. 2m/s的速度进行计算.可得人员到达二楼楼梯口的时间为9.2s.在此阶段, 将要使用二楼楼梯的人数为100人.此时p/ w=100/1700=0.059 < 0. 1 , 因而不能使用公式2 来计算楼梯的流量.采用Fruin[5]提出的人均占用楼梯面积来计算通过楼梯的流量.根据进入楼梯间的人数,取楼梯中单位宽度的人流量为0.5人 /(m. s) ,人的平均速度为0. 6m/ s ,则下一层楼的楼梯的时间为13s.这样从着火时刻算起,在第106.5s(60+24.3+9.2+13)时,着火的15号教室人员疏散成功.以上这些数据都是在距离控制疏散过程范围之内得出的.
起火后120s ,起火楼层其它两个教室(即11和13号教室)里的人员开始疏散.在进入该层楼梯间之前,疏散的主要参数和起火教室中的人员的情况基本一致.在129.2s他们中有人到达二层楼梯口,起火教室里的人员已经全部撤离二楼大厅.因此,即将使用二楼楼梯间的人数p1 为:
p1 = 100 ×2 = 200 (人) (4)
此时f进入2层楼梯口>f流出2层楼梯口,从该时刻起,疏散过程由距离控制疏散过渡到由二楼楼梯间瓶颈控制疏散阶段.由于p/ w =200/1700= 0.12 ,可以使用公式2 计算二楼楼梯口的疏散流量f1 , 即:
?/P>
0.27
0.73
f1 = (3400/ 8040) × 200 = 2.2人/ s) (5)
式中的3400 为两个楼梯口的总有效宽度,单位是mm.而三、四层的人员在起火后180s 时才开始疏散.三层人员在286.5s(180+106.5)时到达二层楼梯口,与此同时四层人员到达三层楼梯口,第五层到达第四层楼梯口.此时刻二层楼梯前尚等待疏散人员数p′1:
p′1 = 200 - (286.5 – 129.2) ×2.2 = -146.1(人)
数学建模范文11
数学,源于人们对生产与生活实际问题,抽象出的数量关系与空间结构发展而成的.近年来,信息技术飞速发展,推动了应用数学的发展,使数学日益渗透到社会各个领域.中考实际应用题目更贴近日常生活,具有时代性、灵活性,涉及的模型有方程、函数、不等式、统计、几何等模型.数学课程标准指出,教师在教学中应引导学生从实际背景中理清数学关系、把握变化规律,能从实际问题中建立数学模型.教师要为学生创造用数学的氛围,引导学生参与自主学习、自主探索、自主提问、自主解决,体验做数学的过程,从而提高解决实际问题的能力.
一、影响数学建模教学的成因探析
一是教师未能实现角色转换.建模教学离不开学生“做”数学的过程,因而教师在教学中要留有让学生思考、想象的空间,让他们自主选择方法.然而部分教师对学生缺乏信任,由“引导者”变为“灌输者”,将解题过程直接教给学生,影响了学生建模能力的提高.二是教师的专业素养有待提高.开展建模教学,需要教师具有一定的专业素养,能驾驭课堂教学,激发学生的兴趣,启发学生进行思考,诱发学生进行探索,但是部分教师专业素养有待提高,或认为建模就是解应用题,或重生活味轻数学味,或使讨论活动流于形式.三是学生的抽象能力较差.在建模教学中,教师须呈现生活中的实际问题,其题目长、信息量大、数据多,需要学生经历阅读提取有用的信息,但是部分学生感悟能力差,不能明析已知与未知之间的.关系,影响了学生成功建模.
二、数学建模教学的有效原则
1.自主探索原则.
学生长期处于师讲、生听的教学模式,沦为被动接受知识的“容器”,难有创造的意识.在教学中,教师要为学生创设轻松愉悦的探究氛围,让学生手脑并用,在探索、交流、操作中提高解决问题的能力.
2.因材施教原则.
教师要着眼于学生原有的认知结构,要贴近学生的最近发展区,引导他们从旧知的角度思考,找出问题的解决方法。
3.可接受性原则.
数学建模内容的设计,要符合学生的年龄特点和认知能力,能让学生理解所探究的内容.若设计的问题不切实际,往往会扼杀学生的兴趣,教师要密切联系教学内容、生活实际,让学生有能力解决问题.
数学建模范文12
第一条总则
北京物资学院数学建模竞赛(以下简称竞赛)是面向全院大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。
第二条竞赛内容
竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的`灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。
第三条竞赛形式、规则和纪律
1.全校统一竞赛题目,采取开放竞赛方式,以相对分散的形式进行。
2.竞赛一般在每年5月中旬的9天内举行,尽量不影响正常教学活动。
3.大学生以队为单位参赛,每队3人,专业不限,年级不限。研究生不得参加。
4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,但不得与队外任何人(包括在网上)讨论。
5.竞赛组委会将按时在校园网上公布竞赛题目,参赛队在规定时间内完成答卷,并准时交卷。
第四条组织形式
1.竞赛由北京物资学院数学建模组主持,负责每年发动报名、拟定赛题、组织论文的评阅、优秀论文的复审和评奖、印制获奖证书、举办颁奖仪式等。
2.北京物资学院数学建模组负责本竞赛的监督竞赛纪律和组织评阅答卷等工作。而前期的宣传发动及报名工作委托北京物资学院数学学会承办。
3.北京物资学院数学建模组也可选择与学生社团合作,推动竞赛各项工作的顺利进行和赛后的持续发展。
第五条评奖办法
1.竞赛组委会聘请多位专家初次评阅论文,评选进入复评的论文,比例一般不超过三分之一,其余凡论文合格者获得鼓励奖。
2.竞赛组委会聘请专家组,按统一标准从进入复评的论文中评选出一等奖、二等奖,获奖比例不超过全部参赛队数的百分之十五,其余复评合格的为三等奖。
3.一、二、三等奖均颁发获奖证书。
4.对违反竞赛规则的参赛队,一经发现,取消参赛资格,成绩无效。
5.参赛加分办法按照《北京物资学院学生手册》中的有关规定执行。
6.出于公平的考虑,凡是已经参加国际、全国大学生数学建模竞赛并获奖的同学,一律不参与学校各奖项的评选(包括有该同学参加的队)。
第六条经费
1.教务教学部门的专项经费。
2.学生社团的经费由信息学院分团委审批。
数学建模范文13
【论文关键词】数学建模创新能力创新思维教学模式
【论文摘要】阐述了数学建模对培养学生创新能力的意义,讨论了如何在数学建模的教学中培养学生的创新思维,探讨了数学建模的教学模式。
1引言
当今世界,创新取代了传统的比较优势,已经无可替代地成为国家竞争战略的基础。
因此,加强创新精神和创新能力的培养,已是世界各国教育改革的共同趋势,也是我国实现“科教兴国”战略的基本要求,创新教育已经成为高等教育的核心,多年来的教育实践证明,数学建模的教学与竞赛活动在高等学校的创新教育中的地位和意义已是举足轻重。
一年一度的全国大学生数学建模竞赛活动是由国家教育部高教司直接组织领导,面向全国高校,规模最大,参与院校最多,涉及面最广的一项科技竞赛活动。其宗旨是“创新意识,团队精神;重在参与,公平竞争”。自1992年举办第一届竞赛以来,参赛队数以平均每年近30%的速度增加,2006年已达到864所院校9985个参赛队的规模。正是由于数学建模竞赛活动的深入开展,它积极地推动了大学数学教学改革的开展,并已取得了显著的成果。
2数学建模对培养学生创新能力的意义
高校作为人才培养的基地,围绕加快培养创新型人才这个主题,积极探索教学改革之路,是广大教育工作者面临的一项重要任务。正是在这种形势下,数学建模与数学建模竞赛,这个我国教育史上新生事物的出现,受到了各级教育管理部门的关心和重视,也得到了科技界和教育界的普遍关注。这主要是数学建模的教学和竞赛活动有利于人才的培养,特别是人才的综合能力、创新意识、科研素质的培养。也正因为如此,数学建模活动的实际效果正在不断的显现出来,“数学建模的人才”和“数学建模的能力”正在实际工作中发挥着积极的作用。
数学建模本身就是一个创造性的思维过程。数学建模的教学内容、教学方法以及数学建模竞赛培训都是围绕创新能力的培养这一核心主题进行的,其内容取材于实际,方法结合于实际,结果应用于实际。数学建模的教学和竞赛培训,为学生的探索性学习和研究性学习搭建了平台。数学建模的教学和竞赛,注重培养学生敏锐的观察力、科学的思维力和丰富的想象力,既要求学生具有丰富的知识,又要求学生具有较强的实践操作能力;既有智力和能力要求,又有良好的个性心理品质要求;既要求敢于竞争,又要求善于合作。数学建模真正体现了开发学生潜能、培养学生优秀心理品质以及积极探索态度的良好结合。在数学建模的教学与竞赛中,特别注重发挥学生的主动性、积极性、创造性、耐挫折性,特别是提倡探索精神、创造精神、批判精神、团队协作精神等。知识创新、方法创新、结果创新、应用创新无不在数学建模的过程中得到体现。实践正在证明,数学建模的教学与竞赛活动是培养大学生创新思维和创新能力的一种极其重要的方法和途径。
3在数学建模的教学中培养学生的创新思维
创新型人才是指具有较强的创新精神、创造意识和创新能力,并善于将创造能力化为创造性成果和产品的人才。尽管创新精神、创造意识和创新能力的培养不是一个学科或一门课程的教学所能完成的,但大量的中外教育实践充分证明,数学教育在创新型人才的培养中具有其他学科不可替代的优势和作用。因为数学中的理论和方法是人们从量的侧面研究现实世界所得到的客观规律,是研究各种科学技术不可缺少的语言和工具。
而数学建模的过程则恰好是将数学中的理论和方法又重新应用于解决现实问题,即是理论来源于实践又要服务于实践的一个完美体现。这一过程高度反映了人的创新精神、创造意识和创新能力。
数学本身包含着许多重要的思想方法,比如由特殊到一般的思想、从有限到无限的思想、归纳类比的思想、倒推逆向分析思维、试探思想等,其本质都是创造性思维方法。我们在数学建模的教学过程中不刻意地去追求运算技巧和方法,而将重点放在数学思想方法的传授上,运用对数学思想方法的体会去启迪学生的创新思维,激发学生的创新欲望。
数学上的归纳和类比思维是一种非常典型的创新思维,著名的数学家拉普拉斯说过“在数学里,发现真理的主要工具和手段是归纳和类比”。而大多数数学模型的建立、修改或改进,很多时侯都是依靠这种归纳与类比思维。在寻找模型求解的算法时,也常常用类比思维,利用相似的算法加以优化和改进而得到,有时甚至可以发现新的更好的算法。
发散思维是许多科学家非常重视的一种思维形式,科学家运用发散思维获得重要发现的例子不胜枚举。我们在数学建模的教学过程中倡导学生养成发散思维的习惯,通过一些具体的建模实例,让学生感受到在科学上要敢于联想,敢于突破条条框框,敢于标新立异。
逆向思维,即“反过来想一想”。人们思考问题时常常只注重于已有的联系,沿着合乎习惯的正向顺推,但有时如果采用“倒过来”思考的逆向思维方式,往往会产生意想不到的效果。比如,2004年全国大学生数学建模竞赛A题:奥运会临时超市网点设计中的第三个问题:若有两种大小不同规模的迷你超市(Mini—Supermarket)类型供选择,给出图2中20个商区MS网点的设计方案(即每个商区内不同类型MS的个数,并满足题中三个基本要求:满足奥运会期间的购物需求、分布基本均衡、商业上盈利)。在设计MS网点时为考虑满足商业上盈利这一要求,如果单从正面去考虑商业上的盈利模型,则有很多未知的因素无法确定,诸如商品种类、数量、价格、销售额等,因而无法建立模型。但若运用逆向思维,从市场需求去预测可能的盈利能力,因为市场需求量可利用前述问题中已得到的商区的人流量的分布,从而为后面的规划模型的建立与求解提供了关键性的办法。
4数学建模教学模式的探索
刚踏入大学校门的大一新生,首先接受的是基础数学教育,虽然这一阶段将决定着学生毕业后能否成为创新型人才,但学校要想培养出高质量的创新型人才,基础的数学教育是以知识传授为主体的教与学的过程,多年来的事实证明,这一过程很难肩负对学生创新能力的培养。随着数学建模与数学建模竞赛这一事物的出现,人们很快发现,数学建模教学,尤其是数学建模竞赛的培训是实现这一目标的一条很好的途径。经过多年来的摸索,我们对数学建模的教学模式做了如下探索。
第一,充分再现数学发现的思维过程。学生学习的数学知识,尽管是前人创造性思维的成果,学生作为学习的主体处于再发现的地位,给学生展示数学发现的思维过程,就是引导学生重走数学知识的发现之路,使得学生的再发现得以顺利完成。而这实质上也是对学生创新思维的一种培养过程。然而这一点常常被许多数学教师所忽视,他们只注重数学知识的传授,而隐去了数学知识的发现过程,这就无形地扼制了学生创新思维的发展。而数学建模的教学却能弥补基础数学教学的这一缺陷,能让学生在数学建模的过程中充分体会数学发现的创造性乐趣,从而培养其创新思维。
第二,更新教学形式。传统的单一满堂灌、填鸭式、保姆式的课堂教学形式,容易养成学生对老师的依赖心理,不利于调动学生的主观能动性,更不利于激发学生的创造性思维。因而要想在培养学生的创新能力方面有所突破,必须打破原有的`单一教学模式,探索和尝试一些行之有效的新的教学形式。近几年来,我们根据数学建模的具体要求,有意识的尝试了不同于以往传统的教学模式,将多种不同的教学形式进行了优化组合,力求变以教师为中心为以学生为中心,充分调动学生的主观能动性和思维的积极性,培养创新意识和创新能力。
5我校数学建模的教学模式
我校自1994年第一次组队参加全国大学生数学建模竞赛以来,已走过15年的风风雨雨。15年来,在利用数学建模培养学生创新能力方面,我们不断地反思并总结经验和教训。
经过多年来的反复实践和深入探索,我们以培养和提升学生创新能力为目标,以数学建模选修课和数学建模竞赛培训课为载体激发学生的创新欲望,以少数学生影响并带动大多数学生参与数学建模活动体验创新乐趣,作为我们制定数学建模教学大纲、教学计划、确定教学模式的宗旨。下面介绍我校数学建模的教学模式。
数学建模的教学内容分为两部分:
第一部分:数学建模选修课。该课总课时36小时,由4或5位教师每人2或3次课讲完,每位教师每次课主讲一个数学建模方法方面的专题,专题的讲解以先介绍案例再引出理论或先讲述理论再介绍案例的方式进行,每位教师至少布置一道题目,原则上要求每位学生在选修课学完后须上交一份作业,该作业可以是选做教师布置的某一题,也可以自己找题并求解,以论文形式上交。由于时间的限制,选修课中没有介绍论文写作,所以对学生的作业论文并不做严格要求,只注重其内容中是否有闪光的创意之处,并作为后续选拔数学建模竞赛选手的一个重要依据。
第二部分:数学建模竞赛培训课。培训课分三个阶段进行。第一阶段是软件和数学建模方法的培训。软件培训主要介绍的MatLab、Spss、Lingo的使用和基本操作;数学建模方法包括:最优化方法建模、微分方程建模、数理统计方法建模、层次分析法建模、网络图的方法建模、神经网络建模、模糊数学建模、遗传算法建模、概率仿真建模。第二阶段是专题培训。首先从历年全国大学生数学建模竞赛题目中选出9个分为3组,然后由3位多年来的资深指导教师讲解如何审题、破题;如何查找资料、整理资料;如何分析问题、建立模型;如何分析并寻找合适的算法并对模型进行求解;如何对模型求解结果进行分析并加以修改或改进;最后告诉学生如何对自己所做的工作加以总结并写成一篇规范的科技论文。第三阶段是模拟竞赛。给定三个题目,由各参选队任选一题,要求按全国大学生数学建模竞赛的所有规则进行模拟竞赛。三天后各队提交一篇论文,最后选定其中最好的10个队参加全国大学生数学建模竞赛。
参考文献
[1]谢云荪,成孝予,钟守铭。转变教育思想提高数学素质培养创造性人才[J]。工科数学,1997,13(6):132—136。
[2]傅英定,成孝予,彭年斌等。转变教育观念培养学生创造性思维能力的研究与实践。电子高等教育的理论与实践[M]。成都:电子科技大学出版社,2000:181—184。
[3]安正玉,邓正隆。本科教学应突出创造能力的培养[J]。高等科教管理,1997(2):43—46。
[4]李心灿。在高等数学的教学中培养学生创造性思维的一些实践与思考[J]。工科数学,1999,15(6):35—41。
[5]韩中庚等。数学建模竞赛—获奖论文精选与点评[M]。北京:科学出版社2007:201—216。
[6]张仁丽,李捷飞,邱霆。MS网点的合理布局[J]。工程数学学报2004,21(7)29—35。
数学建模范文14
数学建模是用数学知识建立描述实际问题的模型,再进行模型求解,然后得到解决实际问题的方案.数学建模是运用数学及计算机等工具来解决生产和生活中的各种实际问题,是培养和提高学生创新能力和综合素质的一个有效途径.数学建模竞赛不仅是一项普通的学科竞赛,更是培养学生综合能力和创新意识的有效途径.数学建模与创新人才培养的关系,一直是教育教学研究方面的热点[1-8].现有文献大多是从人才培养模式入手,而从机制角度出发的研究文献尚不多见.因此,本文考虑依托数学建模竞赛,构建起一个创新型人才培养的五大机制,推动创新人才培养,对高校人才培养的方式、方法进行有益的探索与尝试.
1、创新型人才培养的五大机制
以数学建模竞赛活动为依托和载体,以培养创新型人才为目标,建立“引导、转化、协作、沟通表达、问题导向”五大机制,提高学生的学习兴趣,激发学生的学习动力,着重培养一种精神及三大能力,即团队精神,理论转化为实践的动手能力、语言文字表达能力和自主学习能力.五大机制与创新型人才培养关系见图 1.
图 1 创新型人才培养的五大机制
2、创新型人才培养五大机制的构建
2.1、建立引导机制,激发学习动力
数学建模竞赛所涉及的问题,都是来源于现实社会的生产与生活,有很强的实用性.参加数学建模竞赛的学生,通过竞赛活动本身,能够体会到大学所学的高等数学、线性代数、概率论、运筹优化等数学类课程.数据结构、C 语言、Matlab 等计算机课程以及文献检索类课程,都是非常有用的.对学生而言,参加数学建模竞赛,首要的效果是激发了学习兴趣,解决了学习的动力问题.即使没有获奖,对他们来说,收获也很大.对任何一门学科或一项工作,能产生兴趣,才能有不竭的动力,才有学习的主观能动性.创新的前提是有学习的兴趣和学习的快乐,只有解决这一根本问题,才能考虑创新型人才培养过程中的其他环节.因此,为培养创新型人才,要大力引导学生积极参加数学建模竞赛,建立培养创新型人才的引导机制.对每个学生,不以获奖为目标,而以“贵在参与”为宗旨.参与一次,体会一次,触动思想,产生兴趣,激发学习的动力,从而培养创新型人才的自我激励式自主学习能力.
2.2、建立转化机制,促进知识向能力的转化
将课本上的理论知识转化成为解决实际问题的实践能力是创新型人才培养过程中的关键环节.会学会用,学以致用,能解决实际问题是衡量人才的重要标准,纸上谈兵是不能适应社会需要的.数学建模竞赛能够使学生将所学的理论知识,通过竞赛活动,转化成自身的实践能力.如学习微分方程后,在考虑传染病传播问题时,就可以建立相应的微分方程模型,求解模型,然后根据模型计算结果提出传染病传播问题的相关解决方案.顺利地经历这样一个完整的过程,就可以将原来的微分方程知识转化成解决变化率与时间有关的一类实际问题的实践能力.当然,还有一些有趣的`例子,如国防科技大学的周星、克居正建立了一个研究男生追女生的数学模型[9],用人类最理性的数学公式为人类最感性的恋爱行为建立了初步的动力学模型.将变量与因素的互动写成了一个随时间变化的常微分非线性方程组,从解析计算和数值模拟两个方面着重讨论了方程可能的结果,以及每种结果的稳定水平.依托数学建模竞赛,建立培养创新型人才的转化机制,大力推进知识向能力的转化,不断提高创新型人才的实践能力.这是创新型人才培养的关键环节.
2.3、建立协作机制,增强团队意识
高校学生在平时的学习过程中,绝大多数情况下,基本上都是独自学习,与他人合作研究和解决问题机会很少.而在各种层次级别的数学建模竞赛中,参赛学生要 3 人一组,以团队而不是个人身份参赛.在正式比赛之前,要按照学科、特长等因素寻找队友,组成队伍.在比赛期间,由于队友经常是来自不同专业,知识能力水平各有所长,脾气秉性各有特点,需要在比赛时认真沟通,相互协调,合理分工,团结协作共同完成整个比赛.为了比赛,在发生矛盾时,要学会忍耐和妥协,而不能意气用事.在整个比赛期间,求同存异,取长补短,优势互补,最终合作完成任务.这个过程,无形中就培养了学生的合作意识和团队精神,使学生亲身感受到现代社会与人合作是大多数人成功的必要选择.依托数学建模竞赛,培养创新型人才的团队协作意识,建立培养人才的合作交流机制,这是适应社会和时代需要的人才培养过程中的重要环节之一。
2.4、建立沟通表达机制,提高学生的语言及文字表达能力
不同于其它类以答题为特点的学科竞赛,在数学建模竞赛中,参赛队员需要用自己的语言对赛题进行描述,在假设、建模、分析、求解、计算、结果分析及优缺点论述等环节都需要进行学术性的表达,最终完成一篇符合学术规范的论文.在这个过程中,参赛队员之间需要广泛交流沟通,选择最合适的方式,撰写完成一篇学术论文.在求解以及表达这些模型的过程中,提高了学生的软件应用水平和文章的写作水平,以及学生的口头表达能力和中英文科技论文写作能力.通过比赛,学生的语言及文字表达能力得到了极好的训练,对科研工作也有了初步的比较完整的了解.在现代社会,良好的语言及文字表达能力,对人际交往、经营业务往来、日常工作等各方面都是非常重要的.通过数学建模竞赛,建立沟通表达机制,有效地提高学生的表达能力,适应社会对创新型人才的要求.
2.5、建立问题导向机制,培养学生主动式学习的自主学习能力
历年来的数学建模竞赛试题,无一不是来源于工程技术和管理科学中的实际问题,内容涉及经济、能源、交通、环境、生态、医学、人口、生物和谈判等众多领域,具有很强的实际应用背景.数学建模题目都是各领域、各学科的一些具体实际问题,参赛的学生在之前不可能都了解这些背景和知识,有时候甚至是一无所知.所以学生必须在短时间内主动去收集资料、查阅大批文献以了解研究课题的实际背景及研究现状,然后创建数学模型、求解、检验和结果分析,最后将解决问题的最佳方案用英文写成科技论文.此外,建模过程中还必须自主地去研究和学习解决问题所需的各种数学新知识及大量的相关学科的新知识,背景和已有方法都清楚了,解决问题的新方法可能就自然生成了.通过数学建模竞赛活动,建立问题导向机制,变传统的“要我学”为“我要学”,实现主动式学习而非被动式学习,就会使创新型人才所必须具备的自主学习能力和快速学习能力得到充分的锻炼.
3、创新型人才培养五大机制的实施效果
3.1、促进了学生全面发展
参加过数学建模竞赛的学生,潜移默化地接受了按照五大机制运作的培养方法,提高了学习兴趣,增强了学习动力.课堂表现优于一般学生,能够积极参加其他类别的科技竞赛,主动参与教师的科研课题项目等,所表现出的积极进取精神和良好的科研素质习惯,得到了专业教师的认可.
3.2、提高了学生的就业质量
通过五大机制,培养了学生的实践能力、表达能力和自主学习能力,并且帮助学生树立了终身学习的理念,极大地提高了学生的就业竞争力.参加过数学建模竞赛的学生,考研和就业表现均优于一般学生,很多学生在国外就业或进入世界 500 强企业工作,且大多都受到用人单位的好评,普遍认为这些学生基础扎实,理工融合,能够胜任不同工作岗位的需求.
参考文献:
[1] 张晓鹏.美国大学创新人才培养模式探析[J].中国大学教学,20xx(3):7-11
[2] 周义仓,郝孝良.知识经济时代的创新人才培养与数学建模[J].工科数学,20xx(1):78-81
[3] 刘凤秋,毕卉,陈东彦,等.融合数学建模思想的理工科研究生创新能力培养模式[J].高师理科学刊,20xx,34(9):82-84
[4] 杨启帆,谈之奕.通过数学建模教学培养创新人才——浙江大学数学建模方法与实践教学取得明显人才培养效益[J].中国高教研究,20xx(12):84-85
[5] 王树忠,赵辉,陈东彦.数学建模在创新型人才培养中的作用[J].高师理科学刊,20xx,27(5):85-88
[6] 史彦龙.医药类高职高专数学建模的实践和创新型人才的培养探究[J].亚太教育,20xx(26):58-59
[7] 陈朝辉.探索数学建模活动对应用型人才创新实践能力的培养[J].黑龙江教育:理论与实践,20xx(1):73-74
[8] 陈传军,孙丰云,王智峰.数学建模教学是应用型本科数学人才培养的有效途径[J].教育教学论坛,20xx(24):166-167
[9] 周星,克居正.男生追女生的数学模型[J].数学的实践与认识,20xx(12):1-8
数学建模范文15
摘要:本文以实际教学案例,具体的分析了数学建模思想在运筹学教学中的应用及所产生的应用价值,期望能够为数学教学改革工作提供一定的帮助。
关键词:数学建模思想;运筹学;应用;应用价值
运筹学是结合各种科学技术知识有系统性的教学方法,有效的解决实际问题,并且注重人力、物力、财力等有限资源的合理统筹安排,实现最有决策。近年来运筹学广泛的应用于教学工作中,但是,在数学教学中,针对具体问题,构建数学模型仍是教学难点和重点。基于此,本文对数学建模在运筹中的运用展开具体的分析,期望能够产生一定的积极效用。
一、数学建模在运筹中的运用——教学内容
传统的数学教学偏重理论知识的灌输,且数学公式庞大、理论繁琐、计算复杂,容易挫伤学生的学习兴趣和积极性,因此,利用数学建模思想、运筹学,在教学内容上穿插一些能够比较客观的反映学生日常生活所关心的实际问题,如:企业产品加工问题、购买汽车问题、运输问题、选课策略问题等,调动学生的学习兴趣,使得学生从解决问题的角度出发,认真的思考如何构建数学模型,找出相应的解决办法。我们举个例子:例1:针对选课策略问题,某所学校规定,该校运筹学专业的学生在毕业之前必须学习和掌握3门运筹学课程、2门数学课程以及2门计算机课程,该校关于这方面的课程编号、学分、选修课要求以及所属类别进行了规定,如表1。根据表1,请同学思考,运筹学专业的学生毕业前最少可以学习哪些课程,而且如果希望课程少却获得的学分多,该如何选课。这是一个比较贴近学生生活,与学生密切相关的分配问题,我们可以建立0—1规划的数学模型,解决上述的问题,而且考虑到学生希望课程少,却获得的学分高,我们可以引出目标规划问题。另外,教师在讲解多阶段决策锅中最优化问题时,我们可以有效的引入与其相关(或者相类似)的“商人安全渡河问题”,如:3名商人各自附带一个随从,并且每一只小船职能容纳2人,一旦随从人数多余商人,便采取杀人取货这样的数学游戏,调动学生的学习兴趣,让学生体验到利用数学建模思想、运筹学解决实际问题的乐趣,促进学生更加高效的学习运筹学知识和技能。
二、数学建模在运筹中的运用——教学方法
为了全面的提高教学水平,需要改变传统影视交易理念下的灌输教学方法,可以采取探究式教学,即:利用数学建模思想、运筹学技能,由浅入深、由直观到抽象的传授知识,促使学生真正意义上掌握数学知识和问题解决技能。我们举个例子:例2:运筹学课程绪论的引用,在教学中可以引入一个生动形象的故事情节,如:齐王和田忌赛马,按同等次,两人各种上、中、下三个等次的3匹马,在比赛中,齐王的'马比田忌的马胜一筹(三局两胜),为了胜利,田忌采用了以下策略,田忌的上等马与齐王的中等马比赛、中等马与齐王的下等马比赛,下等马与齐王的上等马比赛,最终田忌以两局胜利战败齐王,这充分的体现了田忌对运筹学的运用。齐王和田忌赛马的故事,彰显了数学建模思想、运筹学中的优化思想,并且避免了直接灌输运筹学知识给学生所带来的困惑,能够有效的激发学生的学习兴趣,有利于全面的提升教学水平。另外,对运筹学的传授,不应该局限于知识的传播,更加需要注重知识的拓展与延伸,全面的培养学生的发散性思维,提高学生的创新意识和创新能力。如在运输问题的运筹学讲解中,教师可以现提出问题,让学生根据已经学习和掌握的知识,自主的解决问题,与此同时,教师需要指导学生建立线性规划模型,且采用单纯形法进行求解,在此基础上,鼓励支持学生分析运输问题存在的线性规划特点,促使学生简化计算过程,提高求解效率。总的来说,在实际教学中,教师应该以数学建模思想为指导,遵循启发式原则,调动学生的学习兴趣、拓展学生的学习思维,帮助学生融会贯通的掌握知识和技能,提高学生问题解决能力,从而提高教学质量。
三、结语
数学建模在运筹中的运用注重实践性,在实际教学中,应当注重理论知识与实际问题的联系,并且需要加强运筹学中的数学建模教学案例的引用,优化教学内容和教学方法,进行深入的运筹学课程教学改革,锻炼培养学生的运筹学思维能力以及实际问题的解决能力,从而推动教学水平的提升,促进学生身心健康发展。
【数学建】相关文章:
建康原文及赏析02-27
建队日的作文(精选26篇)10-16
一建学习经验分享02-28
中国少先队建队日作文(精选20篇)10-16
住建局年终03-09
建康原文及赏析集锦[12篇]02-28
中国少先队建队日作文(集锦3篇)07-17
《水龙吟·登建康赏心亭》原文及翻译05-11
重庆汪德建从靠牛犁田耕地到靠养牛发家致富05-03
数学作文10-24