函数奇偶性的判断口诀

回答
瑞文问答

2024-10-10

函数奇偶性的判断口诀:内偶则偶,内奇同外。验证奇偶性的前提:要求函数的定义域必须关于原点对称。

扩展资料

  判定奇偶性四法

  (1)定义法

  用定义来判断函数奇偶性,是主要方法。首先求出函数的定义域,观察验证是否关于原点对称。其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。

  (2)用必要条件

  具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。

  例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不具有奇偶性。

  (3)用对称性

  若f(x)的图象关于原点对称,则f(x)是奇函数。

  若f(x)的图象关于y轴对称,则f(x)是偶函数。

  (4)用函数运算

  如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)?g(x)是偶函数。简单地,“奇+奇=奇,奇×奇=偶”。

  类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”。