数学手抄报图片数学天地

时间:2024-10-26 21:52:07 板报大全 我要投稿
  • 相关推荐

数学手抄报图片大全数学天地

  数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。下文是写数学天地手抄报资料的图片大全,欢迎大家阅读与了解。

  数学手抄报图片数学天地

  关于数学的名人名言

  1、上帝创造了整数,所有其余的数都是人造的。 ——克隆内克

  2、数学发明创造的动力不是推理,而是想象力的发挥。——德摩

  3、非数学归纳法在数学的研究中,起着不可缺少的作用。 ——舒尔(I.Schur)

  4、纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。——怀德海

  5、无限!再也没有其他问题如此深刻地打动过人类的心灵。——希尔伯特

  6、发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。——达尔文

  7、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。——柯西

  8、如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。——柏拉图

  9、我们能够期待,随着教育与娱乐的发展,将有更多的.人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。——贝尔斯

  10、观察可能导致发现,观察将揭示某种规则、模式或定律。——波利亚

  11、多数的数学创造是直觉的结果,对事实多少有点儿直接的知觉或快速的理解,而与任何冗长的或形式的推理过程无关。—— 卢卡斯(William F.Lucas)

  12、数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。——埃博

  13、我曾听到有人说我是数学的反对者,是数学的敌人,但没有人比我更尊重数学,因为它完成了我不曾得到其成就的业绩。 ――哥德

  14、数学的本质在于它的自由。 ――康托尔

  15、在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。 ――康托尔

  16、数统治着宇宙。 ——毕达哥拉斯

  17、数学,科学的女皇;数论,数学的女皇。 ——C·F·高斯

  18、上帝创造了整数,所有其余的数都是人造的。 ——L·克隆内克

  数学知识基本概念

  第一章 数和数的运算

  一 概念

  (一)整数

  1 整数的意义

  自然数和0都是整数。

  2 自然数

  我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

  一个物体也没有,用0表示。0也是自然数。

  3计数单位

  一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

  每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

  4 数位

  计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

  5数的整除

  整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

  如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

  因为35能被7整除,所以35是7的倍数,7是35的约数。

  一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

  一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

  个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。

  个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

  一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

  一个数各位数上的和能被9整除,这个数就能被9整除。

  能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

  一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

  一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

  能被2整除的数叫做偶数。

  不能被2整除的数叫做奇数。

  0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

  一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

  一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

  1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

  每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

  把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

  例如把28分解质因数

  几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

  公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

  1和任何自然数互质。

  相邻的两个自然数互质。

  两个不同的质数互质。

  当合数不是质数的倍数时,这个合数和这个质数互质。

  两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

  如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

  如果两个数是互质数,它们的最大公约数就是1。

  几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

  3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。

  如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

  如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

  几个数的公约数的个数是有限的',而几个数的公倍数的个数是无限的。

  (二)小数

  1 小数的意义

  把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

  一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

  在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

  2小数的分类

  纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。

  带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。

  有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。

  无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……

  无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏

  循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……

  一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。

  纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……

  混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……

  写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。

  (三)分数

  1 分数的意义

  把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

  在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

  把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

  2 分数的分类

  真分数:分子比分母小的分数叫做真分数。真分数小于1。

  假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

  带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

  3 约分和通分

  把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

  分子分母是互质数的分数,叫做最简分数。

  把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

  (四)百分数

  1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

  方法

  (一)数的读法和写法

  1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

  2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

  3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

  4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

  5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

  6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

  7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

  8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

  (二)数的改写

  一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

  1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。

  2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。

  3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。

  4. 大小比较

  1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

  2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……

  3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

  (三)数的互化

  1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

  2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

  3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

  4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

  5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

  7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

  (四)数的整除

  1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

  2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。

  3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

  4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。

  (五) 约分和通分

  约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

  通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

【数学手抄报图片数学天地】相关文章:

初中数学手抄报图片02-06

数学手抄报内容图片01-31

数学知识手抄报图片02-06

小学数学手抄报图片大全01-25

初中数学手抄报图片大全01-25

数学平均数手抄报图片素材04-14

数学手抄报图片大全4年级03-09

数学手抄报图片五年级02-06

四年数学手抄报图片大全01-28