- 小学四年级奥数速算与巧算练习题 推荐度:
- 相关推荐
四年级奥数练习题
无论是在学习还是在工作中,我们最离不开的就是练习题了,做习题可以检查我们学习的效果。学习的目的就是要掌握由概念原理所构成的知识,什么样的习题才是好习题呢?下面是小编收集整理的四年级奥数练习题,欢迎大家借鉴与参考,希望对大家有所帮助。
四年级奥数练习题1
一人以每分钟60米的速度沿铁路步行,一列长144米的客车对面开来,从他身边通过用了8秒钟,列车的速度是______米/秒。
答案与解析:
17(米/秒)。
解析:客车与人是相向行程问题,可以把人看作是有速度而无长度的'火车,利用火车相遇问题:两车身长÷两车速之和=时间,可知,
两车速之和=两车身长÷时间
=(144+0)÷8
=18(米/秒)。
人的速度=60(米/分)
=1(米/秒)。
车的速度=18-1
=17(米/秒)。
所以,客车速度是每秒17米。
四年级奥数练习题2
计算:58×138-80÷15+42×137-70÷15=
考点:四则混合运算中的巧算.
分析:通过观察,运用加法交换律以及减法的'性质,原式变为(58×138+42×137)-(80÷15+70÷15),第一个括号内把58×138看作58×(137+1)=58×137+58,再运用乘法分配律计算;第二个括号运用除法的性质简算,进而解决问题.
解答:解:58×138-80÷15+42×137-70÷15
=(58×138+42×137)-(80÷15+70÷15)
=(42×137+58×137+58)-(80+70)÷15
=(42+58)×137+58-150÷15
=100×137+58-10
=13700+48
=13748.
故答案为:13748.
点评:注意观察题目中数字构成的特点和规律,运用运算定律或运算技巧,进行简便计算.
四年级奥数练习题3
树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?
答案与解析:
解析:倒推时以“三棵树上鸟的.只数相等”入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16—6=10(只).同理,第二棵树上原有鸟16+6—8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.
解:①现在三棵树上各有鸟多少只?48÷3=16(只)
②第一棵树上原有鸟只数. 16+8=24(只)
③第二棵树上原有鸟只数.16+6—8=14(只)
④第三棵树上原有鸟只数.16—6=10(只)
答:第一、二、三棵树上原来各落鸟24只、14只和10只.
四年级奥数练习题4
电车维修问题:
电车维修问题的奥数练习题:电车公司维修站有7辆电车需要维修,如果用一名工人维修这7辆电车的修复时间分别为12,17,8,18,23,30,14分钟。每辆电车每停开1分钟的经济损失是11元。现在由3名工作效率相同的维修工人各自单独工作,要是经济损失减到最小程度,那么最小的'损失是多少元?
电车维修答案:
因为3个工人各自单独工作,工效又相同,因此,每人维修的时间应尽量相等,设需维修的车辆分别为:A、B、C、D、E、F、G,修复的时间依次是12、17、8、18、23、30、14分钟,则第一个工人应修复的车是:C、G、D;第二个工人应修复的车是:B、E;第三个工人应修复的车是:A、F。有因为要求把损失减少到最低程度,所以,每个人应尽量先修复需短时间修好的车辆,这样,可以按以下的顺序开修:第一个人:8,14,18。
四年级奥数练习题5
有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶到了。哥哥看弟弟挑得太多,就抢过一半。弟弟不肯,又从哥哥那儿抢走一半。哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?
【答案解析】
解:{26-[26-(12+5)]×2}×2
={26-[26-17]×2}×2
=(26-9×2)×2
=8×2=16(块)
【小结】最初弟弟准备挑16块。
先利用"和差"问题的解法求弟弟最后挑多少块:
(26-2)÷2=24÷2=12(块)
再利用倒推法求最初弟弟准备挑多少块。
四年级奥数练习题6
三名工人师傅张强、李辉和王充分别加工200个零件。他们同时开始工作,当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。当张强加工200个零件的任务全部完成时,王充还有多少个零件没有加工?
答案与解析:
当张强加工160个的时候,王充加工了200-48=152个。这时张强还差200-160=40个没有加工。根据刚才的`数据,张强加工40个的时间里,王充可以加工152÷(160÷40)=38个,所以王充还剩下48-38=10个。
四年级奥数练习题7
比较下面两个积的大小:
A=987654321×123456789,
B=987654322×123456788.
分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的'第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.
解:A=987654321×123456789
=987654321×(123456788+1)
=987654321×123456788+987654321.
B=987654322×123456788
=(987654321+1)×123456788
=987654321×123456788+123456788. 因为987654321>123456788,所以A>B.
四年级奥数练习题8
1.难度:你能不能将自然数2到10分别填入3×3 的方格中,使得每个横行中的三个数之和都是奇数?
2.难度:
A 、B 两人买了相同张数的`信纸. A在每个信封里装1张信纸,最后用完所有的信封还剩40张信纸:B 在每个信封里装3张信纸,最后用完所有的信纸还剩40个信封.他们都买了张信纸
1.难度:你能不能将自然数2到10分别填入3×3 的方格中,使得每个横行中的三个数之和都是奇数?
不能.如果能,我们把三个横行的和相加,其和就是三个奇数之和必为奇数数,然而它也恰是九个数之和,即2+3+4+……+10=54 ,根据任何一个奇数一定不等于任何一个偶数,所以不能做到.
2.难度:
A 、B 两人买了相同张数的信纸. A在每个信封里装1张信纸,最后用完所有的信封还剩40张信纸:B 在每个信封里装3张信纸,最后用完所有的信纸还剩40个信封.他们都买了张信纸.
解析如下:第二个条件实际意味着“每个信封三张纸,则少120张纸”根据盈亏问题基本方法,信封有(120+40)÷(3-1)=80个,纸有80+40=120张
这种类型的题目不能直接计算,要将其中的一个条件转化,使之转化为基本的盈亏问题.
四年级奥数练习题9
【例题】计算489+487+483+485+484+486+488
【思路导航】认真观察每个加数,发现它们都和整数490接近,所以选490为基准数。
489+487+483+485+484+486+488
=490×7-1-3-7-5-6-4-2
=3430-28
=3402
想一想:如果选480为基准数,可以怎样计算?.
练习题:
1.50+52+53+54+51
2.262+266+270+268+264
3.89+94+92+95+93+94+88+96+87
4.381+378+382+383+379
5.1032+1028+1033+1029+1031+1030
6.2451+2452+2446+2453.
【例题】计算9+99+999+9999
【思路导航】这四个加数分别接近10、100、1000、10000。在计算这类题目时,常使用减整法,例如将99转化为100-1。这是小学数学计算中常用的一种技巧。
9+99+999+9999
=(10-1)+(100-1)+(1000-1)+(10000-1)
=10+100+1000+10000-4
=11106
练习题:
1.计算99999+9999+999+99+9
2.计算9+98+996+9997
3.计算1999+2998+396+497
4.计算198+297+396+495
5.计算1998+2997+4995+5994
6.计算19998+39996+49995+69996
【例题】计算下面各题。
(1)286+879-679
(2)812-593+193
【思路导航】在计算没有括号的加减法混合运算式题时,有时可以根据题目的特点,采用添括号的方法使计算简便,与前面去括号的方法类似,我们可以把这种方法概括为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。
(1)286+879-679
=286+(879-679)
=286+200
=868
(2)812-593+193
=812-(593-193)
=812-400
=412
练习题:
计算下面各题。
1.368+1859-8592.582+393-293
3.632-385+285
4.2756-2748+1748+244
5.612-375+275+(388+286)
6.756+1478+346-(256+278)-246
【例题】计算下面各题。
(1)632-156-232
(2)128+186+72-86
【思路导航】在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置。
(1)632-156-232
=632-232-156
=400-156
=244
(2)128+186+72-86
=128+72+186-86
=(128+72)+(186-86)
=200+100=300
练习题:
计算下面各题
1.1208-569-208
2.283+69-183
3.132-85+68
4.2318+625-1318+375
【例题】计算下面各题。
1.248+(152-127)
2.324-(124-97)
3.283+(358-183)
【思路导航】在计算有括号的加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+”号,去括号时,括号内的'符号不变;如果括号前面是“-”号,去括号时,括号内的加号就要变成减号,减号就要变成加号。
1.248+(152-127)
=248+152-127
=400-127
=273
2.324-(124-97)
=324-124+97
=200+97
=297
3.283+(358-183)
=283+358-183
=283-183+358
=100+358=458
我们可以把上面的计算方法概括为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号。
练习题:
计算下面各题
1.348+(252-166)
2.629+(320-129)
3.462-(262-129)
4.662-(315-238)
5.5623-(623-289)+452-(352-211)
6.736+678+2386-(336+278)-186
四年级奥数练习题10
地理老师在黑板上挂了一张世界地图,并给五大洲的每一个洲都标上一个代号,让学生认出五个洲,五个学生分别回答如下
甲:3号是欧洲,2号是美洲;
乙:4号是亚洲,2号是大洋洲;
丙:1号是亚洲,5号是非洲;
丁:4号是非洲,3号是大洋洲;
戊:2号是欧洲,5号是美洲。
老师说他们每人都只说对了一半,1号_______,2号_______,3号_______,4号________,5号_________。
答案与解析:
1号是亚洲;2号是大洋洲;3号是欧洲;4号是非洲;5号是美洲。
假设甲说的前半句是对的,则3号是欧洲,由此推出丁说的3号是大洋洲是错误的。由于每个人都只说对了一半,可知丁说的.4号是非洲是对的,由此推出乙说的4号是亚洲是错的,2号是大洋洲是对的。又可知戊说的2号是欧洲是错的,5号是美洲是对的,由此推出丙说的5号是非洲是错的,1号是亚洲是对的,最后得到正确的结论是:1号是亚洲;2号是大洋洲;3号是欧洲;4号是非洲;5号是美洲。
四年级奥数练习题11
有一个挂钟每小时敲一次钟,几点敲几下。钟敲6下,5秒钟敲完。钟敲12下,几秒钟敲完?
点拨:挂钟报时是身边的事,也是学生容易忽略的事。这里需要注意的是,挂钟报时在敲击时并不费时,而是两次敲击之间需要间隔一段时间,这就符合植树问题中的`两端植树这种情况。由此可知,敲钟6下,(6-1)个间隔,5秒钟敲完,所以,两次间隔5(6-1)=1(秒);敲钟12下,(12-1)个间隔,用时为1*(12-1)=11(秒)。
解:5(6-1)=1(秒)1*(12-1)=11(秒)
答:敲钟12下,11秒钟敲完。
四年级奥数练习题12
1.乘法原理
王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?
解答:三人报名参加比赛,彼此互不影响独立报名.所以可以看成是分三步完成,即一个人一个人地去报名.首先,王英去报名,可报4个项目中的一项,有4种不同的报名方法.其次,赵明去报名,也有4种不同的报名方法.同样,李刚也有4种不同的报名方法.满足乘法原理的条件,可由乘法原理解决.
解:由乘法原理,报名的结果共有4×4×4=64种不同的.情形.
2.乘法原理
由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?
解答:
分析 要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.
解:由1、2、3、4、5、6共可组成
3×4×5×3=180
个没有重复数字的四位奇数.
四年级奥数练习题13
一群蚂蚁搬家,原存一堆食物.第一天运出总数的一半少12克.第二天运出剩下的一半少12克,结果窝里还剩下43克.问蚂蚁家原有食物多少克?
答案与解析:
采用倒推法,教师可画线段图帮助学生理解.如果第二天再多运出12克,就是剩下的一半,所以第一天运出后,剩下的'一半重量是43-12=31(克);这样,第一天运出后剩下的重31×2=62(克).那么同理,一半的重量是62-12=50(克),原有食物50×2=100(克).即[(43-12)×2-12]×2=100(克).
四年级奥数练习题14
一、按规律填数。
1)64,48,40,36,34,( )
2)8,15,10,13,12,11,( )
3)1、4、5、8、9、( )、13、( )、( )
4)2、4、5、10、11、( )、( )
5)5,9,13,17,21,( ),( )
二、等差数列
1.在等差数列3,12,21,30,39,48,…中912是第几个数?
_____________________________________
2.求1至100内所有不能被5或9整除的整数和
_____________________________________
3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?
_____________________________________
4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和_________。
5.将自然数如下排列,
1 2 6 7 15 16 …
3 5 8 14 17 …
4 9 13 18 …
10 12 …
11 …
…
在这样的排列下,数字3排在第2行第1列,13排在第3行第3列,问:1993排在第几行第几列?
_____________________________________
三、 平均数问题
1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ .
2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的.同学补考各得99分,这个班级中考平均分是_______ .
3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?
4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数。23,26,30,33 。 A、B、C、D 4个数的平均数是多少?
_____________________________________
5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是_______。
四、加减乘除的简便运算
1)100-98+96-94+92-90+……+8-6+4-2=( )
2)1976+1977+……20xx-1975-1976-……-1999=( )
3)26×99 =( )
4)67×12+67×35+67×52+67=( )
5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)
四年级奥数练习题15
1.从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?
【解答】6×4=24种
6×2=12种
4×2=8种
24+12+8=44种
【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。当从国画、油画各选一幅有多少种选法时,利用的乘法原理。由此可知这是一道利用两个原理的综合题。关键是正确把握原理。
符合要求的选法可分三类:
设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。由乘法原理有 6×4=24种选法。
第二类为:国画、水彩画各一幅,由乘法原理有 6×2=12种选法。
第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。
这三类是各自独立发生互不相干进行的。
因此,依加法原理,选取两幅不同类型的画布置教室的选法有 24+12+8=44种。
2.从1到100的所有自然数中,不含有数字4的自然数有多少个?
【解答】从1到100的'所有自然数可分为三大类,即一位数,两位数,三位数.
一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;
两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72 个数不含4.
三位数只有100.
所以一共有8+8×9+1=81 个不含4的自然数.
【四年级奥数练习题】相关文章:
奥数经典练习题05-28
经典的奥数练习题05-29
经典的初中奥数练习题05-30
小学奥数练习题07-28
初中奥数经典的练习题05-29
(精选)初中奥数经典的练习题07-25
初中奥数经典的练习题(热)07-23
初二奥数经典的练习题10-16
经典的初一奥数练习题10-16
简单的初中奥数练习题07-22