- 相关推荐
非常全高中数学必修2解析几何公式知识点总结
在我们平凡无奇的学生时代,很多人都经常追着老师们要知识点吧,知识点就是一些常考的内容,或者考试经常出题的地方。那么,都有哪些知识点呢?以下是小编收集整理的非常全高中数学必修2解析几何公式知识点总结(通用5篇),欢迎大家借鉴与参考,希望对大家有所帮助。
高中数学必修2解析几何公式知识点总结1
一、直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即ktan。斜率反映直线与轴的倾斜程度。当0,90时,k0;当90,180
②过两点的直线的斜率公式:k时,k0;当90时,k不存在。
y2y1(x1x2)x2x1注意下面四点:
(1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式:yy1k(xx1)直线斜率k,且过点x1,y1注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:ykxb,直线斜率为k,直线在y轴上的截距为byy1xx1(x1x2,y1y2)直线两点x1,y1,x2,y2y2y1x2x1xy
④截矩式:1ab其中直线l与x轴交于点(a,0),与y轴交于点(0,b),即l与x轴、y轴的截距分别为a,b。
③两点式:
⑤一般式:AxByC0(A,B不全为0)
1各式的适用范围
2特殊的方程如:
注意:
平行于x轴的直线:yb(b为常数);平行于y轴的直线:xa(a为常数);
(4)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线A0xB0yC00(A0B00)的直线系:A0xB0yC0(C为常数)
(二)过定点的直线系()斜率为k的直线系:
22yy0kxx0,直线过定点x0,y0;
()过两条直线l1:A1xB1yC10,l2:A2xB2yC2
(5)两直线平行与垂直当l1:yk1xb1,l2:yk2xb2时,0的交点的直线系方程为,其中直线l2不在直线系中。A1xB1yC1A2xB2yC20(为参数)l1//l2k1k2,b1b2;l1l2k1k21注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(6)两条直线的交点l1:A1xB1yC10l2:A2xB2yC20相交A1xB1yC10交点坐标即方程组的一组解。A2xB2yC20方程组无解l1//l2;方程组有无数解l1与l2重合
(7)两点间距离公式:设A(x1,y1),(是平面直角坐标系中的两个点,Bx2,y2)则|AB|(x2x1)2(y2y1)2
(8)点到直线距离公式:一点Px0,y0到直线l1:AxByC0的距离d
(9)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。
Ax0By0CAB22
二、圆的方程
1、圆的定义:
平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(1)标准方程xaybr2,圆心22a,b,半径为r;22
(2)一般方程xyDxEyF01DE,半径为当DE4F0时,方程表示圆,此时圆心为rD2E24F,22222当DE4F0时,表示一个点;当DE4F0时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:
(1)设直线l:AxByC0,圆C:xa2yb2r2,圆心Ca,b到l的距离为dAaBbC,则有dA2B22222rl与C相离;drl与C相切;drl与C相交22
(2)设直线l:AxByC0,圆C:xaybr2,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为,则有0l与C相离;0l与C相切;0l与C相交2注:如果圆心的位置在原点,可使用公式xx0yy0r去解直线与圆相切的问题,其中x0,y0表示切点坐标,r表示半径。
(3)过圆上一点的切线方程:2
①圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为xx0yy0r(课本命题).
②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
22设圆C1:xa12yb12r2,C2:xa2yb2R2两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当dRr时两圆外离,此时有公切线四条;
当dRr时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当RrdRr时两圆相交,连心线垂直平分公共弦,有两条外公切线;当dRr时,两圆内切,连心线经过切点,只有一条公切线;当dRr时,两圆内含;当d0时,为同心圆。
高中数学必修2解析几何公式知识点总结2
1、在中学我们只研直圆柱、直圆锥和直圆台。所以对圆柱、圆锥、圆台的旋转定义、实际上是直圆柱、直圆锥、直圆台的定义。
这样定义直观形象,便于理解,而且对它们的性质也易推导。
对于球的定义中,要注意区分球和球面的概念,球是实心的。
等边圆柱和等边圆锥是特殊圆柱和圆锥,它是由其轴截面来定义的,在实践中运用较广,要注意与一般圆柱、圆锥的区分。
2、圆柱、圆锥、圆和球的性质
(1)圆柱的性质,要强调两点:一是连心线垂直圆柱的底面;二是三个截面的性质——平行于底面的截面是与底面全等的圆;轴截面是一个以上、下底面圆的直径和母线所组成的矩形;平行于轴线的截面是一个以上、下底的圆的弦和母线组成的矩形。
(2)圆锥的性质,要强调三点
①平行于底面的截面圆的性质:
截面圆面积和底面圆面积的比等于从顶点到截面和从顶点到底面距离的平方比。
②过圆锥的顶点,且与其底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形,其面积为:
易知,截面三角形的顶角不大于轴截面的顶角(如图10—20),事实上,由BC≥AB,VC=VB=VA可得∠AVB≤BVC。
由于截面三角形的顶角不大于轴截面的顶角。
所以,当轴截面的顶角θ≤90°,有0°<α≤θ≤90°,即有当轴截面的顶角θ>90°时,轴截面的面积却不是的,这是因为,若90°≤α<θ<180°时,1≥sinα>sinθ>0。
③圆锥的母线l,高h和底面圆的半径组成一个直径三角形,圆锥的有关计算问题,一般都要归结为解这个直角三角形,特别是关系式l2=h2+R2
(3)圆台的性质,都是从“圆台为截头圆锥”这个事实推得的,高考,但仍要强调下面几点:
①圆台的母线共点,所以任两条母线确定的截面为一等腰梯形,但是,与上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。
②平行于底面的截面若将圆台的高分成距上、下两底为两段的截面面积为S,则其中S1和S2分别为上、下底面面积。
的截面性质的推广。
③圆台的母线l,高h和上、下两底圆的半径r、R,组成一个直角梯形,且有l2=h2+(R—r)2。
圆台的有关计算问题,常归结为解这个直角梯形。
(4)球的性质,着重掌握其截面的性质。
①用任意平面截球所得的截面是一个圆面,球心和截面圆圆心的连线与这个截面垂直。
②如果用R和r分别表示球的半径和截面圆的半径,d表示球心到截面的距离,则R2=r2+d2即,球的半径,截面圆的半径,和球心到截面的距离组成一个直角三角形,有关球的计算问题,常归结为解这个直角三角形。
高中数学必修2解析几何公式知识点总结3
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴ox、oy、使∠xoy=45°(或135°)。
(2)平行于x轴的线段长不变,平行于y轴的线段长减半。
(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度。
3、表(侧)面积与体积公式:
⑴柱体:
①表面积:S=S侧+2S底;
②侧面积:S侧=;
③体积:V=S底h
⑵锥体:
①表面积:S=S侧+S底;
②侧面积:S侧=;
③体积:V=S底h:
⑶台体:
①表面积:S=S侧+S上底S下底
②侧面积:S侧=
⑷球体:
①表面积:S=;
②体积:V=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:
①线线平行线面平行;
②面面平行线面平行。
(2)平面与平面平行:
线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线。
5、求角:(步骤:Ⅰ、找或作角;Ⅱ、求角)
⑴异面直线所成角的求法:平移法:平移直线,构造三角形。
⑵直线与平面所成的角:直线与射影所成的角。
高中数学必修2解析几何公式知识点总结4
1、异面直线
异面直线定义:不同在任何一个平面内的两条直线。
异面直线性质:既不平行,又不相交。
异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线。
异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角。C、利用三角形来求角。
(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(8)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点。
三种位置关系的符号表示:aαa∩α=Aaα
(9)平面与平面之间的位置关系:平行——没有公共点;αβ
相交——有一条公共直线。α∩β=b
2、空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线线平行线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行。
(2)平面与平面平行的.判定及其性质
两个平面平行的判定定理
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。(线面平行→面面平行)
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行)
(3)垂直于同一条直线的两个平面平行。
两个平面平行的性质定理
(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)
3、空间中的垂直问题
(1)线线、面面、线面垂直的定义
两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)垂直关系的判定和性质定理
线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
4、空间角问题
(1)直线与直线所成的角
两平行直线所成的角:规定为。
两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
(2)直线和平面所成的角
平面的平行线与平面所成的角:规定为。平面的垂线与平面所成的角:规定为。
平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
在解题时,注意挖掘题设中主要信息:
(1)斜线上一点到面的垂线;
(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。
(3)二面角和二面角的平面角
二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。
直二面角:平面角是直角的二面角叫直二面角。
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
高中数学必修2解析几何公式知识点总结5
第一章:解三角形。掌握正弦余弦公式及其变式和推论和三角面积公式即可。
第二章:数列。考试必考。等差等比数列的通项公式、前n项和及一些性质。这一章属于学起来很容易,但做题却不会做的类型。考试题中,一般都是要求通项公式、前n项和,所以拿到题目之后要带有目的的去推导。
第三章:不等式。这一章一般用线性规划的形式来考察。这种题一般是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图。然后再根据实际问题的限制要求求最值。
选修中的简单逻辑用语、圆锥曲线和导数:逻辑用语只要弄懂充分条件和必要条件到底指的是前者还是后者,四种命题的真假性关系,逻辑连接词,及否命题和命题的否定的区别,考试一般会用选择题考这一知识点,难度不大;圆锥曲线一般作为考试的压轴题出现。而且有多问,一般第一问较简单,是求曲线方程,只要记住圆锥曲线的表达式难度就不大。后面两到三问难打一般会很大,而且较费时间。所以不建议做。
这一章属于学的比较难,考试也比较难,但是考试要求不高的内容;导数,导数公式、运算法则、用导数求极值和最值的方法。一般会考察用导数求最值,会用导数公式就难度不大。
【非常全高中数学必修2解析几何公式知识点总结】相关文章:
高中数学必修2知识点总结11-22
高中数学必修2知识点总结5篇11-22
高中数学必修2知识点总结4篇11-29
高中数学必修2知识点总结(4篇)11-29
高中数学必修2全册导学案及答案06-25
高中数学知识点必修总结08-18
高中数学必修二知识点总结02-24
高中数学必修三知识点总结06-17
高中数学必修四知识点总结12-03