高一数学知识点总结

时间:2022-11-28 14:12:16 知识点总结 我要投稿

高一数学知识点总结精选15篇

  总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能帮我们理顺知识结构,突出重点,突破难点,为此要我们写一份总结。总结怎么写才不会流于形式呢?以下是小编整理的高一数学知识点总结,欢迎阅读,希望大家能够喜欢。

高一数学知识点总结精选15篇

高一数学知识点总结1

  集合集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G。F。P。,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。集合与集合之间的关系某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。(说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A属于B。中学教材课本里将符号下加了一个不等于符号,不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。)

高一数学知识点总结2

  知识点总结

  本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。

  一、函数的单调性

  1、函数单调性的定义

  2、函数单调性的判断和证明:(1)定义法 (2)复合函数分析法 (3)导数证明法 (4)图象法

  二、函数的奇偶性和周期性

  1、函数的奇偶性和周期性的定义

  2、函数的奇偶性的判定和证明方法

  3、函数的周期性的判定方法

  三、函数的图象

  1、函数图象的作法 (1)描点法 (2)图象变换法

  2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

  常见考法

  本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。

  误区提醒

  1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

  2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

  3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

  4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

  5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

高一数学知识点总结3

  (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

  (2)指数函数的值域为大于0的实数集合。

  (3)函数图形都是下凹的。

  (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

  (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

  (6)函数总是在某一个方向上无限趋向于X轴,永不相交。

  (7)函数总是通过(0,1)这点。

  (8)显然指数函数无界。

  奇偶性

  定义

  一般地,对于函数f(x)

  (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

  (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

  (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

  (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

  总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

  如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

  在x大于0时,函数的值域总是大于0的实数。

  在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

  而只有a为正数,0才进入函数的值域。

  由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

  可以看到:

  (1)所有的图形都通过(1,1)这点。

  (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

  (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

  (4)当a小于0时,a越小,图形倾斜程度越大。

  (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

  (6)显然幂函数无界。

  定义:

  x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

  范围:

  倾斜角的取值范围是0°≤α<180°。

  理解:

  (1)注意“两个方向”:直线向上的方向、x轴的正方向;

  (2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

  意义:

  ①直线的倾斜角,体现了直线对x轴正向的倾斜程度;

  ②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;

  ③倾斜角相同,未必表示同一条直线。

  公式:

  k=tanα

  k>0时α∈(0°,90°)

  k<0时α∈(90°,180°)

  k=0时α=0°

  当α=90°时k不存在

  ax+by+c=0(a≠0)倾斜角为A,

  则tanA=-a/b,

  A=arctan(-a/b)

  当a≠0时,

  倾斜角为90度,即与X轴垂直

高一数学知识点总结4

  一、直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180

  (2)直线的斜率

  ①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。

  ②过两点的直线的斜率公式:

  注意下面四点:

  (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90

  (2)k与P1、P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  (3)直线方程

  ①点斜式:直线斜率k,且过点

  注意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

  ②斜截式:,直线斜率为k,直线在y轴上的截距为b

  ③两点式:()直线两点,

  ④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

  ⑤一般式:(A,B不全为0)

  ⑤一般式:(A,B不全为0)

  注意:○1各式的适用范围

  ○2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

  (4)直线系方程:即具有某一共同性质的直线

  (一)平行直线系

  平行于已知直线(是不全为0的常数)的直线系:(C为常数)

  (二)过定点的直线系

  (ⅰ)斜率为k的直线系:直线过定点;

  (ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

  (5)两直线平行与垂直;

  注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

  (6)两条直线的交点

  相交:交点坐标即方程组的一组解。方程组无解;方程组有无数解与重合

  (7)两点间距离公式:设是平面直角坐标系中的两个点,则

  (8)点到直线距离公式:一点到直线的距离

  (9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。

高一数学知识点总结5

  1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

  中元素各表示什么?

  注重借助于数轴和文氏图解集合问题。

  空集是一切集合的子集,是一切非空集合的真子集。

  3.注意下列性质:

  (3)德摩根定律:

  4.你会用补集思想解决问题吗?(排除法、间接法)

  的取值范围。

  6.命题的四种形式及其相互关系是什么?

  (互为逆否关系的命题是等价命题。)

  原命题与逆否命题同真、同假;逆命题与否命题同真同假。

  7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的性,哪几种对应能构成映射?

  (一对一,多对一,允许B中有元素无原象。)

  8.函数的三要素是什么?如何比较两个函数是否相同?

  (定义域、对应法则、值域)

  9.求函数的定义域有哪些常见类型?

  10.如何求复合函数的定义域?

  义域是_____________。

  11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

  12.反函数存在的条件是什么?

  (一一对应函数)

  求反函数的步骤掌握了吗?

  (①反解x;②互换x、y;③注明定义域)

  13.反函数的性质有哪些?

  ①互为反函数的图象关于直线y=x对称;

  ②保存了原来函数的单调性、奇函数性;

  14.如何用定义证明函数的单调性?

  (取值、作差、判正负)

  如何判断复合函数的单调性?

  ∴……)

  15.如何利用导数判断函数的单调性?

  值是()

  A.0B.1C.2D.3

  ∴a的值为3)

  16.函数f(x)具有奇偶性的必要(非充分)条件是什么?

  (f(x)定义域关于原点对称)

  注意如下结论:

  (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

  17.你熟悉周期函数的定义吗?

  函数,T是一个周期。)

  如:

  18.你掌握常用的图象变换了吗?

  注意如下“翻折”变换:

  19.你熟练掌握常用函数的图象和性质了吗?

  的双曲线。

  应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程

  ②求闭区间[m,n]上的最值。

  ③求区间定(动),对称轴动(定)的最值问题。

  ④一元二次方程根的分布问题。

  由图象记性质!(注意底数的限定!)

  利用它的单调性求最值与利用均值不等式求最值的区别是什么?

  20.你在基本运算上常出现错误吗?

  21.如何解抽象函数问题?

  (赋值法、结构变换法)

  22.掌握求函数值域的常用方法了吗?

  (二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)

  如求下列函数的最值:

  23.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?

  24.熟记三角函数的定义,单位圆中三角函数线的定义

  25.你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?

  (x,y)作图象。

  27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。

  28.在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?

  29.熟练掌握三角函数图象变换了吗?

  (平移变换、伸缩变换)

  平移公式:

  图象?

  30.熟练掌握同角三角函数关系和诱导公式了吗?

  “奇”、“偶”指k取奇、偶数。

  A.正值或负值B.负值C.非负值D.正值

  31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?

  理解公式之间的联系:

  应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)

  具体方法:

  (2)名的变换:化弦或化切

  (3)次数的变换:升、降幂公式

  (4)形的变换:统一函数形式,注意运用代数运算。

  32.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?

  (应用:已知两边一夹角求第三边;已知三边求角。)

  33.用反三角函数表示角时要注意角的范围。

  34.不等式的性质有哪些?

  答案:C

  35.利用均值不等式:

  值?(一正、二定、三相等)

  注意如下结论:

  36.不等式证明的基本方法都掌握了吗?

  (比较法、分析法、综合法、数学归纳法等)

  并注意简单放缩法的应用。

  (移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)

  38.用“穿轴法”解高次不等式——“奇穿,偶切”,从根的右上方开始

  39.解含有参数的不等式要注意对字母参数的讨论

  40.对含有两个绝对值的不等式如何去解?

  (找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

  证明:

  (按不等号方向放缩)

  42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)

  43.等差数列的定义与性质

  0的二次函数)

  项,即:

  44.等比数列的定义与性质

  46.你熟悉求数列通项公式的常用方法吗?

  例如:(1)求差(商)法

  解:

  [练习]

  (2)叠乘法

  解:

  (3)等差型递推公式

  [练习]

  (4)等比型递推公式

  [练习]

  (5)倒数法

  47.你熟悉求数列前n项和的常用方法吗?

  例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

  解:

  [练习]

  (2)错位相减法:

  (3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

  [练习]

  48.你知道储蓄、贷款问题吗?

  △零存整取储蓄(单利)本利和计算模型:

  若每期存入本金p元,每期利率为r,n期后,本利和为:

  △若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)

  若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足

  p——贷款数,r——利率,n——还款期数

  49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

  (2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一

  (3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不

  50.解排列与组合问题的规律是:

  相邻问题_法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。

  如:学号为1,2,3,4的四名学生的考试成绩

  则这四位同学考试成绩的所有可能情况是()

  A.24B.15C.12D.10

  解析:可分成两类:

  (2)中间两个分数相等

  相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。

  ∴共有5+10=15(种)情况

  51.二项式定理

  性质:

  (3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数且为第

  表示)

  52.你对随机事件之间的关系熟悉吗?

  的和(并)。

  (5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。

  (6)对立事件(互逆事件):

  (7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

  53.对某一事件概率的求法:

  分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即

  (5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生

  如:设10件产品中有4件次品,6件正品,求下列事件的概率。

  (1)从中任取2件都是次品;

  (2)从中任取5件恰有2件次品;

  (3)从中有放回地任取3件至少有2件次品;

  解析:有放回地抽取3次(每次抽1件),∴n=103

  而至少有2件次品为“恰有2次品”和“三件都是次品”

  (4)从中依次取5件恰有2件次品。

  解析:∵一件一件抽取(有顺序)

  分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。

  54.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。

  55.对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。

  要熟悉样本频率直方图的作法:

  (2)决定组距和组数;

  (3)决定分点;

  (4)列频率分布表;

  (5)画频率直方图。

  如:从10名_与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

  56.你对向量的有关概念清楚吗?

  (1)向量——既有大小又有方向的量。

  在此规定下向量可以在平面(或空间)平行移动而不改变。

  (6)并线向量(平行向量)——方向相同或相反的向量。

  规定零向量与任意向量平行。

  (7)向量的加、减法如图:

  (8)平面向量基本定理(向量的分解定理)

  的一组基底。

  (9)向量的坐标表示

  表示。

  57.平面向量的数量积

  数量积的几何意义:

  (2)数量积的运算法则

  [练习]

  答案:

  答案:2

  答案:

  58.线段的定比分点

  ※.你能分清三角形的重心、垂心、外心、内心及其性质吗?

  59.立体几何中平行、垂直关系证明的思路清楚吗?

  平行垂直的证明主要利用线面关系的转化:

  线面平行的判定:

  线面平行的性质:

  三垂线定理(及逆定理):

  线面垂直:

  面面垂直:

  60.三类角的定义及求法

  (1)异面直线所成的角θ,0°<θ≤90°

  (2)直线与平面所成的角θ,0°≤θ≤90°

  (三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)

  三类角的求法:

  ①找出或作出有关的角。

  ②证明其符合定义,并指出所求作的角。

  ③计算大小(解直角三角形,或用余弦定理)。

  [练习]

  (1)如图,OA为α的斜线OB为其在α_影,OC为α内过O点任一直线。

  (2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。

  ①求BD1和底面ABCD所成的角;

  ②求异面直线BD1和AD所成的角;

  ③求二面角C1—BD1—B1的大小。

  (3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。

  (∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……)

  61.空间有几种距离?如何求距离?

  点与点,点与线,点与面,线与线,线与面,面与面间距离。

  将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。

  如:正方形ABCD—A1B1C1D1中,棱长为a,则:

  (1)点C到面AB1C1的距离为___________;

  (2)点B到面ACB1的距离为____________;

  (3)直线A1D1到面AB1C1的距离为____________;

  (4)面AB1C与面A1DC1的距离为____________;

  (5)点B到直线A1C1的距离为_____________。

  62.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?

  正棱柱——底面为正多边形的直棱柱

  正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

  正棱锥的计算集中在四个直角三角形中:

  它们各包含哪些元素?

  63.球有哪些性质?

  (2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!

  (3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。

  (5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。

  积为()

  答案:A

  64.熟记下列公式了吗?

  (2)直线方程:

  65.如何判断两直线平行、垂直?

  66.怎样判断直线l与圆C的位置关系?

  圆心到直线的距离与圆的半径比较。

  直线与圆相交时,注意利用圆的“垂径定理”。

  67.怎样判断直线与圆锥曲线的位置?

  68.分清圆锥曲线的定义

  70.在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)

  71.会用定义求圆锥曲线的焦半径吗?

  如:

  通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。

  72.有关中点弦问题可考虑用“代点法”。

  答案:

  73.如何求解“对称”问题?

  (1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。

  75.求轨迹方程的常用方法有哪些?注意讨论范围。

  (直接法、定义法、转移法、参数法)

  76.对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

高一数学知识点总结6

  1.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。

  2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。

  3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。

  4.立体几何知识:20xx年已经变得简单,20xx年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。

  5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。

  6.导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。

  7.开放型创新题:答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。

高一数学知识点总结7

  1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

  注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式.

  定义域补充

  能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.

  构成函数的三要素:定义域、对应关系和值域

  再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)

  值域补充

  (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

  3.函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.

  C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}

  图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

  (2)画法

  A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.

  B、图象变换法(请参考必修4三角函数)

  常用变换方法有三种,即平移变换、伸缩变换和对称变换

  (3)作用:

  1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。

高一数学知识点总结8

  幂函数的性质:

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的定义域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x<0x="">0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

  总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

  如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

  在x大于0时,函数的值域总是大于0的实数。

  在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

  而只有a为正数,0才进入函数的值域。

  由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况。

  可以看到:

  (1)所有的图形都通过(1,1)这点。

  (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

  (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

  (4)当a小于0时,a越小,图形倾斜程度越大。

  (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

  (6)显然幂函数。

  解题方法:换元法

  解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

  换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

  它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

  练习题:

  1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。

  (1)求f(log2x)的最小值及对应的x值;

  (2)x取何值时,f(log2x)>f(1)且log2[f(x)]

  2、已知函数f(x)=3x+k(k为常数),A(—2k,2)是函数y=f—1(x)图象上的点。

  (1)求实数k的值及函数f—1(x)的解析式;

  (2)将y=f—1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f—1(x+—3)—g(x)≥1恒成立,试求实数m的取值范围。

高一数学知识点总结9

  高一数学集合有关概念

  集合的含义

  集合的中元素的三个特性:

  元素的确定性如:世界上的山

  元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

  元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

  3。集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  集合的表示方法:列举法与描述法。

  注意:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N_N+整数集Z有理数集Q实数集R

  列举法:{a,b,c……}

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x(R|x—3>2},{x|x—3>2}

  语言描述法:例:{不是直角三角形的三角形}

  Venn图:

  4、集合的分类:

  有限集含有有限个元素的集合

  无限集含有无限个元素的集合

  空集不含任何元素的集合例:{x|x2=—5}

高一数学知识点总结10

  棱锥

  棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

  棱锥的的性质:

  (1)侧棱交于一点。侧面都是三角形

  (2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

  正棱锥

  正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

  正棱锥的性质:

  (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

  (3)多个特殊的直角三角形

  esp:

  a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

  b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

高一数学知识点总结11

  函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

  (2)画法

  A、描点法:

  B、图象变换法

  常用变换方法有三种

  1)平移变换

  2)伸缩变换

  3)对称变换

  4.高中数学函数区间的概念

  (1)函数区间的分类:开区间、闭区间、半开半闭区间

  (2)无穷区间

  5.映射

  一般地,设A、B是两个非空的'函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”

  对于映射f:A→B来说,则应满足:

  (1)函数A中的每一个元素,在函数B中都有象,并且象是的;

  (2)函数A中不同的元素,在函数B中对应的象可以是同一个;

  (3)不要求函数B中的每一个元素在函数A中都有原象。

  6.高中数学函数之分段函数

  (1)在定义域的不同部分上有不同的解析表达式的函数。

  (2)各部分的自变量的取值情况.

  (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

  补充:复合函数

  如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

高一数学知识点总结12

  一、指数函数

  (一)指数与指数幂的运算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

  当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

  注意:当是奇数时,当是偶数时,

  2.分数指数幂

  正数的分数指数幂的意义,规定:

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

  3.实数指数幂的运算性质

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

  注意:指数函数的底数的取值范围,底数不能是负数、零和1.

  2、指数函数的图象和性质

  【第三章:第三章函数的应用】

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

  方程有实数根函数的图象与轴有交点函数有零点.

  3、函数零点的求法:

  求函数的零点:

  (1)(代数法)求方程的实数根;

  (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

  4、二次函数的零点:

  二次函数.

  1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.  2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

  3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

  3.2.1几类不同增长的函数模型

  【课 型】新授课

  【教学目标】

  结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.

  【教学重点、难点】

  1. 教学重点 将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.

  2.教学难点 选择合适的数学模型分析解决实际问题.

  【学法与教学用具】

  1. 学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索.

  2.教学用具:多媒体.

  【教学过程】

  (一)引入实例,创设情景.

  教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导.

  (二)互动交流,探求新知.

  1. 观察数据,体会模型.

  教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流.

  2. 作出图象,描述特点.

  教师引导学生借助计算器作出三个方案的函数图象,分析三种方案的不同变化趋势,并进行描述,为方案选择提供依据.

  (三)实例运用,巩固提高.

  1. 教师引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益.学生通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本例的完整解答,然后全班进行交流.

  2. 教师引导学生分析例2中三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况,进一步体会三种基本函数模型在实际中广泛应用,体会它们的增长差异.

  3.教师引导学生分析得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择,学会对数据的特点与作用进行分析、判断。

  4.教师引导学生利用解析式,结合图象,对例2的三个模型的增长情况进行分析比较,写出完整的解答过程.进一步认识三个函数模型的增长差异,并掌握解答的规范要求.

  5.教师引导学生通过以上具体函数进行比较分析,探究幂函数(>0)、指数函数(>1)、对数函数(>1)在区间(0,+∞)上的增长差异,并从函数的性质上进行研究、论证,同学之间进行交流总结,形成结论性报告.教师对学生的结论进行评析,借助信息技术手段进行验证演示.

  6. 课堂练习

  教材P98练习1、2,并由学生演示,进行讲评。

  (四)归纳总结,提升认识.

  教师通过计算机作图进行总结,使学生认识直线上升、指数爆炸、对数增长等不同函数模型的含义及其差异,认识数学与现实生活、与其他学科的密切联系,从而体会数学的实用价值和内在变化规律.

  (五)布置作业

  教材P107练习第2题

  收集一些社会生活中普遍使用的递增的一次函数、指数函数、对数函数的实例,对它们的增长速度进行比较,了解函数模型的广泛应用,并思考。有时同一个实际问题可以建立多个函数模型,在具体应用函数模型时,应该怎样选用合理的函数模型.

  3.2.2 函数模型的应用实例(Ⅰ)

  【课 型】新授课

  【教学目标】

  能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.

  【教学重点与难点】

  1.教学重点:运用一次函数、二次函数模型解决一些实际问题.

  2. 教学难点:将实际问题转变为数学模型.

  【学法与教学用具】

  1. 学法:学生自主阅读教材,采用尝试、讨论方式进行探究.

  2. 教学用具:多媒体

  【教学过程】

  (一)创设情景,揭示课题

  引例:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼”问题的吗?你有什么更好的方法?老师介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”.这样,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23.

  比例激发学生学习兴趣,增强其求知欲望.

  可引导学生运用方程的思想解答“鸡兔同笼”问题.

  (二)结合实例,探求新知

  例1. 某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程.

  探索:

  1)本例所涉及的变量有哪些?它们的取值范围怎样;

  2)所涉及的变量的关系如何?

  3)写出本例的解答过程.

  老师提示:路程S和自变量t的取值范围(即函数的定义域),注意t的实际意义.

  学生独立思考,完成解答,并相互讨论、交流、评析.

  例2.某商店出售茶壶和茶杯,茶壶每只定价20元,茶杯每只定价5元,该商店制定了两种优惠办法:

  1)本例所涉及的变量之间的关系可用何种函数模型来描述?

  2)本例涉及到几个函数模型?

  3)如何理解“更省钱?”;

  4)写出具体的解答过程.

  在学生自主思考,相互讨论完成本例题解答之后,老师小结:通过以上两例,数学模型是用数学语言模拟现实的一种模型,它把实际问题中某些事物的主要特征和关系抽象出来,并用数学语言来表达,这一过程称为建模,是解应用题的关键。数学模型可采用各种形式,如方程(组),函数解析式,图形与网络等.

高一数学知识点总结13

  考点要求:

  1、几何体的展开图、几何体的三视图仍是高考的热点。

  2、三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势。

  3、重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型。

  4、要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图。

  知识结构:

  1、多面体的结构特征

  (1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

  正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。

  (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。

  正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥。特别地,各棱均相等的正三棱锥叫正四面体。反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

  (3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。

  2、旋转体的结构特征

  (1)圆柱可以由矩形绕一边所在直线旋转一周得到。

  (2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到。

  (3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。

  (4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。

  3、空间几何体的三视图

  空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。

  三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。

  4、空间几何体的直观图

  空间几何体的直观图常用斜二测画法来画,基本步骤是:

  (1)画几何体的底面

  在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴。已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。

  (2)画几何体的高

  在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。

高一数学知识点总结14

  一:函数及其表示

  知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等

  1. 函数与映射的区别:

  2. 求函数定义域

  常见的用解析式表示的函数f(x)的定义域可以归纳如下:

  ①当f(x)为整式时,函数的定义域为R.

  ②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

  ③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

  ④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

  ⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

  ⑥复合函数的定义域是复合的各基本的函数定义域的交集。

  ⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。

  3. 求函数值域

  (1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;

  (2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;

  (3)、判别式法:

  (4)、数形结合法;通过观察函数的图象,运用数形结合的方法得到函数的值域;

  (5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;

  (6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;

  (7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;

  (8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域;

  (9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。

高一数学知识点总结15

  必修一

  一、集合

  一、集合有关概念1.集合的含义

  2.集合的中元素的三个特性:

  (1)元素的确定性如:世界上最高的山

  (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

  3.集合的表示:{}如:{我校的篮球队员},{太平洋,大西洋,印度洋,

  北冰洋}

  (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。注意:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N*或N+整数集Z有理数集Q实数集R1)列举法:{a,b,c}

  2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的

  方法。{xR|x-3>2},{x|x-3>2}

  3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:

  (1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合2

  (3)空集不含任何元素的集合例:{x|x=-5}

  二、集合间的基本关系1.“包含”关系子集

  注意:AB有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)2

  实例:设A={x|x-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。AA

  ②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AB,BC,那么AC④如果AB同时BA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。nn-1

  有n个元素的集合,含有2个子集,2个真子集

  二、函数

  1、函数定义域、值域求法综合

  2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法

  5、二次函数根的问题一题多解&指数函数y=a^x

  a^a*a^b=a^a+b(a>0,a、b属于Q)(a^a)^b=a^ab(a>0,a、b属于Q)(ab)^a=a^a*b^a(a>0,a、b属于Q)指数函数对称规律:

  1、函数y=a^x与y=a^-x关于y轴对称2、函数y=a^x与y=-a^x关于x轴对称

  3、函数y=a^x与y=-a^-x关于坐标原点对称&对数函数y=loga^x

  如果a0,且a1,M0,N0,那么:1loga(MMN)logaM+logaN;○

  2loga○logaM-logaN;n3○logaMNnlogaM(nR).注意:换底公式logcblogab(a0,且a1;c0,且c1;b0).幂函数y=x^a(a属于R)logca1、幂函数定义:一般地,形如yx(aR)的函数称为幂函数,其中为常数.

  2、幂函数性质归纳.

  (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0时,幂函数的图象通过原点,并且在区间[0,)上是增函数.特别地,当1时,幂函数的图象下凸;当01时,幂函数的图象上凸;(3)0时,幂函数的图象在区间(0,)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于时,图象在x轴上方无限地逼近x轴正半轴.

  方程的根与函数的零点

  1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

  2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数yf(x)的图象与x轴交点的横坐标。

  即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.3、函数零点的求法:

  1(代数法)求方程f(x)0的实数根;○

  2(几何法)对于不能用求根公式的方程,可以将它与函数yf(x)的图○

  象联系起来,并利用函数的性质找出零点.4、二次函数的零点:2bxc(a0).二次函数yax2(1)△>0,方程axbxc0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.2(2)△=0,方程axbxc0有两相等实根,二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.2(3)△<0,方程axbxc0无实根,二次函数的图象与x轴无交点,二次函数无零点.

  高一数学知识总结数性质三、平面向量

  向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.

  有向线段的三要素:起点、方向、长度.零向量:长度为0的向量.

  单位向量:长度等于1个单位的向量.相等向量:长度相等且方向相同的向量&向量的运算加法运算

  AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

  已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。对于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。

  向量的加法满足所有的加法运算定律。

  减法运算

  与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

  数乘运算

  实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ=0时,λa=0。设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

  向量的加法运算、减法运算、数乘运算统称线性运算。

  向量的数量积

  已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。四、三角函数

  1、善于用“1“巧解题

  2、三角问题的非三角化解题策略3、三角函数有界性求最值解题方法4、三角函数向量综合题例析5、三角函数中的数学思想方法

  15、正弦函数、余弦函数和正切函数的图象与性质:ysinxytanxycosx函图象

  定义域值域最值周期性奇偶性单调性

  RR

  1,1

  当x2kk当x2kk时,

  ymax时,21;当ymax1;当x2kx2kk时,ymin1.ky1.2min时,

  2

  1,1

  xxk,k

  2R

  既无最大值也无最小值

  2

  奇函数

  奇函数

  在

  偶函数

  对称性

  必修四

  角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.k36090,k第一象限角的集合为k360,k第二象限角的集合为k36090k360180第三象限角的集合为k360180k360270,k第四象限角的集合为k360270k360360,k终边在x轴上的角的集合为k180,k终边在y轴上的角的集合为k18090,k终边在坐标轴上的角的集合为k90,k3、与角终边相同的角的集合为*k360,k4、已知是第几象限角,确定n所在象限的方法:先把各象限均分n等份,再从x轴的正半

  2k,2k在2k,2kk上232k上是增函数;在是增函数;在2k,2k2k,2kk上是减函数.22k上是减函数.对称中心k,0中心称k对对称轴xkkk,0k

  x2k对称轴2k

  ,k

  22k上是增函数.

  k,0k对称中心无对称轴2在kn轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为区域.

  5、长度等于半径长的弧所对的圆心角叫做1弧度.口诀:奇变偶不变,符号看象限.

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:

  设α为任意角,πα的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

  公式三:

  任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα

  sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα

  sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα

  (以上k∈Z)

  其他三角函数知识:同角三角函数基本关系

  ⒈同角三角函数的基本关系式倒数关系:

  tanαcotα=1sinαcscα=1cosαsecα=1商的关系:

  sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:

  sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)两角和差公式

  ⒉两角和与差的三角函数公式

  sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ

  tanα+tanβtan(α+β)=1-tanαtanβ

  tanα-tanβtan(α-β)=1+tanαtanβ

  n终边所落在的

  倍角公式

  ⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=1-tan^2(α)半角公式

  ⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=21+cosαcos^2(α/2)=21-cosαtan^2(α/2)=1+cosα万能公式⒌万能公式

  2tan(α/2)sinα=1+tan^2(α/2)

  1-tan^2(α/2)cosα=1+tan^2(α/2)

  2tan(α/2)tanα=1-tan^2(α/2)和差化积公式

  ⒎三角函数的和差化积公式

  α+βα-βsinα+sinβ=2sin----cos---22

  α+βα-βsinα-sinβ=2cos----sin----22

  α+βα-βcosα+cosβ=2cos-----cos-----22

  α+βα-βcosα-cosβ=-2sin-----sin-----22积化和差公式

  ⒏三角函数的积化和差公式

  sinαcosβ=0.5[sin(α+β)+sin(α-β)]cosαsinβ=0.5[sin(α+β)-sin(α-β)]cosαcosβ=0.5[cos(α+β)+cos(α-β)]sinαsinβ=-0.5[cos(α+β)-cos(α-β)]

【高一数学知识点总结】相关文章:

数学高一函数知识点总结11-03

高一数学下知识点总结02-18

高一数学集合知识点总结04-11

高一数学函数的知识点总结01-15

高一数学知识点总结09-08

高一数学知识点总结11-19

高一数学知识点总结11-03

高一数学必修3知识点总结04-11

高一数学下册《集合》知识点总结04-11

高一数学必修五的知识点总结03-30