初三数学知识点总结

时间:2023-07-18 16:06:26 知识点总结 我要投稿

初三数学知识点总结(合集16篇)

  总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,不如我们来制定一份总结吧。我们该怎么去写总结呢?下面是小编为大家收集的初三数学知识点总结,欢迎大家分享。

初三数学知识点总结(合集16篇)

  初三数学知识点总结1

  1、弧长公式

  n°的圆心角所对的弧长l的计算公式为L=nπr/180

  2、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.

  S=﹙n/360﹚πR2=1/2×lR

  3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.

  S=1/2×l×2πr=πrl

  4、弦切角定理

  弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角.

  弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角.

  一、选择题

  1.(20xxo珠海,第4题3分)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为()

  A.24πcm2B.36πcm2C.12cm2D.24cm2

  考点:圆柱的计算.

  分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解.

  解答:解:圆柱的.侧面积=2π×3×4=24π.

  故选A.

  点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法.

  2.(20xxo广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()

  A.B.C.D.

  考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.

  分析:连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.

  解答:解:连接OC,

  ∵△ACE中,AC=2,AE=,CE=1,

  ∴AE2+CE2=AC2,

  ∴△ACE是直角三角形,即AE⊥CD,

  ∵sinA==,

  ∴∠A=30°,

  ∴∠COE=60°,

  ∴=sin∠COE,即=,解得OC=,

  ∵AE⊥CD,

  ∴=,

  ∴===.

  故选B.

  初三数学知识点总结2

  直角三角形的判定方法:

  判定1:定义,有一个角为90°的三角形是直角三角形。

  判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的'三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。

  判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。

  判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。

  判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么

  判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。

  判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

  初三数学知识点总结3

  初三数学知识点第一章二次根式

  1二次根式:形如a(a0)的式子为二次根式;性质:a(a0)是一个非负数;aaa0;

  2a2aa0。

  2二次根式的乘除:ababa0,b0;

  aaa0,b0。bb3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。

  4海伦-秦九韶公式:S是三角形的面积,Sp(p)(pb)(pc),p为pabc。2第二章一元二次方程

  1一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。

  2一元二次方程的解法

  配方法:将方程的一边配成完全平方式,然后两边开方;

  bb24ac公式法:x

  2a因式分解法:左边是两个因式的乘积,右边为零。3一元二次方程在实际问题中的应用

  4韦达定理:设x1,x2是方程ax2bxc0的两个根,那么有x1x2,x1x2第三章旋转1图形的旋转

  旋转:一个图形绕某一点转动一个角度的图形变换性质:对应点到旋转中心的距离相等;

  对应点与旋转中心所连的线段的夹角等于旋转角旋转前后的图形全等。

  2中心对称:一个图形绕一个点旋转180度,和另一个图

  形重合,则两个图形关于这个点中心对称;

  中心对称图形:一个图形绕某一点旋转180度后得到的

  图形能够和原来的图形重合,则说这个图形是中心对称图形;

  3关于原点对称的点的坐标第四章圆

  1圆、圆心、半径、直径、圆弧、弦、半圆的定义2垂直于弦的直径

  圆是轴对称图形,任何一条直径所在的直线都是它

  的对称轴;

  垂直于弦的直径平分弦,并且平方弦所对的两条弧;平分弦的直径垂直弦,并且平分弦所对的'两条弧。3弧、弦、圆心角

  在同圆或等圆中,相等的圆心角所对的弧相等,所

  baca对的弦也相等。

  4圆周角

  在同圆或等圆中,同弧或等弧所对的圆周角相等,都等

  于这条弧所对的圆心角的一半;

  半圆(或直径)所对的圆周角是直角,90度的圆周角

  所对的弦是直径。

  5点和圆的位置关系点在

  dr

  点在圆上d=r点在圆内d相等,这一点和圆心的连线平分两条切线的夹角。

  三角形的内切圆:和三角形各边都相切的圆为它的内切圆,

  圆心是三角形的三条角平分线的交点,为三角形的内心。

  7圆和圆的位置关系

  外离d>R+r外切d=R+r相交R-r第五章概率初步

  1概率意义:在大量重复试验中,事件A发生的频率某个常数p附近,则常数p叫做事件A的概率。

  2用列举法求概率

  一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=

  mnm稳定在n3用频率去估计概率

  初三数学知识点总结4

  一、重要概念

  1.数的分类及概念数系表:

  说明:分类的原则:1)相称(不重、不漏) 2)有标准

  2.非负数:正实数与零的统称。(表为:x0)

  性质:若干个非负数的和为0,则每个非负数均为0。

  3.倒数:

  ①定义及表示法

  ②性质:A.a1/a(a1);B.1/a中,aa1时,1/aD.积为1。

  4.相反数:

  ①定义及表示法

  ②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

  5.数轴:

  ①定义(三要素)

  ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

  6.奇数、偶数、质数、合数(正整数-自然数)

  定义及表示:

  奇数:2n-1

  偶数:2n(n为自然数)

  7.绝对值:

  ①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│0,符号││是非负数的标志;

  ③数a的绝对值只有一个;

  ④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。

  二、实数的'运算

  1.运算法则(加、减、乘、除、乘方、开方)

  2.运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]

  分配律)

  3.运算顺序:A.高级运算到低级运算;B.(同级运算)从左

  到右(如5 C.(有括号时)由小到中到大。

  三、应用举例(略)

  附:典型例题

  1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.

  2.已知:a-b=-2且ab0,(a0,b0),判断a、b的符号。

  初三数学知识点总结5

  圆的全章复习

  圆的基础知识(1)圆的有关概念:

  弦,弧,半圆,弓形,弓形高,等弧(隐含同圆等圆),弦心距,直径等。

  (2)圆的确定

  圆心决定位置,半径决定大小,不共线的三点确定一个圆。注意:作图(两边中垂线找交点),外心的位置,外心到三角形各顶点距离等

  圆的对称性:轴对称,中心对称,旋转不变性

  2.圆与其它图形

  (1)点与圆三种

  (2)直线与圆

  相离dr

  ①一条直线与圆三种相切dr

  相交d

  r②两条直线与圆有关的角:圆周角,弦切角,圆外角等比例线段:圆幂定理等

  ③三条直线与圆即三角形与圆

  三角形“四心”的区别:垂心意义三条高的交点性质等式积:位置锐角三角形:内部直角三角形:直角顶点钝角三角形:外部必在三角形内部ahabhbchc重心三条中线的交点同一中线上重心到顶点的距离是它到该顶点的对边距离的2倍外心

  1.外接圆的圆心

  2.三边中垂线的交点

  3.内切圆的圆心

  4.三条角平分线的交点到三角形三顶点距离相等锐角三角形:内部直角三角形:斜边中点钝角三角形:外部到三角形三边距离相等与顶点连线平分该内角必在三角形内部内心

  ④四条直线与圆为180内切四边形:对角之和的和相等外切四边形:两组对边

  (3)两圆与直线

  两圆外切时连心线过内公切线切点与该切线垂直。两圆内切时连心线过切点,垂直于过切点的切线。

  两圆相交时,连心线垂直于公共弦,并且平分公共弦。

  3.圆与圆的位置关系:

  (1).掌握圆与圆的五种位置关系,类比于点与圆,直线与圆的位置关系,能通过两圆半径r1,r2及圆心距d三者的数量关系,判断两圆位置关系,或通过位置关系,判断数量关系。

  (2).在数轴上表示当d在不同位置时,两圆的位置关系。

  (3).在证明两圆的或多圆的图形时,常加的辅助线:公共弦、公切线;圆心距,连心线。

  (4).当两圆相交时,连心线垂直平分公共弦。当两圆内切时,连心线垂直于公切线。当两圆外切时,连心线垂直于内公切线。

  (5).公切线是指两个圆公共的切线,如果两圆在公切线同旁则称外公切线,如果两圆在公切线两旁则称内切线。公切线上两切点间线段的长叫公切线长。(Rr)(外离时)

  (6).如图内公切线长d(Rr)(外离、外切、相交时)外公切线长dd圆心距

  R大圆半径

  r小圆半径

  R≥r

  2222

  内公切线Rr夹角一半sin

  d的正弦值

  外公切线Rr夹角一半sin

  d的正弦值

  (7).公切线条数①内含0条0dRr②内切1条dRr③相交2条RrdRr④外切3条dRr⑤外离4条dRr4,定理

  (1)垂径定理及推论:过圆心;垂直弦;平分弦(非直径);平分优弧;平分劣弧;知2求3。

  (2)圆心角,弦,弦心距,弧之间关系:同圆等圆中知1得3。

  (3)与圆有关的角:圆心角,圆周角,弦切角,圆内角,圆外角,圆内接四边形外角,内对角,对角

  1.一条弧所对圆周角等于它所对的圆心角的一它所对弧度数的一半半,圆周角的度数等于角相等;

  2.同弧或等弧所对的圆周圆周角的.性质相等的圆周角所对的弧也相等

  3.直径所对的圆周角是直角,90的圆周角所对的弦是直角

  (4)切线的判定、性质:

  ①判定:常见的证法连半径,证垂直,判断切线,“连垂切”或作垂直证d=r

  ②性质:若一条直线满足过圆心、过切点,垂直于切线中任意两条,可得另外一条。常见“切连垂”

  (5)和圆有关的比例线段:

  相交弦定理及推论,切割线定理及推论,圆幂定理

  5.和圆有关的计算

  (1)求线段

  ①直径、半径

  ②垂径定理:求弦长、弦心距、拱高

  ③切线长、公切线长(外公切线长,内公切线长)

  ④直角三角形内切圆半径

  ⑤任意三角形内切圆半径与面积、周长的关系

  ⑥等边三角形内切圆半径:外接圆半径=1:2

  ⑦与圆有关的比例线段、弦长、切线长等

  (2)求角

  圆心角,圆周角,弦切角,两切线夹角,公切线夹角

  6.常见辅助线

  半径、直径、弦心距、“切连垂”、连心线、公共弦、公切线

  7.圆中常见图形

  直角三角形等腰三角形圆内接四边形相似三角形

  8.正多边形和圆

  (n2)180正n边形的内角和为(n2)180有n个相等的内角,每个内角的度数为

  n注意:正多边形的外交和始终为3609.弧长公式:lnR

  180nR210.扇形面积公式:3

  初三数学知识点总结6

  (三角形中位线的定理)

  三角形的中位线平行于三角形的第三边,并且等于第三边的一半。

  (平行四边形的性质)

  ①平行四边形的对边相等;

  ②平行四边形的对角相等;

  ③平行四边形的对角线互相平分。

  (矩形的性质)

  ①矩形具有平行四边形的一切性质;

  ②矩形的四个角都是直角;

  ③矩形的对角线相等。

  正方形的判定与性质

  1、判定方法:

  1邻边相等的矩形;

  2邻边垂直的菱形;

  3对角线垂直的矩形;

  4对角线相等的菱形;

  2、性质:

  1边:四边相等,对边平行;

  2角:四个角都相等都是直角,邻角互补;

  3对角线互相平分、垂直、相等,且每长对角线平分一组内角。

  等腰三角形的判定定理

  (等腰三角形的判定方法)

  1、有两条边相等的三角形是等腰三角形。

  2、判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形简称:等角对等边。

  角平分线:把一个角平分的射线叫该角的角平分线。

  定义中有几个要点要注意一下的,学习方法,就是角的`角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

  性质定理:角平分线上的点到该角两边的距离相等

  判定定理:到角的两边距离相等的点在该角的角平分线上

  标准差与方差

  极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值—最小值。

  计算器——求标准差与方差的一般步骤:

  1、打开计算器,按“ON”键,按“MODE”“2”进入统计SD状态。

  2、在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。

  3、输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。

  4、当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;

  5、标准差的平方就是方差。

  初三数学知识点总结7

  单项式与多项式

  仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。

  单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。

  当一个单项式的系数是1或—1时,“1”通常省略不写。

  一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。

  1、多项式

  有有限个单项式的代数和组成的式子,叫做多项式。

  多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

  单项式可以看作是多项式的特例

  把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

  在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的'项数所含个单项式中次项的次数,就称为这个多项式的次数。

  2、多项式的值

  任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

  3、多项式的恒等

  对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。

  性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。

  性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。

  4、一元多项式的根

  一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。

  多项式的加、减法,乘法

  1、多项式的加、减法

  2、多项式的乘法

  单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。

  3、多项式的乘法

  多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。

  常用乘法公式

  公式I平方差公式

  a+ba—b=a^2—b^2

  两个数的和与这两个数的差的积等于这两个数的平方差。

  初三数学知识点总结8

  第21章二次根式知识框图

  理解并掌握下列结论:

  (1)是非负数;(2);(3);

  I.二次根式的定义和概念:

  1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,√0=0

  2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一个非负数。

  II.二次根式√ā的简单性质和几何意义

  1)a≥0;√ā≥0[双重非负性]

  2)(√ā)^2=a(a≥0)[任何一个非负数都可以写成一个数的平方的形式]3)√(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论。

  IV.二次根式的乘法和除法

  1运算法则

  √a√b=√ab(a≥0,b≥0)

  √a/b=√a/√b(a≥0,b>0)

  二数二次根之积,等于二数之积的二次根。2共轭因式

  如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式。

  V.二次根式的加法和减法

  1同类二次根式

  一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。2合并同类二次根式

  把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。

  3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并

  Ⅵ.二次根式的混合运算

  1确定运算顺序2灵活运用运算定律3正确使用乘法公式4大多数分母有理化要及时

  5在有些简便运算中也许可以约分,不要盲目有理化

  VII.分母有理化

  分母有理化有两种方法I.分母是单项式

  如:√a/√b=√a×√b/√b×√b=√ab/b

  II.分母是多项式要利用平方差公式

  如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多项式要利用平方差公式

  如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章一元二次方程知识框图

  旋转的定义

  旋转对称中心

  大于360°)。

  把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种

  图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,

  也就是说:

  ①中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。

  ②中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。

  中心对称图形

  正(2N)边形(N为大于1的正整数),线段,矩形,菱形,圆

  只是中心对称图形

  平行四边形等.第24章圆知识框图

  圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

  直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。

  两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。

  圆的平面几何性质和定理

  一有关圆的基本性质与定理

  ⑴圆的确定:不在同一直线上的三个点确定一个圆。

  圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

  ⑵有关圆周角和圆心角的性质和定理在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。一条弧所对的圆周角等于它所对的圆心角的一半。直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

  ⑶有关外接圆和内切圆的性质和定理

  ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;

  ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。③S三角=1/2*△三角形周长*内切圆半径

  ④两相切圆的连心线过切点(连心线:两个圆心相连的线段)

  ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

  〖有关切线的性质和定理〗

  圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。

  切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。

  切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。

  切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。〖有关圆的计算公式〗

  1.圆的周长C=2πr=πd2.圆的面积S=πr^2;3.扇形弧长l=nπr/1804.扇形面积S=π(R^2-r^2)5.圆锥侧面积S=πrl

  第25章概率初步知识框图

  第26章二次函数

  知识框图

  定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  一般式:y=ax^2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。顶点式:y=a(x-h)^2+k

  交点式(与x轴):y=a(x-x1)(x-x2)

  重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b)/4a)当-b/2a=0时,P在y轴上;当Δ=b-4ac=0时,P在x轴上。3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要异号

  事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)6.抛物线与x轴交点个数

  Δ=b-4ac>0时,抛物线与x轴有2个交点。Δ=b-4ac=0时,抛物线与x轴有1个交点。_______

  Δ=b-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  当a>0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b/4a}相反不变

  当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax+c(a≠0)解析式:

  第27章相似知识框图

  相似三角形的'认识

  对应角相等,对应边成比例的两个三角形叫做相似三角形。(similartriangles)。互为相似形的三角形叫做相似三角形

  相似三角形的判定方法

  根据相似图形的特征来判断。(对应边成比例,对应角相等)

  1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;

  (这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明)

  2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;

  直角三角形相似判定定理

  1.斜边与一条直角边对应成比例的两直角三角形相似。

  2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。射影定理

  三角形相似的判定定理推论

  推论一:顶角或底角相等的那个的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。

  推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

  推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

  推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

  相似三角形的性质

  1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

  2.相似三角形周长的比等于相似比。3.相似三角形面积的比等于相似比的平方。

  相似三角形的特例

  能够完全重合的两个三角形叫做全等三角形。(congruenttriangles)全等三角形是相似三角形的特例。全等三角形的特征:1.形状完全相同,相似比是k=1。

  全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。

  因此,相似三角形包括全等三角形。全等三角形的定义

  能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

  由此,可以得出:全等三角形的对应边相等,对应角相等。

  (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;三角形全等的判定公理及推论

  1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。

  2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。由3可推到

  4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)

  5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)

  所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。

  注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。A是英文角的缩写(angle),S是英文边的缩写(side)。全等三角形的性质

  1、全等三角形的对应角相等、对应边相等。2、全等三角形的对应边上的高对应相等。3、全等三角形的对应角平分线相等。4、全等三角形的对应中线相等。5、全等三角形面积相等。6、全等三角形周长相等。

  7、三边对应相等的两个三角形全等。(SSS)

  8、两边和它们的夹角对应相等的两个三角形全等。(SAS)9、两角和它们的夹边对应相等的两个三角形全等。(ASA)

  10、两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。(HL)全等三角形的运用

  1、性质中三角形全等是条件,结论是对应角、对应边相等。而全等的判定却刚好相反。2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。

  第28章锐角三角函数

  知识框图

  第29章投影与视图知识框图

  代数重点难点总结

  方程(组)

  一、基本概念

  1.方程、方程的解(根)、方程组的解、解方程(组)二、一元二次方程1.定义及一般形式:

  2.解法:⑴直接开平方法(注意特征)⑵配方法(注意步骤推倒求根公式)⑶公式法:⑷因式分解法(特征:左边=0)3.根的判别式:b24ac

  bc4.根与系数的关系(韦达定理):x1+x2=,x1x2=

  aa逆定理:若,则以x1,x2为根的一元二次方程是:a(x-x1)(x-x2)=0。5.常用等式:

  三、可化为一元二次方程的方程1.分式方程⑴定义

  ⑵基本思想:去分母

  ⑶基本解法:①去分母法②换元法(如,)⑷验根及方法2.无理方程⑴定义

  ⑵基本思想:分母有理化

  ⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法

  3.简单的二元二次方程组

  由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。四、列方程解应用题一概述

  列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

  ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

  ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

  ⑶用含未知数的代数式表示相关的量。

  ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。⑸解方程及检验。⑹答案。

  综上所述,列方程解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

  函数及其图象

  ★重难点★二次函数的图象和性质。一、平面直角坐标系

  1.各象限内点的坐标的特点2.坐标轴上点的坐标的特点

  3.关于坐标轴、原点对称的点的坐标的特点4.坐标平面内点与有序实数对的对应关系二、函数

  1.表示方法:⑴解析法;⑵列表法;⑶图象法。

  2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有意义。

  3.画函数图象:⑴列表;⑵描点;⑶连线。三、二次函数(定义→图象→性质)⑴定义:

  ⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。用配方法变为,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a0时,在对称轴左侧,右侧;a

  四边形

  ★重难点★相交线与平行线、三角形、四边形的有关概念、判定、性质。分类表:

  1.一般性质(角)⑴内角和:360°

  ⑵顺次连结各边中点得平行四边形。

  推论1:顺次连结对角线相等的四边形各边中点得菱形。

  推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。⑶外角和:360°2.特殊四边形

  ⑴研究它们的一般方法:

  ⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定⑶判定步骤:四边形→平行四边形→矩形→正方形┗→菱形↑

  ⑷对角线的纽带作用:3.对称图形

  ⑴轴对称(定义及性质);⑵中心对称(定义及性质)4.有关定理:①平行线等分线段定理及其推论1、2②三角形、梯形的中位线定理

  ③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

  5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。6.作图:任意等分线段。

  第十章圆

  ★重难点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。一、圆的基本性质1.圆的定义

  2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。3.“三点定圆”定理4.垂径定理及其推论

  5.“等对等”定理及其推论

  5.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系

  1.三种位置及判定与性质:相离、相切、相交2.切线的性质(重点)

  3.切线的判定定理(重点)。圆的切线的判定有⑴⑵

  4.切线长定理

  三、圆换圆的位置关系

  1.五种位置关系及判定与性质:(重点:相切)外离、外切、相交、内切、内含

  2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理

  五、与和正多边形

  1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:

  内角的一半:(解Rt△OAM可求出相关元素等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式

  5.弓形面积的计算方法

  6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图

  1.作三角形的外接圆、内切圆2.平分已知弧

  3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线1.作半径

  2.见弦往往作弦心距

  3.见直径往往作直径上的圆周角4.切点圆心莫忘连

  5.两圆相切公切线(连心线)6.两圆相交公共弦

  初三数学知识点总结9

  全套教科书包含了课程标准(实验稿)规定的“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容,在体系结构的设计上力求反映这些内容之间的联系与综合,使它们形成一个有机的整体。

  九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。本册书内容分析如下:

  第21章二次根式

  学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。“二次根式”一章就来认识这种式子,探索它的性质,掌握它的运算。

  在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:

  注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。“二次根式的乘除”一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到

  并运用它们进行二次根式的化简。

  “二次根式的加减”一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。

  第22章一元二次方程

  学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程——一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

  本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,

  “22.2降次——解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。

  (1)在介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。

  (2)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。

  (3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

  “22.3实际问题与一元二次方程”一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

  第23章旋转

  学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。“旋转”一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。

  “23.1旋转”一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。

  “23.2中心对称”一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的.方法。

  “23.3课题学习图案设计”一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。

  第24章圆

  圆是一种常见的图形。在“圆”这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。

  “24.1圆”一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。

  “24.2与圆有关的位置关系”一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明“在同一直线上的三点不能作圆”引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。最后介绍圆和圆的位置关系。

  “24.3正多边形和圆”一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。

  “24.4弧长和扇形面积”一节首先介绍弧长公式。然后介绍扇形及其面积公式。最后介绍圆锥的侧面积公式。

  第25章概率初步

  将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了“概率”一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。

  “25.1概率”一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。

  “25.2用列举法求概率”一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。

  “25.3利用频率估计概率”一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。

  “25.4课题学习键盘上字母的排列规律”一节让学生通过这一课题的研究体会概率的广泛应用。

  初三数学知识点总结10

  1、圆、圆心、半径、直径、圆弧、弦、半圆的定义

  2、垂直于弦的直径

  圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;

  垂直于弦的直径平分弦,并且平方弦所对的两条弧;

  平分弦的直径垂直弦,并且平分弦所对的两条弧。

  3、弧、弦、圆心角

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

  4、圆周角

  在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;

  半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。

  5、点和圆的位置关系

  点在圆外

  点在圆上d=r

  点在圆内d

  定理:不在同一条直线上的三个点确定一个圆。

  三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。

  6、直线和圆的位置关系

  相交d

  相切d=r

  相离d>r

  切线的性质定理:圆的切线垂直于过切点的半径;

  切线的判定定理:经过圆的`外端并且垂直于这条半径的直线是圆的切线;

  切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

  三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。

  7、圆和圆的位置关系

  外离d>R+r

  外切d=R+r

  相交R―r

  内切d=R―r

  内含d

  8、正多边形和圆

  正多边形的中心:外接圆的圆心

  正多边形的半径:外接圆的半径

  正多边形的中心角:没边所对的圆心角

  正多边形的边心距:中心到一边的距离

  9、弧长和扇形面积

  弧长

  扇形面积:xx

  10、圆锥的侧面积和全面积

  侧面积:xx

  全面积:xx

  11、(附加)相交弦定理、切割线定理

  第五章概率初步

  1、概率意义:在大量重复试验中,事件A发生的频率稳定在某个常数p附近,则常数p叫做事件A的概率。

  2、用列举法求概率

  一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=

  3、用频率去估计概率

  初三数学知识点总结11

  三角形的外心定义:

  外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。

  外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。

  三角形的外心的性质:

  1、三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;

  2、三角形的外接圆有且只有一个,即对于给定的三角形,其外心是的,但一个圆的内接三角形却有无数个,这些三角形的`外心重合;

  3、锐角三角形的外心在三角形内;

  钝角三角形的外心在三角形外;

  直角三角形的外心与斜边的中点重合。

  在△ABC中

  4、OA=OB=OC=R

  5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

  6、S△ABC=abc/4R

  初三数学知识点总结12

  不等式的概念

  1、不等式:用不等号表示不等关系的式子,叫做不等式。

  2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

  3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

  4、求不等式的解集的过程,叫做解不等式。

  5、用数轴表示不等式的方法。

  不等式基本性质

  1、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。

  2、不等式两边都乘以或除以同一个正数,不等号的方向不变。

  3、不等式两边都乘以或除以同一个负数,不等号的`方向改变。

  4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。

  一元一次不等式

  1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

  2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1。

  一元一次不等式组

  1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

  2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

  3、求不等式组的解集的过程,叫做解不等式组。

  4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

  5、一元一次不等式组的解法

  1分别求出不等式组中各个不等式的解集。

  2利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

  6、不等式与不等式组

  不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

  7、不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  初三数学知识点总结13

  1、图形的相似

  相似多边形的对应边的比值相等,对应角相等;

  两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;

  相似比:相似多边形对应边的`比值。

  2、相似三角形

  判定:

  平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;

  如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

  如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;

  如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

  3相似三角形的周长和面积

  相似三角形(多边形)的周长的比等于相似比;

  相似三角形(多边形)的面积的比等于相似比的平方。

  4位似

  位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。

  初三数学知识点总结14

  1、概念:

  把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

  旋转三要素:旋转中心、旋转方面、旋转角。

  2、旋转的性质:

  (1)旋转前后的两个图形是全等形;

  (2)两个对应点到旋转中心的.距离相等。

  (3)两个对应点与旋转中心的连线段的夹角等于旋转角。

  3、中心对称:

  把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

  这两个图形中的对应点叫做关于中心的对称点。

  4、中心对称的性质:

  (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

  (2)关于中心对称的两个图形是全等图形。

  5、中心对称图形:

  把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

  6、坐标系中的中心对称

  两个点关于原点对称时,它们的坐标符号相反,

  即点P(x,y)关于原点O的对称点P(―x,―y)。

  初三数学知识点总结15

  第1章 二次根式

  学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式 一章就来认识这种式子,探索它的性质,掌握它的运算。

  在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:

  注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到

  并运用它们进行二次根式的化简。

  二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。

  第2章 一元二次方程

  学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

  本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的`方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,

  22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。

  (1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。

  (2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。

  (3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

  22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

  初三数学知识点总结16

  第21章二次根式

  1、二次根式:一般地,式子叫做二次根式。

  注意:

  (1)若这个条件不成立,则不是二次根式;

  (2)是一个重要的非负数,即; ≥0。

  2、重要公式:

  3、积的算术平方根:

  积的算术平方根等于积中各因式的算术平方根的积;

  4、二次根式的乘法法则:。

  5、二次根式比较大小的方法:

  (1)利用近似值比大小;

  (2)把二次根式的系数移入二次根号内,然后比大小;

  (3)分别平方,然后比大小。

  6、商的算术平方根:,

  商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

  7、二次根式的除法法则:

  分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

  8、最简二次根式:

  (1)满足下列两个条件的二次根式,叫做最简二次根式,

  ①被开方数的因数是整数,因式是整式,

  ②被开方数中不含能开的尽的因数或因式;

  (2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;

  (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;

  (4)二次根式计算的最后结果必须化为最简二次根式。

  9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

  10、二次根式的混合运算:

  (1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;

  (2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。

  第22章一元二次方程

  1、一元二次方程的一般形式:

  a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

  2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

  3。一元二次方程根的判别式:当ax2+bx+c=0

  (a≠0)时,Δ=b2—4ac叫一元二次方程根的.判别式。请注意以下等价命题:

  Δ>0 <=>有两个不等的实根;

  Δ=0 <=>有两个相等的实根;Δ<0 <=>无实根;

  4。平均增长率问题————————应用题的类型题之一(设增长率为x):

  (1)第一年为a ,第二年为a(1+x) ,第三年为a(1+x)2。

  (2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和。

  第23章旋转

  1、概念:

  把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

  旋转三要素:旋转中心、旋转方面、旋转角

  2、旋转的性质:

  (1)旋转前后的两个图形是全等形;

  (2)两个对应点到旋转中心的距离相等

  (3)两个对应点与旋转中心的连线段的夹角等于旋转角

  3、中心对称:

  把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

  这两个图形中的对应点叫做关于中心的对称点。

  4、中心对称的性质:

  (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

  (2)关于中心对称的两个图形是全等图形。

  5、中心对称图形:

  把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

【初三数学知识点总结】相关文章:

初三的数学知识点总结06-16

初三数学中考知识点总结09-21

初三数学圆的知识点总结12-06

初三数学知识点总结05-16

初三数学知识点的归纳总结03-21

初三数学知识点总结大全05-29

关于初三数学知识点总结12-01

初三数学上册知识点总结08-07

初三数学上册的知识点总结12-20

有关初三数学知识点总结06-19