小学数学知识点总结汇编15篇
总结是对取得的成绩、存在的问题及得到的经验和教训等方面情况进行评价与描述的一种书面材料,它可以使我们更有效率,不如我们来制定一份总结吧。那么总结有什么格式呢?以下是小编为大家整理的小学数学知识点总结,欢迎大家分享。
小学数学知识点总结1
购物
【知识框架】
购物
1、买文具---(小面额的人民币)
2、买衣服---(大面额的人民币)
3、小小商店---(进行有关钱款的简单计算)
【知识点】
买文具(小面额的人民币)
1、认识各种小面额的人民币。
2、体会小面额人民币之间的换算关系。
3、从实际问题中理解“付出的钱、应付的钱、应找回的钱”三者之间的关系。
4、在购物情景中进行有关钱款的简单计算。
买衣服(大面额的人民币)
1、让学生在活动中认识大面额的人民币,能从相同点和不同点上辨认。
2、会计算大面额人民币之间的换算。
3、在购物活动中体会大面额人民币的作用,运用人民币的兑换知识,初步掌握付钱的方法。
小小商店(进行有关钱款的简单计算)
1.在购物情景中会进行有关钱款的简单计算。
2.通过购物中的活动,了解付费的方式是多样化的。
3.通过购物的活动,巩固复习100以内的加减法计算。
4.购物中能解决一些简单的实际问题。
小学数学知识点总结2
一、认识数
(一)、有趣的“0”“一年级0”可以表示没有,“0”可以参加计算,“0”在数中起到占位作用,“0”可以表示起点,表示0度。
(二)、基数与序数表示物体的多少时,用的是基数;表示物体排列的次序时,用的是序数。基数与序数不同,基数表示物体的多少,序数表示物体的排列次序。
二、数一数
(一)、数简单图形数零乱放置的物体或数某一类图形的个数时,应先将所有物体依次标上序号,可以按照序号,顺序观察,数准指定的图形。注意对于同一个物体,从不同的角度去观察,观察的结果也会不同。因此在数简单图形时,要善于从不同的角度观察问题、分析问题。
(二)、数复杂图形数复杂图形时可以按大小分类来数。
(三)、数数按条件的要求去数。
三、比较数列
比一比当比较的2个对象整齐的排列时,很容易采用连线比的方法比较出谁多谁少。如果比较的2个对象是杂乱排列的,可以通过数数目的方法进行比较。也可以采用分段比的方法。
四、动手做
(一)、摆一摆要善于寻找不同的方法。
(二)、移一移
五、找规律
(一)、图形变化的规律观察图形的变化,可以从图形的形状、位置、方向、数量、大小、颜色等方面入手,从中寻找规律。
(二)、数列的规律数列就是按一定规律排成的一列数。怎样寻找已知数列的规律,并按规律填出指定的某个数是解题的关键。
(三)、数表的规律把一些数按照一定的规律,填在一个图形固定的位置上,再把按照这一规律填出的图形排列起来。从给出的图形中寻找规律,按照规律填图是解题的关键。
六、填一填
(一)、填数字给出的算式是一组,不同算式中相同图形中所填的数字是相同的。在做这些题时,不要为只填出一个答案而满足,应找出所有的答案。如果不必要一一列出时,应给以说明,这才是完整、正确的解答。
(二)、填符号比较2个数的大小,首先要比较2个数的位数,位数多的数大;其次,当2个数的位数相同时,从高位比起,相同数位上的数大的那个数就大。当2个数各个相同数位上的数都分别相同时,这2个数相等。
七、比较2个算式的大小的方法是:
(1)同一个数分别加上(或减去)1个相等的数,所得的结果相等;
(2)同一个数分别加上2个不同的数,所加的哪个数大,那个算式的结果就大;
(3)同一个数分别减去2个不同的数,所减的哪个数小,那个算式的结果就大;
(4)2个不同的数减去同一个数,哪个被减数大,那个算式的结果就大。七、说道理做数学题,每一步都要有理由,要把道理想清楚,说出来。
八、总结
应用题一道简单的应用题,是由已知条件和所求问题组成的。一般先说题意,再列算式。
小学数学知识点总结3
1、对长方形、正方形、三角形和圆的认识,能分辨出四种基本的图形。
2、学会观察,能在生活中找出基本的形状,会举例。
3、能区分出面和体的关系,体会“面在体上”。
4、能找出一组图形的规律。
5、能在复杂的图案中找出基本的图形。
小学数学知识点总结4
(一)口算除法
1、整十数除整十数或几百几十的数的口算方法。
(1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60
(2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。
2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。
(二)笔算除法
1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的数必须比除数小。
2、除数不是整十数的两位数的除法的试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的乘法直接确定商。
3、商一位数:
(1)两位数除以整十数,如:62÷30;
(2)三位数除以整十数,如:364÷70
(3)两位数除以两位数,如:90÷29(把29看做30来试商)
(4)三位数除以两位数,如:324÷81(把81看做80来试商)
(5)三位数除以两位数,如:104÷26(把26看做25来试商)
(6)同头无除商八、九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)
(7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)
4、商两位数:(三位数除以两位数)
(1)前两位有余数,如:576÷18
(2)前两位没有余数,如:930÷31
5、判断商的位数的方法:
被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。
(三)商的变化规律
1、商变化:
(1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。
(2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。
2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。
(四)简便计算:同时去掉同样多的0,如9100÷700=91÷7=13
小学数学知识点总结5
第一单元 数据整理与收集
1.学会用“正”字记录数据。
2.会数“正”,知道一个“正”字代表数量5。
3.根据统计表,会解决问题。
4.数据收集---整理---分析表格。
第二单元 表内除法(一)
1.平均分的含义:把一些物品分成几份,每份分得同样的多,叫做平均分。
除法就是用来解决平均分问题的。
2.平均分里有两种情况:
(1)把一些东西平均分成几份,求每份是多少;用除法计算,
总数÷份数=每份数
例:24本练习本,平均分给6人,每人分多少本?
列式:24÷6=4
(2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数
例:24本练习本,每人4本,能分给多少人?
列式:24÷4=6
3、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。
除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。
例如:12÷4=3读作(12除以4等于3)
例:42÷7=6 42是(被除数),7是(除数),6是(商;这个算式读作(42除以7等于6 )。
4、除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。
被除数÷除数=商。变式:被除数÷商=除数(如何求被除数,想:除数×商=被除数。)
5.用2~6的乘法口诀求商
1、求商的方法:
(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口诀求商。
2、用乘法口诀求商时,想除数和几相乘的被除数。
一句口诀可以写四个算式。(乘数相同的除外)。
例:用“三八二十四”这句口诀
A、24÷3=8 B、3×8=24
C、24÷3=8 D、24÷8=3
计算方法:12÷4=( )时,想:( )四十二,所以商是( ).
6.解决问题
1、解决有关平均分问题的方法:
总数÷每份数=份数、总数÷份数=每份数、
因数×因数=积、一个因数=积÷另一个因数
2、用乘法和除法两步计算解决实际问题的方法:
(1)所求问题要求求出总数,用乘法计算;
(2)所求问题要求求出份数或每份数,用除法计算。
(3)8个果冻,每2个一份,能分成几份?求8里有几个2,用除法计算。
(4)24里面有( )个4,,20里面有( )个5。(用除法计算。)
(5)最小公倍数问题:一堆水果,3个人正好分完,4个人也正好分完,问这堆水果最少有几个?
第三单元 图形的运动
1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
成轴对称图形的汉字:
一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,春,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。
2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。
(记住:平移只能上下移动或左右移动)
3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。(例如:旋转木马、转动的风扇、转动的车轮等)
(一)填空
1、汽车在笔直的公路上行驶,车身的运动是( )现象
2、教室门的打开和关闭,门的运动是( )现象。
A.平移 B旋转 C平移和旋转
3、下面( )的运动是平移。
A、旋转的呼啦圈 B、电风扇扇叶 C、拨算珠
第四单元 表内除法(二)
这单元主要是考口算题。有以下几种形式:
1、用7、8、9的乘法口诀求商
求商方法:想“除数×( )=被除数”,再根据乘法口诀计算得商。
例.直接口算:28÷4 8÷8
2、解决问题
求一个数里有几个几,和把一个数平均分成几份,求每份是多少,都用除法计算。
例.填空:45÷9=5表示把( )平均分成( )份,每份是( );还表示( )里有( )个( );
第五单元 混合运算
一、混合计算
混合运算,先乘除,后加减,有括号的要先算括号里面的。
只有加、减法或只有乘、除法,都要从左到右按顺序计算。
二、解决两步计算的实际问题
1、想好先解决什么问题,再解决什么问题。
2、可以画图帮助分析。
3、可以分布计算,也可以列综合算式。
请画出先算哪一步,再算哪一步(并标上1和2)
1、同级运算的类型:
例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4
2、不同级运算的类型:
例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8
3、带小括号运算的类型:方法:算式里有括号的,要先算括号里面的。
例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8
4.把两个算式合并成一个综合算式。(重点)。
弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。当需要替换的是第二个数,必要时还需要加上小括号。
例:15+9=24 24÷3=8 (强调括号不能忘)_____________________________
5.解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)
例:妈妈买回3捆铅笔,每捆8支,送给妹妹12支后,还剩多少支?
先算____________________再算____________________
例:学校买来80本科技书,分给六年级35本,剩下的分给其它5个年级,平均每个年级分到多少本?
6.练习十三 第4题 (重点)
1.我们一共要烤90个面包,每次能烤9个,已经烤了36个,剩下的还要烤几次?
2.我们家原来有25只兔子,又买了15只,一共有8个笼子,平均每个笼子放几只?
3.小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?
4.工人叔叔要挖总长60米的水沟,已经挖好了15米,剩下的要用5天挖完,平均每天挖多少米?
第六单元 有余数的除法
有余数的除法
1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。
2、余数与除数的关系:在有余数的除法中,余数必须比除数小。
最大的余数小于除数1,最小的余数是1。
3、笔算除法的计算方法:
(1)先写除号“厂”
(2)被除数写在除号里,除数写在除号的左侧。
(3)试商,商写在被除数上面,并要对着被除数的个位。
(4)把商与除数的乘积写在被除数的下面,相同数位要对齐。
(5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。
4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
(1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。
(2)乘:把除数和商相乘,将得数写在被除数下面。
(3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。
(4)比:将余数与除数比一比,余数必须必除数小。
5、解决问题
根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。
(1)余数比除数小。
例:43÷7=()…( )余数可能是( )或者余数最大是( )
(2)至少问题(进一法):商+1
例:有27箱菠萝,王叔叔每次最多能运8箱。至少要运多少次才能运完这些菠萝。
(3)最多问题(去尾法)
例:小丽有10元钱,买3元一个的面包,最多能买几个?
课例:
1. 22个学生去划船,每条船最多坐4人,他们至少要租多少条船?
22÷4=5(条)……2(人)
答:他们至少要租6条船。
第七单元 万以内数的认识
一、1000以内数的认识
1、10个一百就是一千。
2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20xx读作二千零三,2300读作二千三百】
3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。 【例如:三千五百写作3500,三千零六十九写作3069】
4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。例:2369由( )个千、( )个百、( )个十和( )个一组成的。
二、10000以内数的认识
1、10个一千是一万。
2、万以内数的读法和写法与1000以内的数读法和写法相同。
3、最小两位数是10,最大的两位数是99;最小三位数是100,最大的三位数是999;最小四位数是1000,最大的四位数是9999;最小的五位数是10000,最大的五位数是99999。
三、整百、整千数加减法
1、整百、整千加减法的计算方法。
(1)把整百、整千数看成几个百,几个千,然后相加减。
(2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。
2、估算
把数看做它的近似数再计算。
四、10000以内数的大小比较的方法:
(1)位数多的数就大,例如453 < 1000
(2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;例如 357 < 978
(3)如果最高位上的数字相同,就比较下一位上的数,依次类推。246 > 219
补充:
1、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。
2.在数位顺序表中,从右边起,第一位是(个位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(万位)。
3、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。
例:2647=( )+( )+( )+( )
4、用估算策略解决问题。
96页 例13(估大)
练习19 第8题(估小)
第八单元 克、千克
1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。
2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。
3、一个两分的硬币约是1克。两袋500克的盐约是1千克。
4、1千克=1000克 1kg=1000g.进率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、
1斤=10两、1两=50克)
5、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。
估计物品有多重,要结合物品的大小、质地等因素。
小学数学知识点总结6
人教版小学数学知识点大全基本概念
第一章数和数的运算一、概念(一)整数
1、整数的意义
自然数和0都是整数。
2、自然数
我们在数物体的时候,用来表示物体个数的1,2,3??叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3、计数单位
一(个)、十、百、千、万、十万、百万、千万、亿??都是计数单位。其中“一”是计数的基本单位。
10个1是10,10个10是100??每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4、数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
?准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。
?近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。?四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。
8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。以此类推。(二)小数
1、小数的意义
把整数1平均分成10份、100份、1000份??得到的十分之几、百分之几、千分之几??可以用小数表示。如1/10记作0.1,7/100记作0.07。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)??小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.36是两位小数,3.066是三位小数
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
3、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
4、比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大??
5、小数的分类
?纯小数:整数部分是零的小数,叫做纯小数。例如:0.25 、 0.368都是纯小数。
?带小数:整数部分不是零的小数,叫做带小数。例如:3.25 、 5.26都是带小数。
?有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7 、 25.3 、 0.23都是有限小数。
?无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33 ?? 3.1415926 ??
?无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:∏
?循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555 ?? 0.0333 ?? 12.109109 ??
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99 ??的循环节是“ 9 ”,0.5454 ??的循环节是“ 54 ” 。
?纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.111 ?? 0.5656 ??
?混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 ?? 0.03333 ??
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。(三)分数
1、分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
4、比较分数的大小:
?分母相同的分数,分子大的那个分数就大。
?分子相同的分数,分母小的那个分数就大。
?分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
?如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
5、分数的分类
按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数
?真分数:分子比分母小的分数叫做真分数。真分数小于1。
?假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
?带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
6、分数和除法的关系及分数的基本性质
?除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。?由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
?分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
7、约分和通分
?分子、分母是互质数的分数,叫做最简分数。
?把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
?约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
?把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
?通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
8、倒数
?乘积是1的两个数互为倒数。
?求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
? 1的倒数是1,0没有倒数(四)百分数
1、百分数的意义
表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。
2、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
4、百分数与折数、成数的互化:
例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐闯砂俜质褪?0%,则六成五就是65%。
5、纳税和利息:
税率:应纳税额与各种收入的比率。
利率:利息与本金的百分率。由银行规定按年或按月计算。
利息的计算公式:利息=本金×利率×时间
6、百分数与分数的区别主要有以下三点:
?意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说1米是5米的20%,不可以说“一段绳子长为20%米。”因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数不仅可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕米等。
?应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。
?书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
7、数的互化
?小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
?分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
?一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
?小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
?百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
?分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
?百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。(五)数的整除
1、整除的意义
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
除尽的意义甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。
2、约数和倍数
?如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就(来自: :小学数学总结)叫做a的约数(或a的因数)。倍数和约数是相互依存的。
?一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
?一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
3、奇数和偶数
?自然数按能否被2整除的特征可分为奇数和偶数。
①能被2整除的数叫做偶数。0也是偶数。
②不能被2整除的数叫做奇数。
?奇数和偶数的运算性质:
①相邻两个自然数之和是奇数,之积是偶数。
②奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,
奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
4、整除的特征
?个位上是0、2、4、6、8的数,都能被2整除。
?个位上是0或5的数,都能被5整除。
?一个数的各位上的数的和能被3整除,这个数就能被3整除。
?一个数各位数上的和能被9整除,这个数就能被9整除。
?能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
?一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
?一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
5、质数和合数
?一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
?一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。
? 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
6、分解质因数
?质因数
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。
?分解质因数
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
?公因(约)数
几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。
公因数只有1的两个数,叫做互质数。成互质关系的两个数,有下列几种情况:①和任何自然数互质;
②相邻的两个自然数互质;
③当合数不是质数的倍数时,这个合数和这个质数互质;
④两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
?公倍数
①几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。
求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。
②几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。二、性质和规律(一)商不变的规律
商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。(二)小数的性质
小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。(三)小数点位置的移动引起小数大小的变化
1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍??
2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍??
3、小数点向左移或者向右移位数不够时,要用“0"补足位。(四)分数的基本性质
分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。(五)分数与除法的关系
1、被除数÷除数=被除数/除数
2、因为零不能作除数,所以分数的分母不能为零。
3、被除数相当于分子,除数相当于分母。三、运算法则(一)整数四则运算的法则
1、整数加法:
把两个数合并成一个数的运算叫做加法。
在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
加数+加数=和一个加数=和-另一个加数
2、整数减法:
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
加法和减法互为逆运算。
3、整数乘法:
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。
一个因数×一个因数=积一个因数=积÷另一个因数
4、整数除法:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
被除数÷除数=商除数=被除数÷商被除数=商×除数
5、乘方:
求几个相同因数的积的运算叫做乘方。例如3 × 3 =32(二)小数四则运算
1、小数加法:
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
小学数学知识点总结7
一生活中的数
(一)本单元知识网络:
(二)各课知识点:
可爱的校园(数数)
知识点:
1、按一定顺序手口一致地数出每种物体的个数。
2、能用1-10各数正确地表述物体的数量。
快乐的家园(10以内数的认识)
知识点:
1、能形象理解数“1”既可以表示单个物体,也可以表示一个集合。
2、在数数过程中认识1-10数的符号表示方法。
3、理解1~10各数除了表示几个,还可以表示第几个,从而认识基数与序数的联系与区别:基数表示数量的多少,序数表示数量的顺序。
玩具(1~5的认识与书写)
知识点:
1、能正确数出5以内物体的个数。
2、会正确书写1-5的数字。
小猫钓鱼(0的认识)
知识点:
1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。
2、学会读、写“0”。
文具(6~10的认识与书写)
知识点:
1、能正确数出数量是6-10的物体的个数。
2、会读写6—10的数字。
小学数学知识点总结8
角:
(1)角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
(2)角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。
所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边
角的符号:∠
角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
在动态定义中,取决于旋转的方向与角度。
角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。
以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
(1)锐角:大于0°,小于90°的角叫做锐角。
(2)直角:等于90°的角叫做直角。
(3)钝角:大于90°而小于180°的角叫做钝角。
乘法:
乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
乘法算式中各数的名称:
“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)
平行:
在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。
垂直:
两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
平行四边形:
在同一平面内有两组对边分别平行的四边形叫做平行四边形。
梯形:
梯形是指一组对边平行而另一组对边不平行的四边形。
平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。
除法:
除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
小学数学知识点总结9
1.奇偶性
问题
奇+奇=偶奇×奇=奇
奇+偶=奇奇×偶=偶
偶+偶=偶偶×偶=偶
2.位值原则
形如:abc=100a+10b+c
3.数的整除特征:
整除数特征
2末尾是0、2、4、6、8
3各数位上数字的和是3的倍数
5末尾是0或5
9各数位上数字的和是9的倍数
11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数
4和25末两位数是4(或25)的倍数
8和125末三位数是8(或125)的倍数
7、11、13末三位数与前几位数的差是7(或11或13)的倍数
4.整除性质
①如果c|a、c|b,那么c|(ab)。
②如果bc|a,那么b|a,c|a。
③如果b|a,c|a,且(b,c)=1,那么bc|a。
④如果c|b,b|a,那么c|a.
⑤a个连续自然数中必恰有一个数能被a整除。
5.带余除法
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r
当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r
小学生奥数知识点
数列求和:
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;
项数:等差数列的所有数的个数,一般用n表示;
公差:数列中任意相邻两个数的差,一般用d表示;
通项:表示数列中每一个数的公式,一般用an表示;
数列的和:这一数列全部数字的和,一般用Sn表示。
基本思路:等差数列中涉及五个量:a1,an,d,n,sn,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an=a1+(n-1)d;
通项=首项+(项数一1)×公差;
数列和公式:sn,=(a1+an)×n÷2;
数列和=(首项+末项)×项数÷2;
项数公式:n=(an+a1)÷d+1;
项数=(末项-首项)÷公差+1;
公差公式:d=(an-a1))÷(n-1);
公差=(末项-首项)÷(项数-1);
关键问题:确定已知量和未知量,确定使用的公式
小学奥数几何知识点整理
鸟头定理即共角定理。
燕尾定理即共边定理的一种。
共角定理:
若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。
共边定理:
有一条公共边的三角形叫做共边三角形。
共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM
这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。
为了避开相似,我们用相应的底,高的比来推出三角形面积的比。
例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。
很显然,三角形ABD和ACD面积之比是1:2
因为共边,所以两个对应高之比是1:2
而四个小三角形也会存在类似关系
三角形ABE和三角形ACE的面积比是1:2
三角形BED和三角形CED的面积比也是1:2
所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。
以上是根据共边后,高之比等于三角形面积之比证明所得。
必须要强记,只要理解,到时候如何变形,你都能会做。至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。
小学数学知识点总结10
认识钟表:会认读整时、整时过一点或差一点到整时这三种时间。
首先认识时针、分针
时针:粗短;
分针:细长
认识整时技巧:分针指向12,时针指向几就是几时整。
分针指着12,时针指着1就是1时。1:00
分针指着12,时针指着2就是2时。2:00
分针指着12,时针指着6就是6时。6:00
分针指着12,时针指着8就是8时。8:00
分针指着12,时针指着12就是12时。12:00
注意:分针指在12附近,时针马上指着准确的数字,此时是“大约”几时整。
在练习拨针时,时针和分针一定要拨到准确的位置上。
时针和分针并没有正对着钟面上的数,而是稍微偏了一点,像这种差一点不到几时,或是几时刚刚过一点,我们就不能说正好是几时,而应该说“大约是几时”。
注意:“大约是几时”拨针时应该掌握在前后5分以内。
小学数学知识点总结11
1、用竖式计算两位数加法时:①相同数位对齐,加号写在高位下行之前。
②用尺子画横线。
③从个位加起
④如果个位满10,向十位进1,写在个位、十位之间,
不进位不写1
用竖式计算两位数减法时:①相同数位对齐,减号写在高位下行之前。
②用尺子画横线。
③从个位减起
④如果个位不够减,从十位退1,到个位作10再减(借一要在头上写点),计算时十位要记得减去退掉的1。不借位不写点
⑤得数写在横式上
2、估算:把一个接近整十整百的数看作整十整百来计算。
方法:个位小于5的少看,个位等于或大于5的多看,看成最为接近的整十或整百数。“四舍五入”
如:49+42≈9028+45+24≈10098—17≈80
50 4030 50 20100 20更深一步的估计是能够估出比80大
注:当问题里出现“大约”两个字时,就需要估算。
3、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,用“比”字两边的较大数减去较小数。
4、多几、少几已知的问题。比谁少几,就用谁减去几;未知数比谁多几,就用谁加上几。
方法:①根据已知,判断出与要求的未知,谁多谁少②求多的用加法,求少的用减法
基数和序数的区别
一、意思不同
基数是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。序数是在基数的基础上再增加一层意思。
二、用处不同
基数可以比较大小,可以进行运算。
例如:
设|A|=a,|B|=β,定义a+β=|{(a,0):a∈A}∪{(b,1):b∈B}|。另,a与β的积规定为|AxB|,A×B为A与B的笛卡儿积。
序数,汉语表示序数的方法较多。通常是在整数前加“第”,如:第一,第二。也有单用基数的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。
三、写法
基数:1、2、3
序数:第1、第2、第3
数与计算知识点
1、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
3、分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4、分数乘整数:数形结合、转化化归
5、倒数:乘积是1的两个数叫做互为倒数。
小学数学知识点总结12
通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。
小小运动会
1、应用100以内的进位加法与退位减法的计算方法进行正确的计算。
2、经历与他人交流各自算法的'过程,体会算法多样化。
3、体会长方形、正方形、三角形和圆在生活中的普遍存在。
4、能利用图形设计美丽的图案。
小学数学知识点总结13
时分秒
1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是( 1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
8、公式。(每两个相邻的时间单位之间的进率是60)
1时=60分1分=60秒
半时=30分60分=1时
60秒=1分30分=半时
万以内的加法和减法
1、认识整千数(记忆:10个一千是一万)
2、读数和写数(读数时写汉字写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。
最大的三位数是位999,最小的三位数是100,最大的四位数是9999,最小的四位数是1000。最大的三位数比最小的四位数小1。
5、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。
6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
7、公式
和=加数+另一个加数
加数=和-另一个加数
减数=被减数-差
被减数=减数+差
差=被减数-减数
测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )
①进率是10:
1米=10分米, 1分米=10厘米,
1厘米=10毫米, 10分米=1米,
10厘米=1分米, 10毫米=1厘米,
②进率是100:
1米=100厘米, 1分米=100毫米,
100厘米=1米, 100毫米=1分米
③进率是1000:
1千米=1000米, 1公里==1000米,
1000米=1千米, 1000米=1公里
6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;
把千克换算成吨,是在数字的末尾去掉3个0。
7、相邻两个质量单位进率是1000。
1吨=1000千克1千克=1000克
1000千克= 1吨1000克=1千克
倍的认识
1、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数
2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍
多位数乘一位数
1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)
2、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
3、因数末尾有几个0,就在积的末尾添上几个0。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程
每节车厢的人数×车厢的数量=全车的人数
5、(关于“大约)应用题:
①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)
②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)
③条件和问题中都有“大约”,求近似数,用估算。→(≈)
四边形
1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:
①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式。
正方形的周长=边长×4
正方形的边长=周长÷4,
长方形的周长=(长+宽)×2
长方形的长=周长÷2-宽,
长方形的宽=周长÷2-长
分数的初步认识
1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
3、①分子相同,分母小的分数反而大,分母大的分数反而小。
②分母相同,分子大的分数就大,分子小的分数就小。
4、①相同分母的分数相加、减:分母不变,只和分子相加、减。
② 1与分数相减:1可以看作是与减数分母相同的,同分子分母的分数。
小学数学知识点总结14
一、学习目标:
1.知道生活中有比万大的数;认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位;
2使学生认识射线,直线,能识别射线、直线和线段三个概念之间的联系和区别;认识角和角的表示方法,知道角的各部分名称;
3,在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;
4.结合生活情境,通过自主探究活动,初步认识平行线、垂线;独立思考能力与合作精神得到和谐发展;
5.在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。
二、学习难点:
1.认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;
2.角的意义;射线、直线和线段三者之间的关系;
3.掌握整数乘法的口算方法;培养学生养成认真思考的良好学习习惯;
4.初步认识平行线与垂线;理解永不相交的含义;
5.掌握用整十数除商是一位数的口算方法;培养学生养成认真计算的良好学习习惯。
三、知识点概括总结:
1.亿以内的数的认识:
十万:10个一万;
一百万:10个十万;
一千万:10个一百万;
一亿:10个一千万。
2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。
通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。
3.数级分类:
(1)四位分级法:即以四位数为一个数级的分级方法。
我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。
(2)三位分级法:即以三位数为一个数级的分级方法。
这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。
4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。
从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。
这就说明计数单位和数位的概念是不同的。
5.数的产生:
阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。
阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。
小学数学知识点总结15
第一单元 小数乘法
1.小数乘整数:意义——求几个相同加数的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2.小数乘小数:意义——就是求这个数的几分之几是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
3.求近似数的方法一般有三种: ⑴四舍五入法;⑵进一法;⑶去尾法
4.计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
5.小数四则运算顺序跟整数是一样的。
6.运算定律和性质: 加法: 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法: 减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c 乘法: 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c 除法: 除法性质:a÷b÷c=a÷(b×c)
7.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
8.小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
9.除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
10.在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。五年级数学重要知识点
11.除法中的变化规律: ①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。 ②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。
12.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.
13.小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
14.从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
15.在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
16.a×a可以写作a?a或a2,读作a的平方。 2a表示a+a
17.方程:含有未知数的等式称为方程。 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。
18.解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
19.10个数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
20.所有的方程都是等式,但等式不一定都是等式。
21.公式:长方形:周长=(长+宽)×2 【长=周长÷2-宽; 宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a 平行四边形:面积=底×高 字母公式: S=ah 三角形:面积=底×高÷2【底=面积×2÷高; 高=面积×2÷底】 字母公式: S=ah÷2 梯形: 面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】
22.平行四边形面积公式推导:剪拼、平移 平行四边形可以转化成一个长方形; 长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积; 因为长方形面积=长×宽,所以平行四边形面积=底×高。
23.三角形面积公式推导:旋转 两个完全一样的三角形可以拼成一个平行四边形; 平行四边形的底相当于三角形的底; 平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍; 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
24.梯形面积公式推导:旋转 两个完全一样的梯形可以拼成一个平行四边形; 平行四边形的底相当于梯形的上下底之和; 平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍; 因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
25.等底等高的平行四边形面积相等;等底等高的三角形面积相等; 等底等高的平行四边形面积是三角形面积的2倍。
26.长方形框架拉成平行四边形,周长不变,面积变小。
27.组合图形:转化成已学的简单图形,通过加、减进行计算。
28.平均数=总数量÷总份数
29.中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
30.数不仅可以用来表示数量和顺序,还可以用来编码。
31.由6位组成: 前2位表示省(直辖市、自治区) 前3位表示邮区 前4位表示县(市) 最后2位表示投递局
32.身份证号码:18位 倒数第二位的数字用来表示性别,单数表示男,双数表示女。
【小学数学知识点总结】相关文章:
小学数学备考知识点总结11-18
小学数学知识点总结12-05
小学数学知识点总结10-27
北京小学数学知识点总结04-24
人教版小学数学知识点总结08-28
小学数学必备知识点总结整理03-01
小学数学知识点总结15篇04-02
中小学数学知识点总结11-04
小学生数学知识点总结06-08
小学数学知识点总结(15篇)11-10