三年级上册数学知识点总结

时间:2023-12-15 12:05:55 炜玲 知识点总结 我要投稿

三年级上册数学知识点总结大全

  在我们平凡无奇的学生时代,是不是经常追着老师要知识点?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。为了帮助大家更高效的学习,以下是小编为大家收集的三年级上册数学知识点总结大全,供大家参考借鉴,希望可以帮助到有需要的朋友。

三年级上册数学知识点总结大全

  三年级上册数学知识点总结1

  《四边形》

  1、知识点:认识四边形的特征,掌握长方形、正方形的特征

  ①能正确辨认四边形。

  ②掌握长方形、正方形的特征。

  注:应注重引导学生在长、正方形的对比中找出图形边和角的特征。

  2、知识点:在方格纸上画出长方形和正方形

  能在方格纸上画出长方形和正方形。

  3、知识点:初步认识平行四边形

  ①能正确辨认平行四边形。

  ②能感悟到平行四边形易变形的特性。

  ③能在方格纸上正确画出平行四边形。

  注:学生寻找平行四边形时,要注意与长方形、正方形的区别,逐步让学生在对比中感悟平行四边形的特征。

  4、知识点:周长的含义

  结合具体情境理解周长的含义。

  5、知识点:计算长方形和正方形的周长

  ①能正确计算长方形、正方形等平面图形的周长。

  ②能运用周长的知识解决实际问题。

  6、知识点:长度和周长的估计

  在估量物体长度的过程中,逐步建立空间观念,养成估计的意识和习惯。

  注:应注重引导学生说出估计相应长度的依据,逐步建立长度单位的表象。

  《测量》

  1、知识点:长度单位毫米、分米、千米及1毫米、1分米、1千米

  ①认识长度单位毫米、分米、千米,建立1毫米、1分米、1千米的长度观念。

  ②根据具体情境选择恰当的长度单位。

  2、知识点:单位间的进率

  ①知道1厘米=10毫米,1分米=10厘米,1米=10分米,1千米(公里)=1000米。

  ②会进行简单的单位换算。

  3、知识点:估计、测量物体的长度

  能估计一些物体的长度,会选择不同的方式准确测量给定物体的长度。

  4、知识点:质量单位吨及1吨

  ①认识质量单位“吨”,建立1吨的质量观念。

  ②能根据具体情境选择恰当的质量单位。

  5、知识点:1吨=1000千克

  知道1吨=1000千克,并会进行吨与千克的单位换算。

  三年级上册数学知识点总结2

  1、有4条直的边和4个角的封闭图形我们叫它四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的平行四边形。

  6、平行四边形的特点:

  ①对边相等、对角相等。

  ②平行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式:

  长方形的周长=(长+宽)×2

  变式:

  ①长方形的长=周长÷2—宽

  ②长方形的宽=周长÷2—长

  正方形的周长=边长×4

  变式:正方形的边长=周长÷4

  数学圆的周长知识点

  环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。多边形的周长的长度也相等于图形所有边的和,圆的周长=πd=2πr(d为直径,r为半径,π),扇形的周长=2R+nπR÷180?(n=圆心角角度)=2R+kR(k=弧度)。

  推导圆周长最简洁的办法是用积分。在平面直角坐标下圆的方程是这可以写成参数方程:于是圆周长就是结果自然就是(注:三角函数一般的定义是依赖于圆的周长或面积的,为了避免逻辑上的循环论证,可以把三角函数按收敛的幂级数或积分来定义而不依赖于几何,此时圆周率就不是由圆定义的常数,而是由三角函数周期性得到的常数)。如果不需要更多的理论讨论,上面的做法就足够了。

  小学数学简便计算知识点

  1、连加的简便计算:

  ①使用加法结合律(把和是整十、整百、整千的数结合在一起)

  ②个位:1与9,2与8,3与7,4与6,5与5,结合。

  ③十位:0与9,1与8,2与7,3与6,4与5,结合。

  2、连减的简便计算:

  ①连续减去几个数就等于减去这几个数的和。如:106—26—74=106—(26+74)

  ②减去几个数的和就等于连续减去这几个数。如:106—(26+74)=106—26—74

  3、加减混合的简便计算:

  第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)例如:123+38—23=123—23+38 146—78+54=146+54—78

  4、连乘的简便计算:

  使用乘法结合律:把常见的数结合在一起25与4;125与8;125与80等看见25就去找4,看见125就去找8;

  5、连除的简便计算:

  ①连续除以几个数就等于除以这几个数的积。

  ②除以几个数的积就等于连续除以这几个数。

  6、乘、除混合的简便计算:

  第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×13 7。乘法分配律的应用:

  ①类型一:(a+b)×c(a—b)×c= a×c+b×c = a×c—b×c

  ②类型二:a×c+b×c a×c—b×c=(a+b)×c =(a—b)×c

  ③类型三:a×99+a a×b—a= a×(99+1)= a×(b—1)

  ④类型四:a×99 a×102= a×(100—1)= a×(100+2)= a×100—a×1 = a×100+a×2

  三年级上册数学知识点总结3

  知识点:

  1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  3、①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、①相同分母的分数相加、减:分母不变,只和分子相加、减。

  ②1与分数相减:1可以看作是分子分母相同的分数。

  练习题:

  一、填空题。

  1、把一块月饼平均分成2份,每份是这块月饼的一半,也就是它的()分之(),写作(—)。

  2、把正方形纸平均分成4份,每份是这个正方形的()分之(),写作(—)。

  3、把1分米平均分成10份,每份是1分米的()分之(),写作(—)。3份是它的(—)。

  4、2/5是把一张纸平均分成()份,表示这样的()份。3/5是把一张纸平均分成()份,表示这样的()份。2/5和3/5都是把同样的一张纸平均分成了5份,这样的2份显然比3份(),所以2/5<3/5。同样道理,5/6比2/6()。

  5、4/5里有()个1/5,2/3里有()个1/3。

  6、7个1/10是(—),4个1/7是(—)。

  7、1/8是1个八分之一,2/8是2个八分之一,1/8+2/8也就是1个1/8加上2个1/8,一共是3个1/8,也就是(—)。

  8、一张纸平均分成8份,每份是它的()(),6份是()个()(),就是它的()分之(),写作()。

  9、58这个分数中,()是分子,()是分母,读作()。

  10、一本书有21页,平均每天看这本书的3页,占全书的()

  11、妈妈买了12个苹果,给哥哥7个,给妹妹5个。哥哥得这些苹果的()(),妹妹得这些苹果的()()。

  12、59是5个()()37里面有()个()1-()10=610

  8个19是()()1里面有()个1525+()<1

  二、解决问题

  1、东东看一本故事书,第一天看了全书的25,剩下的第二天看完,第二天看了这本书的几分之几?

  2、老师加工一批机器零件,第一天完成了任务的715,第二天完成了任务的315,两天共完成了这项任务的几分之几?

  3、一块蛋糕,小鑫吃掉了它的36,小淼吃掉了它的26,谁吃得多?一共吃掉了蛋糕的几分之几?

  4、修路队要修一条公路,已经修好了这条公路的712,还剩几分之几未修好?

  5、一张长方形的纸它的19涂红色,它的59蓝色,没涂色部分占这张纸的几分之几?

  三年级上册数学知识点总结4

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

  3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  4、在计算长度时,只有相同的长度单位才能相加减。

  小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

  5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

  ①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,

  10分米=1米,10厘米=1分米,10毫米=1厘米,

  ②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米

  ③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里

  6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;

  把千克换算成吨,是在数字的末尾去掉3个0。

  7、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克

  万以内的加法和减法

  1、认识整千数(记忆:10个一千是一万)

  2、读数和写数(读数时写汉字写数时写阿拉伯数字)

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续的两个0,都只读一个0。

  3、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。

  4、求一个数的近似数:

  记忆:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。

  三位数是位999,最小的三位数是100,四位数是9999,最小的四位数是1000。

  三位数比最小的四位数小1。

  5、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

  6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

  7、公式被减数=减数+差

  和=加数+另一个加数

  减数=被减数—差

  加数=和—另一个加数

  差=被减数—减数

  符号/是什么意思数学

  /在数学中是“除”的意思。例如:4/5我们可以说4除以5或者四分之五。数学符号的发明及使用比数字要晚,但其数量却超过了数字。现代数学常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。

  实数知识点

  平方根:

  ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

  三年级上册数学知识点总结5

  一、学习目标:

  1.认识长度单位毫米,建立1毫米的长度概念,会用毫米厘米度量比较短的物体的长度;

  2.较透彻地理解万以内笔算加法的计算法则,并能应用法则准确地计算两位数连续进位的加法题;

  3.初步认识四边形,了解四边形的特点,并能根据四边形的特点对四边形进行分类;

  4.知道有余数除法的含义,体会有余数出发的实际背景;

  5.认识时间单位“秒”,知道1分=60秒;会进行一些时间的简单计算;初步建立时、分、秒的时间观念,养成遵守和爱惜时间的意识和习惯;

  6.掌握一位数乘整十、整百、整千数的口算方法,会进行相应的口算;知道一位数乘整十、整百、整千数的简便算法;

  7.初步认识几分之一,会读会写几分之一,能比较分子是1的分数大小;

  8.理解一位数乘整十数的口算法。

  二、学习难点:

  1.认识时间单位时、分、秒,知道1分=60秒,会一些有关时间的简单计算;

  2.知道有余数的除法的含义,来自生活中;

  3.根据四边形的特点对四边形进行分类;

  4.哪一位上的数相加满十,要向前一位进1,而且在前一位上的数相加时,要记得加上进上来的1;

  5.认识长度单位毫米,会用毫米度量物体长度。

  三、知识点概括总结:

  1.毫米:毫米是长度单位和降雨量单位,英文缩写mm。

  1毫米=0.1厘米=0.01分米=0.001米=0.000001千米

  2.厘米:是一个长度计量单位,等于一米的百分之一。长度单位,符号为cm.,1厘米=1/100米。

  1厘米=10毫米=0.1分米=0.01米=0.00001千米

  3.分米:是长度的公制单位之一,1分米相当于1米的十分之一。

  0.0001千米(km)=1分米

  0.1米(m)=1分米

  10厘米(cm)=1分米

  100毫米(mm)=1分米

  4.千米:千米又称公里,是长度单位,通常用于衡量两地之间的距离。是一个国际标准长度计量单位,符号km。

  1千米(公里)=1,000米(公尺)=100,000厘米(公分)=1,000,000毫米(公厘)

  5.吨:质量单位,公制一吨等于1000公斤。

  6.加法:基本的四则运算之一,它是指将两个或者两个以上的数、量合起来,变成一个数、量的计算。

  表达加法的符号为加号(+)。

  进行加法时以加号将各项连接起来,把和放在等号(=)之后,例:1、2和3之和是6,就写成︰1+2+3=6.

  加法各部分名称:“+”是加号,加号前面和后面的数是加数,“=”是等于号,等于号后面的数是和。

  例:100(加数)+(加号)300(加数)=(等于号)400(和)

  加法性质:(1)加法交换律:a+b=b+a

  (2)加法结合律:a+b+c=a+(b+c)

  7.减法:四则运算之一,将一个数或量从另一个数或量中减去的运算叫做减法。

  已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。

  减法的性质:减去一个数,等于加这个数的相反数。

  8.验算:算题算好以后,再通过逆运算(如减法算题用加法,除法算题用乘法)演算一遍,检验以前运算的结果是否正确。

  验算的作用:验算能够有效地检查出计算过程中出现的错误,但对解题思维上的错误无太大用处,通过验算(用结果来推导条件)所得的数据与原数据比较来建议运算是否正确。

  9.四边形:由不在同一直线上四条线段依次首尾相接围成的封闭的立体图形叫四边形。由凸四边形和凹四边形组成。

  10.平行四边形:两组对边分别平行的四边形叫做平行四边形。

  11.周长:环绕有限面积的区域边缘的长度积分,叫做周长,图形一周的长度,就是图形的周长。周长的长度因此亦相等于图形所有边的和。

  12.估计:根据情况,对事物的性质、数量、变化等做大概的推断。

  13.余数:在整数的除法中,只有能整除与不能整除两种情况。当不能整除时,就产生余数,取余数运算:1.指整数除法中被除数未被除尽部分。

  例:27除以6,商数为4,余数为3.

  余数的性质:余数有如下一些重要性质(a,b,c均为自然数):

  (1)余数小于除数;

  (2)被除数=除数×商+余数。

  除数=(被除数-余数)÷商;

  商=(被除数-余数)÷除数;

  余数=被除数-除数×商。

  14.秒:时间单位时间单位秒(second)是国际单位制中时间的基本单位,符号是s。

  15.分:时间单位,等于1/60小时,或60秒。

  16.乘法:将相同的数加法起来的快捷方式。其运算结果称为积。

  乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)

  18.分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。

  分子在上分母在下,也可以把它当做除法来看,用分子除以分母,相反乘法也可以改为用分数表示。

  19.分数线、分子、分母:分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。

  分数可以表述成一个除法算式:如二分之一等于1除以2,其中,1分子等于被除数,分数线等于除号,2分母等于除数,而0.5分数值则等于商。

  20.分数由来:分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。

  200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,像7/3就是一种新的数,我们把它叫做分数。

  21.可能性:可能性是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。

  三年级上册数学知识点总结6

  第一单元 混合计算

  6、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0

  7、0÷0得不到固定的商;5÷0得不到商.

  第二单元 观察物体

  计算连加式题时,要按从左往右的顺序依次计算

  连减

  786-284-249=253

  计算连减式题时,可以按从左往右的顺序依次计算,也可以先把两个减数加起来,再从被减数里减去两个减数的和。

  786-(284+249)=253

  加减混合

  259+148-342=65

  不带小括号的加减混合式题的运算顺序,按从左往右的顺序依次计算。带小括号的加减混合式题的运算顺序:先算小括号里面的,再算小括号外面的。

  里程表中的问题

  求两地间的路程,要找准起点,用较远的路程减去较近的路程就得到两地间的路程

  里程数=终点数-起点数

  第四单元 乘与除

  2.月:

  小月:4、6、9、11月

  平月(二月):平年28天

  闰年29天

  3.日历:学会看日历,知道某年某月是星期几

  4.钟表:24时记时法 12时记时法

  4.公式:

  1时=

  60分 1分= 60秒 半时= 30 分

  60分=1时

  60秒=1分 30 分=半时

  第八单元 可能性

  1.‘不可能和一定’,都表示确定的现象。‘可能’,表示不确定的现象。

  2.请用“一定、可能、不可能”来说一说。

  一定:太阳一定从东边升起;月亮一定绕着地球转;地球一定每天都在转动;每天一定都有人出生;人一定要喝水……

  可能:三天后可能下雨;花可能是香的;明天可能有风;下周可能会考试。

  不可能:太阳不可能从西边升起;地球不可能绕着月亮转;我不可能从出生到现在没吃过一点东西;鲤鱼不可能在陆地上生活;空中不可能盖楼房;我不可能比姐姐大……

  三年级上册数学知识点总结7

  小学三年级上册数学知识点:认识分数

  1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

  2、分母越大,分数单位越小,的分数单位是1/2

  3、举例说明一个分数的意义:3/7表示把单位“1”平均分成7份,表示这样的3份。还表示把3平均分成7份,表示这样的1份。3/7吨表示把1吨平均分成7份,表示这样的3份。还表示把3吨平均分成7份,表示这样的1份。

  4、4米的1/5和1米的4/5同样长。

  5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

  6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

  7、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。

  8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

  9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)

  10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。

  11、把分数化成小数的方法:用分数的分子除以分母。

  12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……

  13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

  14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

  15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

  16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。

  17、分数大小比较的应用题:工作效率大的快,工作时间小的快。

  18、求一个数是(占)另一个数的几分之几,用除法列算式计算。

  小学三年级上册数学知识点:24时计时法

  1、会用24时计时法表示时刻;会把普通计时法和24时计时法进行互化。

  如:普通计时法24时计时法:上午9时→9时;晚上9时→21时(9+12=21)普通计时法一定要加上“上午”、“下午”等前缀。

  2、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】

  ①如:火车11:00出发,21:30到达,火车运行时间是(经过10小时30分钟),但这里不要写成(10:30)。正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。

  ②再如:火车19时出发,第二天8时到达,火车运行时间是(13小时)。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时);

  ③又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。

  3、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

  小学三年级上册数学知识点:两位数乘两位数

  1、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。

  2、口算乘法:整十、整百的数相乘,只需把前面数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。

  3、估算:18×22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

  4、有大约字样的一般要估算。

  5、凡是问够不够,能不能等的题目,都要三大步:①计算、②比较、③答题。→别忘了比较这一步。

  6、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。

  7、相关公式:因数×因数=积积÷因数=另一个因数运算顺序:先乘除,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算。

  小学三年级上册数学知识点:除数是一位数的除法

  1、只要是平均分就用(除法)计算。

  2、除数是一位数的竖式除法法则:

  (1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。

  (2)除到被除数的哪一位,就把商写在那一位上。

  (3)每求出一位商,余下的数必须比除数小。

  顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。

  3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)

  4、笔算除法:

  (1)余数一定要比除数小。在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1;

  的被除数=商×除数+的余数;

  最小的被除数=商×除数+1;

  (2)除法验算:→用乘法

  没有余数的除法有余数的除法

  被除数÷除数=商被除数÷除数=商余数

  商×除数=被除数商×除数+余数=被除数

  被除数÷商=除数(被除数-余数)÷商=除数

  0除以任何不是0的数(0不能为除数)都等于0;

  0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。

  5、笔算除法顺序:确定商的位数,试商,检查,验算。

  6、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)

  7、多位数除以一位数(判断商是几位数):

  用被除数位上的数跟除数进行比较,当被除数位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数位上的数小于除数时,商的位数就是被除数的位数减去1。

  小学三年级上册数学知识点:年、月、日

  1、认识年、月、日。认识平年和闰年。

  2、记忆大小月的方法

  3、一年分四个季度:1、2、3月第一季度;

  4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;

  5、普通记时法与24时记时法的转换。

  6、简单的经过时间的计算方法。认识年、月、日1。1年有12个月。

  7、大月:有31天的月份是大月。大月有1月、3月、5月、7月、8月、10月、12月。

  8、小月:有30天的月份是大月。小月有4月、6月、9月、11月。

  9、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。

  10、一年分四个季度:1、2、3月第一季度;4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;

  平年和闰年

  1、平年:2月有28天的月份是平年,平年有365天。

  2、闰年:2月有29天的月份是平年,平年有365天。

  3、平年和闰年的判断方法:一般情况下,公历年份除以4没有余数的是闰年,公历年份是整百数的,必须除以400没有余数才是闰年。

  三年级上册数学知识点总结8

  1、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

  分子表示:其中的几份

  分母表示:平均分成几份

  2、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。

  几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  3、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  4,比较大小的方法:

  ①当分子相同时,分母越小分数越大,分母越大分数越小。

  ②当分母相同时,分子大的分数就大,分子小的分数就小。

  5、分数加减法:

  ①相同分母的分数加、减法的计算方法:分母不变,分子相加、减。

  ② 1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。(1可以看作所有分子分母相同的分数)

  6,求一个数是另一个数的几分之几是多少的计算方法:

  例:把12个圆的3/4有()个圆;

  分析:先找整体12;再找分母4,表示平均分成4份;求出12÷4=3,表示每一份有3个;最后找分子3,表示其中的3份,所以:3×3=9;所以把12个圆的3/4有9个圆。

  小学数学解答应用题步骤

  1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

  2、确定每一步该怎样算,列出算式,算出得数;

  3、进行检验,写出答案。

  小学数学单位间进率

  1公里=1千米1千米=1000米

  1米=10分米1分米=10厘米1厘米=10毫米

  1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

  1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

  1吨=1000千克1千克= 1000克= 1公斤= 1市斤

  1公顷=10000平方米1亩=666。666平方米

  1升=1立方分米=1000毫升1毫升=1立方厘米

  三年级上册数学知识点总结9

  1、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。

  2、一个因数中间有0的乘法:

  ① 0和任何数相乘都得0;

  ②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。

  ③一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。

  3、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。

  4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

  公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数

  路程÷时间=速度

  路程÷速度=时间

  5、(关于“大约)应用题:

  问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下”,条件中无论有没有大约都是求近似数,用估算。(估算时要用≈)

  例:387×5≈

  把387看作390(个位是7,四舍五入,7大于5所以进1,看作390)再算390×5=1950。

  所以:387×5≈1950

  小学数学运算定律

  1、加法交换律:交换加数的位置和不变。[a+b=b+a](如:23+34=57与34+23=57)

  2、加法结合律:(a+b)+c=a+(b+c)先把前两个数相加,或者先把后两个数相加,和不变。

  3、乘法交换律:a×b=b×a交换因数的位置积不变。

  4、乘法结合律:(a×b)×c=a×(b×c)先把前两个数相乘,或者先把后两个数相乘,积不变。

  5、乘法分配律:(a+b)×c=a×c+b×c两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。

  数学三角形体积知识点

  三角形是二维图形,二维图形没有体积公式。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。

  体积,几何学专业术语,是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。

  三年级上册数学知识点总结10

  第一单元混合运算

  知识点一、

  1、加法、减法、乘法和除法统称四则运算。

  2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

  3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

  4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

  知识点二、

  关于“0”的运算

  1、“0”不能做除数;

  字母表示:a÷0错误

  2、一个数加上0还得原数;

  字母表示:a+0=a

  3、一个数减去0还得原数;

  字母表示:a-0=a

  4、被减数等于减数,差是0;

  字母表示:a-a=0

  5、一个数和0相乘,仍得0;

  字母表示:a×0=0

  6、0除以任何非0的数,还得0;

  字母表示:0÷a(a≠0)=0

  7、0÷0得不到固定的商;5÷0得不到商.

  第二单元观察物体

  1、生活中的简单物体观察总结:同一个物体从不同的角度看会有不同的形状。

  2、总结:同一立体图形从不同角度观察会有不同的形状。

  第三单元加与减

  第一节捐书活动

  知识点:

  1、在计算脱式计算连加时,按从左到右的顺序,先把前两个数相加,再加第三个数,也可以把三个数直接用一个竖式计算相同数位对齐,从个位加起,哪一位上的数字满几十就要向前一位进几,不要认为满十进一。

  2、在计算三个三位数连加时,如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。

  第二节运白菜

  1、用脱式计算连减时,按从左到右的顺序,先把前两个数相减,再减第三个数。也可以先把后两个数相加,写在小括号里面,再用第一个数减去这两个数的和。

  2、如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。

  第三节节余多少钱

  三位数加减混合运算的顺序:没有小括号的按从左到右的顺序依次计算,有小括号的先算小括号里面的,再算小括号外面的。

  第四节里程表(一)

  1、根据里程表提出问题,一般先把里程表转化成线段图来观察,再列式计算。

  2、解决此类问题时,一定要从多个角度画图去理解三者之间的位置关系。位置变化,列式也随之变化。

  第五节里程表(二)

  1、当天行驶的里程数=当天里程表的读数-前一天里程表的读数

  2、解答算式谜时,要通过观察推理找到从哪一位先计算,然后一步一步推算出答案。

  第四单元乘与除

  第一节小树有多少棵

  知识点:

  1、整十数乘一位数,根据表内乘法,先用整十数0前面的数与一位数相乘,再在积的末尾添上一个0。

  2、整百数乘一位数,根据表内乘法,先用整百数0前面的数与一位数相乘,再在积的末尾添上两个0。

  3、整十、整百数乘一位数,先根据表内乘法用整十、整百数0前面的数与一位数相乘,再在积的末尾添上相应个数的0。

  4、在口算整百、整千数乘一位数时,先看清楚整百、整千数的末尾有几个0,就在积的末尾添上几个0。要注意一位数与0前面的数相乘时得到的0不能丢。

  第二节需要多少钱

  知识点:

  1、两位数乘一位数(不进位)的口算方法:先把前两位数看作几个十和几个一相加的和,再用一位数分别与它们相乘,最后把所得的两个积相加。

  2、计算混合运算时,要先明确运算顺序,再计算。

  第三节丰收了

  知识点:1、整十数除以一位数的口算方法:

  (1)、先看一位数与什么数相乘能得到这个整十数(也就是被除数),结果就是那个数。

  (2)、按表内除法计算:先不看被除数末尾的0,按照表内除法算出商,再将被除数末尾的0填写在商的末尾。

  2、在除法算式里,被除数不变(被除数不为0)。除数越大,商越小,除数越小,商越大;除数不变,被除数越大,商越大,被除数越小,商越小。

  第四节植树

  知识点:1、口算两位数除以一位数,先把被除数看成一个整十数和一个一位数,然后分别除以除数,再把所得的两个商相加。

  2、(两个连续自然数之和+1)÷2=较大自然数,(两个连续自然数之和-1)÷2=较小自然数,(两数之和+两数之差)÷2=较大数,(两数之和-两数之差)÷2=较小数。

  第五单元周长

  知识点1:什么是周长

  1、围成一个图形所有边的长度总和或者说绕一个图形边线一周的总和就是这个图形的周长。

  2、不规则物体或图形的测量方法:绳子测量法。

  3、规则物体或图形的测量方法:(1)绳测法,(2)直尺测量法。

  知识点二:长方形的周长

  1、求长方形的周长必须满足两个条件:已知长和宽的长度。

  2、长方形周长的计算方法:

  (1)长方形的周长=长+宽+长+宽

  (2)长方形的周长=长×2+宽×2

  (3)长方形的周长=(长+宽)×2

  (4)已知长方形的周长和宽,求长;“长=(周长-宽×2)÷2”或“长=周长÷2-宽”

  (5)已知长方形的周长和长,求宽;“宽=(周长-长×2)÷2”或“宽=周长÷2-长”

  3、正方形周长的计算方法:

  (1)可以把4条边长加起来;

  (2)用一条边长乘以4,即正方形的周长=边长×4

  4、靠墙围成的长方形有两种情况:

  (1)长边靠墙,

  (2)宽边靠墙。

  5、围成的两种长方形,宽边靠墙比长边靠墙所需的围栏多。

  第六单元乘法

  第一节蚂蚁做操

  知识点:

  1、两、三位数乘一位数(不进位)的笔算方法:从个位算起,用一位数依次去乘多位数每一位的数,与哪一位上的数相乘,就在那一位的下面写积。

  2、在列竖式计算两位数乘一位数时,一定要用一位数依次去乘两位数中每个数位上的数。

  第二节去游乐园

  知识点:

  1、两、三位数乘一位数(进位)的笔算乘法,列竖式计算时,先将一位数与多位数对齐,从个位算起,哪一位上相乘满几十就向前一位进几。

  2、两位数乘一位数(进位)的笔算,要把进位的数写到正确的位置上,不要写在积中。

  第三节乘火车

  知识点:

  1、两、三位数乘一位数(连续进位)的笔算方法:从个位算起,用一位数依次去乘两位数每一位上的数,哪一位上乘得的积满几十,就向前一位进几。计算时每一步都不要忘记加上进位数。

  2、笔算乘法时,哪一位上满十就向前一位进1,向哪一位进1,就在那一位加1。

  第四节去奶奶家

  知识点:

  借助里程图解决问题时,一定要明确里程图中的数学信息,理解题意后再进行计算。

  第五节:0×5=?

  知识点:

  1、0和任何数相乘都等于0。

  2、一个乘数末尾有0的乘法的计算方法:

  (1)先用这个乘数0前面的数乘另一个乘数;

  (2)再看这个乘数末尾有几个0,就在积的末尾添上几个0.

  3、在计算乘数中间有0的乘法时,从个位算起,用一个数依次去乘多位数每一位上的数,哪一位上的乘积是0,要在那一位上写0占位,如果有进上来的数必须加上。

  4、结论:

  (1)因数的末尾有0,乘积中一定有0。

  (2)因数的中间有0,乘积中不一定有0。

  第六节买矿泉水

  知识点:

  1、连乘的估算方法:尽可能将其中两个数的乘积估成整十,整百数,再与第三个数相乘。

  2、连乘的运算顺序:按从左到右的顺序依次计算。

  3、三个数连乘时,可以先把前两个数相乘,在乘第三个数;也可以先把后两个数相乘,再乘第一个数;还可以把任意两个数交换位置后再相乘。

  第七单元年月日

  第一节看日历(一)

  知识点:

  1、一年有12个月。

  2、1、3、5、7、8、10、12月每月有31天,是大月;4.6.9.11月每月有30天,是小月;2月有28天或29天,2月既不是大月,也不是小月。

  3、一个月只有28天时,这个月有四个星期一至星期日;一个月有29天时,这个月中星期一至星期日的某一个是5天;一个月有30天时,这个月中星期一至星期日的某2个是5天;一个月有31天时,这个

  第二节看日历(二)

  知识点:

  1、2月29日是个特殊的日子,只有4年才出现。

  2、每四年中有一年的二月份有29天,其他年份的二月份都只有28天。

  3、认识平年和闰年:

  (1)公里年份是4的倍数的是闰年,不是4的倍数的是平年,公立年份是整百年的,是必须是400的倍数的才是闰年。

  (2)判断一个整百年份是不是闰年,要看这个年份数是不是400的倍数,如果是整数倍就是闰年,否者就是平年.

  (3)2月份是28天的是平年,2月份是29天的是闰年,平年一年有365天,闰年一年有366天。

  (4)平年一年有52个星期零1天,闰年一年有52个星期零2天。

  365÷7=52(个)......1(天)

  366÷7=52(个)......2(天)

  4、推算几周年的的时间问题,可以用终止年份直接减去起始年份,所得的差即为所求。

  第三节一天的时间

  知识点:

  1、24时记时法:在一日(天)里,钟表上的时针正好走2圈,共计24时。所以经常采用从0到24时的计时法,通常叫作24时计时法。

  2、普通计时法与24时记时法的表示时刻的换算:从凌晨0:00到中午12:00与普通计时法相同;中午12:00以后,普通计时法与24时记时法的整点时刻相差12,普通计时法去掉限制词后加12就是24时计时法,24时计时法减12后就是普通计时法,

  3、计算从一个时刻到另一个时刻所进过的时间,可以根据钟表推算,也可以用终止时刻减去起始时刻。

  4、计算中午12时的经过时间,要么把时间都换算成24时计时法来计算,要么先算中午12时以前有多长时间,再加上下午的一段时间。

  5、普通计时法在表述时要加上限制词上午、下午或者晚上等,这样才能将时间准确的表达出来。

  第四节:时间表

  知识点:

  1、时间表是管理时间的一种手段,是将某一段时间中已经明确的工作任务清晰的记载和表明的表格,用来提醒使用人和相关人按照时间表的进程活动。

  2、制作时间表,最主要的是做好时间的分配,合理分配时间有助于我们养成良好的生活规律和守时习惯。

  3、判断谁跑得快,只要看谁用的时间短就可以了。

  第五节数学好玩

  知识点:

  1、同一段距离,测量方法和测量工具不同,在测量的结果相同的情况下,选简便的方法比较合适。

  2、地面上一定范围内的直线距离可以直接用直尺来测量。

  3、解决搭配问题也可以用乘法计算,也能得到有多少种不同的搭配方法。

  4、数路线问题实际上也属于搭配问题,在确定行走路线时,一定不要重复和遗漏。

  5、日历中的数有很多规律,如横向左边的数比右边的数少1;纵向上面的数比下面少7等。

  第八单元认识小数

  第一节文具店

  知识点:

  1、像3.15,0.50,1.06,6.66,...这样的数,都是小数。“.”叫作小数点。

  2、小数由整数部分、小数点、和小数部分组成。

  3、一个小数的小数部分有几位数,它就是几位小数。

  4、读小数时,整数部分按整数的读法读,中间的小数点读作点,小数部分依次读出每一数位上的数。

  5、写小数时,要先写整数部分,按照整数的写法来写,然后在个位的右下角点上小数点,最后写小数部分,依次写出各个数位上的数。

  6、把以元为单位的小数改写成以元、角、分的数的方法:小数的整数部分是几,就改写成几元;小数点后的第一位是几,就改写成几角;小数点后的第二位是几,就改写成几分。若那一位上是0,那一位就省略不写。

  7、把带有元、角、分的数改写成一元为单位的小数时,元与小数的整数部分相对应,角与小数点后的第一位数相对应,分与小数点后的第二位数相对应。

  第二节货比三家

  知识点

  1、比较小数大小的方法:先比较整数部分,整数部分大的这个小数就大;如果整数部分相同,就比较小数点后的第一位,小数点后的第一位上的数大的这个小数就大;如果相同就比较小数点后的第二位,以此类推。

  2、比较三个或三个以上小数的大小和比较两个小数大小的方法相同,先比较整数部分,整数部分相同,再依次比较小数部分。

  第三节存零用钱

  知识点1、小数加法的计算方法:小数相加,先把小数点对齐(也就是把相同数位对齐),再按照整数加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  2、小数减法的计算方法:小数相减,先把小数点对齐(也就是把相同数位对齐),再按照整数减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  第四节寄书

  1、小数进位加法的计算方法:先把小数点对齐,然后按照整数进位加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  2、小数退位减法的计算方法:先把小数点对齐,然后按照整数退位减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  3、在计算小数加法时,与整数加法一样,哪一位上的数相加满十就向前一位进1,千万不要忘记满十进一,也不要忘记下一位进上来的一。

  第五节能通过吗

  1、小数在现实生活中的应用非常广泛,小数可以使数据更加精确。

  2、把带有米、分米、厘米的数改写成以“米”为单位的小数时,米与小数的整数部分相对应,分米与小数点后的第一位数相对应,以此类推。

  3、如果米、分米、厘米中某一个单位上一个数也没有,在改写成以“米”为单位的小数时,就在那个单位所对应的数位上写0。

  三年级上册数学知识点总结11

  分数的初步认识

  1、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

  分子表示:其中的几份

  分母表示:平均分成几份

  2、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。

  几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  3、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  4,比较大小的方法:

  ①当分子相同时,分母越小分数越大,分母越大分数越小。

  ②当分母相同时,分子大的分数就大,分子小的分数就小。

  5、分数加减法:

  ①相同分母的分数加、减法的计算方法:分母不变,分子相加、减。

  ②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。(1可以看作所有分子分母相同的分数)

  6,求一个数是另一个数的几分之几是多少的计算方法:

  例:把12个圆的3/4有()个圆;

  分析:先找整体12;再找分母4,表示平均分成4份;求出12÷4=3,表示每一份有3个;最后找分子3,表示其中的3份,所以:3×3=9;所以把12个圆的3/4有9个圆。

  时分秒

  1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。(时针最短,秒针最长)

  2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。

  3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

  4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。

  5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。

  6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。

  7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。

  8、公式。(每两个相邻的时间单位之间的进率是60)

  1时=60分1分=60秒60分=1时60秒=1分半时=30分30分=半时

  9、常用的时间单位:时、分、秒、年、月、日、世纪等。(1世纪=100年,1年=12个月......)

  棱柱的分类

  1、棱柱的底面可以是三角形,四边形,五边形,我们把这样的棱柱叫分别叫做三棱柱、四棱柱、五棱柱。

  2、斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱,画斜棱柱时,一般将侧棱画成不与底面垂直。

  3、直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。画直棱柱时,应将侧棱画成与底面垂直。

  4、正棱柱:底面是正多边形的直棱柱叫做正棱柱。

  5、平行六面体:底面是平行四边形的棱柱。

  6、直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。

  7、长方体:底面是矩形的直棱柱叫做长方体。

  分式的运算

  乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

  除法:除以一个分式等于乘以这个分式的倒数。

  加减法:

  ①同分母分式相加减,分母不变,把分子相加减。

  ②异分母的分式先通分,化为同分母的分式,再加减。

  分式方程:

  ①分母中含有未知数的方程叫分式方程。

  ②使方程的分母为0的解称为原方程的增根。

  一元一次方程根的情况

  利用根的判别式去了解,根的判别式可在书面上可以写为“△”。

  三年级上册数学知识点总结12

  1、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。

  量比较长的物体,常用米(m)做单位。

  量比较长的路程一般用千米(km)做单位。

  2、运动场的跑道,通常1圈是400米,2圈半是1000米。

  3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。

  4、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。

  5、1厘米中间的每一小格的长度是1毫米。

  6、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。

  7、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。

  8、常用长度单位:米、分米、厘米、毫米、千米。

  9、长度单位:米、分米、厘米、毫米,每相邻两个单位之间的进率都是10。

  1米=10分米,1分米=10厘米,1厘米=10毫米

  1米=100厘米1千米(公里)=1000米

  10、质量单位:吨、千克、克,每相邻两个单位之间的进率都是1000。

  1吨=1000千克1千克=1000克

  三年级上册数学知识点总结13

  求一个数是另一个数的几倍

  (1)求一个数是另一个数的几倍,得数后面不加单位名称。

  (2)倍的意义:一个数里面有几个另一个数,就说一个数是另一个数的几倍。

  (3)求一个数是另一个数的几倍的解题方法:求一个数是另一个数的几倍就是求一个数里面有几个另一个数,即一个数÷另一个数。

  例题1:小明今年6岁,妈妈今年36岁,去年妈妈的年龄是小明的几倍?

  分析:根据题意我们可以先分别用妈妈和小明的今年年龄减去1,求出他们去年的年龄,再用去年的妈妈的年龄除以小明去年的年龄即可。(36-1)÷(6-1)=7。切记得数后面不能加倍。

  例题2:一条菜虫由幼虫长成成虫,每天长大1倍,第30天长到了16厘米,这条菜虫长到4厘米要用多少天?

  分析:这类型题目我们可以采取倒推法,根据题意第30天长到16厘米,第29天长到8厘米,第28天长到4厘米。

  例题3:小静家买了一些水果,苹果的个数比梨多8个,比橘子少32个,橘子的个数是苹果的2倍,小静家买了苹果、梨、橘子一共多少个?

  分析:根据题意我们可以推出苹果的个数=梨的个数+8;苹果的个数=橘子的个数-32;橘子的个数=2×苹果的个数。等量代换可以求出苹果的个数为32个。分别代入上面各个关系式中求得梨的个数为24个,橘子的个数为64个。一共有24+32+64=120(个)。

  求一个数的几倍是多少

  (1)求一个数的几倍是多少,就是求几个相同加数的和是多少,用乘法计算。

  (2)求比一个数的几倍多几或少几的数是多少的问题,求出几倍数后,多几就加几,少几就减几。

  (3)解答差倍问题时,要先找出差所对应的倍数,先求1倍数,再求几倍数。关系式:差÷(倍数-1) =较小数(即1倍数),较小数×倍数=较大数(即几倍数)或差+较小数=较大数(即几倍数)。

  例题1:弟弟今年7岁,爸爸的年龄比弟弟的6倍少4岁,爸爸今年多少岁?

  分析:分析题意先求出弟弟年龄的6倍是多少,再用所得的结果减去4。6×7-4=38(岁)。

  例题2:甲、乙两个牧童在草地上放羊。乙有5只羊,甲说:“把你的羊给我2只,我的羊就是你的5倍了。”你能猜出甲原有多少只羊?

  分析:根据题意我们分析,甲说:“把你的羊给我2只,我的羊就是你的5倍了。”在乙把羊给甲2只以后,乙剩3只羊。那么甲得到乙的2只后有3×5=15只,甲原来有羊15-2=13只。

  小学数学常考的四边形定义题型

  (1)什么是四边形?

  有四条线段围成的图形叫四边形。

  (2)什么是平等四边形?

  两组对边分别平行的四边形叫做平行四边形。

  (3)什么是平行四边形的高?

  从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。

  (4)什么是梯形?

  只有一组对边平行的四边形叫做梯形。

  (5)什么是梯形的底?

  在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。

  (6)什么是梯形的腰?

  在梯形里,不平等的一组对边叫梯形的腰。

  (7)什么是梯形的高?

  从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。

  (8)什么是等腰梯形?

  两腰相等的梯形叫做等腰梯形。

【三年级上册数学知识点总结】相关文章:

数学三年级上册知识点总结12-08

初二数学上册知识点总结01-05

初三数学上册知识点总结08-07

初三数学上册知识点总结11-18

初三数学上册的知识点总结12-20

初二数学上册知识点总结(经典)10-21

三年级上册数学知识点总结04-13

数学三年级上册知识点总结(精选10篇)12-08

三年级数学上册知识点总结12-07

数学三年级上册知识点总结10篇12-08