(优秀)初中数学知识点总结
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,为此要我们写一份总结。你所见过的总结应该是什么样的?以下是小编整理的初中数学知识点总结,仅供参考,大家一起来看看吧。
初中数学知识点总结1
第一章有理数
一、正数和负数
⒈正数和负数的概念
负数:比0小的数正数:比0大的数0既不是正数,也不是负数
注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2、具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:
零上8℃表示为:+8℃;零下8℃表示为:—8℃
支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。 3.0表示的意义
⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;
⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二、有理数
1、有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8?也是偶数,—1,—3,—5?也是奇数。
2、(1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负p
分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;?不是有理数;
学霸分享的数学复习技巧
1、把答案盖住看例题
例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。
2、研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。
3、错一次反思一次
每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。
学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。
4、分析试卷总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
数学解题方法分别有哪些
1、配方法
所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。
2、因式分解法
因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。
3、换元法
替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。
4、判别式法与韦达定理
一元二次方程ax2+ bx+ c=0(a、 b、 c属于R,a≠0)根的判别,= b2—4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。
韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。
5、待定系数法
在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的.数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。
数学经常遇到的问题解答
1、要提高数学成绩首先要做什么?
这一点,是很多学生所关注的,要提高数学成绩,首先就应该从基础知识学起。不少同学觉得基础知识过于简单,看两遍基本上就都会了。这种“自我感觉良好”其实是一种错觉,而真正考试时又觉得无从下手,这还是基础不牢的表现,因此要提高数学成绩先要把基础夯实。
2、基础不好怎么学好数学?
对于基础差的同学来说,课本是就是学好数学的秘籍,把课本上的定义、公式、定理全部弄懂,力争在理解的基础上全部背熟,每一道例题、每一道课后题都要掌握。我们知道只有把公式、定理烂熟于心,才能举一反三、活学活用,把课本的知识学透有两个好处,第一,强化基础;第二,提高得分能力。
3、是否要采用题海战术?
方法君曾不止一次提到了“题海战术”,题海战术究竟可不可取呢?“题海战术”其实也是一种学习方法,但很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题经验,这样才能取得理想成绩。
4、做题总是粗心怎么办?
很多学生成绩不好,会说自己是因为粗心导致的,其实“粗心”只是借口,真正的原因就是题做得少、基础知识不牢、没有清晰的解题思路、计算能力不强。因此在平时的学习中,一定要注重熟练度和精准度的练习。如果总是给自己找“粗心”的借口,也就变相否定了自己的学习弱点,所以,要告诉自己,高中数学没有“粗心”只有“不用心”。
为什么要学习数学
作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。
首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。
其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。
除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。
最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。
初中数学知识点总结2
1有理数加法法则
1、同号两数相加,取相同的符号,并把绝对值相加;
2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
3、一个数与0相加,仍得这个数。
2有理数加法的运算律
1、加法的交换律:a+b=b+a;
2、加法的`结合律:(a+b)+c=a+(b+c)
3有理数减法法则
减去一个数,等于加上这个数的相反数;即a—b=a+(—b)
4有理数乘法法则
1、两数相乘,同号为正,异号为负,并把绝对值相乘;
2、任何数同零相乘都得零;
3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
5有理数乘法的运算律
1、乘法的交换律:ab=ba;
2、乘法的结合律:(ab)c=a(bc);
3、乘法的分配律:a(b+c)=ab+ac
6单项式
只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的。
7多项式
1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
8中心对称
1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。这两个图形中的对应点叫做关于中心的对称点。
2、心对称的两条基本性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
3、中心对称图形
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
初中数学知识点总结3
一、实数
1.平方根性质:
(1)一个正数有两个平方根,它们互为相反数;
(2)零的平方根是零;
(3)负数没有平方根。
2.算术平方根性质:
(1)一个正数的正的平方根叫做它的算术平方根;
(2)零的算术平方根是零;
(3)负数没有算术平方根。
3.立方根性质:
(1)正数的立方根是正数;
(2)零的立方根是零;
(3)负数的立方根是负数。
4.实数的性质:
(1)零是唯一没有平方根的数;
(2)正数和负数可以没有算术平方根;
(3)任何实数的立方根只有唯一的一个;
(4)正数的立方根与它本身和零同类。
二、整式的运算
1.整式范围:
(1)整式可以化为分数或整数;
(2)整式可以化为负数或非负数;
(3)整式可以化为奇数或偶数;
(4)整式可以化简为分数指数幂。
2.单项式:
(1)单项式的系数是数字因数;
(2)一个单项式中所有字母的指数的`和叫做单项式的次数。
3.多项式:
(1)多项式的每一项都是一个单项式;
(2)一个多项式的项数与多项式中含有几个单项式有关。
4.同底数幂的乘法:
(1)同底数幂相乘,底数不变,指数相加;
(2)同底数幂相除,底数不变,指数相减。
5.幂的乘方:
幂的乘方,底数不变,指数相乘。
6.积的乘方:
(1)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;
(2)1的乘方等于1。
7.同底数幂的除法:
(1)同底数幂相除,底数不变,指数相减;
(2)0的任何正整数次幂都是0。
8.分式:
(1)分式是整式的一种,在整式中区别于整式,分式的分母中必须含有字母;
(2)分式的值等于分子除以分母。
9.分式的运算:
(1)分式的乘方:分式与分式相乘,再把被乘式的分子、分母分别与乘式的分子、分母相乘,即分子相乘的积做积的分子,分母相乘的积做积的分母;
(2)分式的除法:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即分子相除的商做被除式的分子,分母相除的商做被除式的分母;
(3)分式的加减:异分母分式的加减运算,为了使不同分母的分数直接相加减不便,因此常把不同分母的分数分别化成与原来的分母相同的分母后再相加减。
三、方程与方程组
1.方程:
(1)含有未知数的等式叫方程;
(2)使方程左右两边相等的未知数的值,叫做方程的解;
(3)求方程的解的过程叫做解方程。
2.方程的解:
(1)能使方程左右两边相等的未知数的值;
(2)一个数(它不一定是数,也可以是符号和运算)是某一等式(含有未知数的等式)的解,那么这个数就叫做该等式的解。
3.一元一次方程:
(1)只有一个未知数;
(2)未知数的最高次数为1;
(3)整式方程。
4.方程的解法:
(1)去分母:在方程两端同乘各分母的最小公倍数;
(2)去括号:去括号要变号;
(3)移项:把含有未知数的项移到等号的一边,其他项移到另一边;
(4)合并同类项:化未知数为已知数;
(5)系数化成1:在方程两端同除以未知数的系数。
5.列方程解应用题
初中数学知识点总结4
动点与函数图象问题常见的四种类型:
1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.
4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.
图形运动与函数图象问题常见的三种类型:
1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.
动点问题常见的四种类型:
1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.
2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.
3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.
4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.
总结反思:
本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的`解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.
解答动态性问题通常是对几何图形运动过程有一个完整、清晰的认识,发掘“动”与“静”的内在联系,寻求变化规律,从变中求不变,从而达到解题目的.
解答函数的图象问题一般遵循的步骤:
1、根据自变量的取值范围对函数进行分段.
2、求出每段的解析式.
3、由每段的解析式确定每段图象的形状.
对于用图象描述分段函数的实际问题,要抓住以下几点:
1、自变量变化而函数值不变化的图象用水平线段表示.
2、自变量变化函数值也变化的增减变化情况.
3、函数图象的最低点和最高点.
初中数学知识点总结5
1.常量和变量
在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.
2.函数
设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
3.自变量的取值范围
(1)整式:自变量取一切实数.(2)分式:分母不为零.
(3)偶次方根:被开方数为非负数.
(4)零指数与负整数指数幂:底数不为零.
4.函数值
对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.
5.函数的表示法
(1)解析法;(2)列表法;(3)图象法.
6.函数的图象
把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.由函数解析式画函数图象的步骤:
(1)写出函数解析式及自变量的取值范围;
(2)列表:列表给出自变量与函数的一些对应值;
(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;
(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.
7.一次函数
(1)一次函数
如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.
(2)一次函数的图象
一次函数y=kx+b的图象是一条经过(0,b)点和点的直线.特别地,正比例函数图象是一条经过原点的直线.需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.
(3)一次函数的性质
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为.
(4)用函数观点看方程(组)与不等式
①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.
②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.
③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.
8.反比例函数(1)反比例函数
(1)如果(k是常数,k≠0),那么y叫做x的反比例函数.
(2)反比例函数的图象反比例函数的图象是双曲线.
(3)反比例函数的性质
①当k>0时,图象的两个分支分别在第一、三象限内,在各自的'象限内,y随x的增大而减小.
②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.
③反比例函数图象关于直线y=±x对称,关于原点对称.
(4)k的两种求法
①若点(x0,y0)在双曲线上,则k=x0y0.②k的几何意义:
若双曲线上任一点A(x,y),AB⊥x轴于B,则S△AOB
(5)正比例函数和反比例函数的交点问题
若正比例函数y=k1x(k1≠0),反比例函数,则当k1k2<0时,两函数图象无交点;
当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.
1.二次函数
如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.
几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).
2.二次函数的图象
二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.
3.二次函数的性质
二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:
(1)抛物线y=ax2+bx+c的顶点是,对称轴是直线,顶点必在对称轴上;
(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x<时,y随x的增大而减小;当x>时,y随x的增大而增大;当x=,y有最小值;若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x<,y随x的增大而增大;当时,y随x的增大而减小;当x=时,y有最大值;
(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);
(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:
<0时,抛物线y=ax2+bx+c与x轴没有公共点.=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点;当=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是和,这两点的距离为;当当4.抛物线的平移
抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.
初中数学知识点总结6
1、有理数的加法运算:
同号相加一边倒;异号相加“大”减“小”,符号跟着大的.跑;绝对值相等“零”正好、
2、合并同类项:
合并同类项,法则不能忘,只求系数和,字母、指数不变样、
3、去、添括号法则:
去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号、
4、一元一次方程:
已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒、
5、平方差公式:
平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆、
1、完全平方公式:
完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;
首±尾括号带平方,尾项符号随中央、
2、因式分解:
一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚、
3、单项式运算:
加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行、
4、一元一次不等式解题的一般步骤:
去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了、
5、一元一次不等式组的解集:
大大取较大,小小取较小,小大、大小取中间,大小、小大无处找、
一元二次不等式、一元一次绝对值不等式的解集:
大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
初中数学知识点总结7
中考冲刺数学知识点的几个复习建议:
1)所有的知识点自己先复习一遍,标记好那些掌握不扎实的知识,第二轮复习的重点!
2)对于标记不扎实的知识,如果实在不理解,回到课本中查收相应的内容,特别是结合例题理解
3)平常学校一定有很多练习,把做错的题目和难题当成宝贝,因为我们要想进步就这是捷径——理解消化错题,所有保持积极的心态去面对那些错题难题吧。
4)对于学过思维导图的同学,建议将这些知识点按章节梳理成知识体系,平常复习太好用了。
以下是详细的知识点:
一、一元一次方程根的情况
△=b2-4ac
当△>0时,一元二次方程有2个不相等的实数根;
当△=0时,一元二次方程有2个相同的实数根;
当△<0时,一元二次方程没有实数根
2、平行四边形的性质:
①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:
①一组邻边相等的平行四边形是菱形
②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:
①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:
①N边形的内角和等于(N-2)180度
②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)
平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X
加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理三角形两边的和大于第三边
16、推论三角形两边的差小于第三边
17、三角形内角和定理三角形三个内角的和等于180°
18、推论1直角三角形的两个锐角互余
19、推论2三角形的一个外角等于和它不相邻的两个内角的和
20、推论3三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS)有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1在角的平分线上的点到这个角的两边的距离相等
28、定理2到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1三个角都相等的三角形是等边三角形
36、推论2有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1关于某条直线对称的两个图形是全等形
43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48、定理四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理n边形的内角的和等于(n-2)×180°
51、推论任意多边的外角和等于360°
52、平行四边形性质定理1平行四边形的对角相等
53、平行四边形性质定理2平行四边形的对边相等
54、推论夹在两条平行线间的平行线段相等
55、平行四边形性质定理3平行四边形的对角线互相平分
56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形
58、平行四边形判定定理3对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形
60、矩形性质定理1矩形的四个角都是直角
61、矩形性质定理2矩形的对角线相等
62、矩形判定定理1有三个角是直角的四边形是矩形
63、矩形判定定理2对角线相等的平行四边形是矩形
64、菱形性质定理1菱形的四条边都相等
65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1四边都相等的四边形是菱形
68、菱形判定定理2对角线互相垂直的.平行四边形是菱形
69、正方形性质定理1正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1关于中心对称的两个图形是全等的
72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h
83、(1)比例的基本性质:
如果a:b=c:d,那么ad=bc
如果ad=bc ,那么a:b=c:d
84、(2)合比性质:
如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:
如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3三边对应成比例,两三角形相似(SSS)
95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2相似三角形周长的比等于相似比
98、性质定理3相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理不在同一直线上的三点确定一个圆。
110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
初中数学知识点总结8
知识点总结
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线互相平分;
3.平行四边形的判定
平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:
第一类:与四边形的对边有关
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
第二类:与四边形的对角有关
(4)两组对角分别相等的四边形是平行四边形;
第三类:与四边形的'对角线有关
(5)对角线互相平分的四边形是平行四边形
常见考法
(1)利用平行四边形的性质,求角度、线段长、周长;
(2)求平行四边形某边的取值范围;
(3)考查一些综合计算问题;
(4)利用平行四边形性质证明角相等、线段相等和直线平行;
(5)利用判定定理证明四边形是平行四边形。
误区提醒
(1)平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;
(2)“一组对边平行且相等的四边形是平行四边形”错记成“一组对边平行,一组对边相等的四边形是平行四边形”后者不是平行四边形的判定定理,它只是个等腰梯形。
初中数学知识点总结9
一、数与代数
1.有理数
有理数:
①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
2.实数
无理数:无限不循环小数叫无理数
平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟);一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
算术平方根:正数的正的平方根和零的平方根统称为主根,用符号“√a”表示,a为“被开方数”。
立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根);一个正数的立方根是正数、零的立方根是零、负数的立方根是负数;
二、方程
1.代数式:单独一个数字或一个字母也是代数式。
2.一元一次方程:含有一个未知数,并且未知数的次数是1,并且含有一个未知数,并且未知数的次数是1的所有整式方程是一元一次方程。
3.一元二次方程:含有一个未知数,并且未知数的次数是2的所有整式方程是一元二次方程。
4.二元一次方程:含有两个未知数,并且含有一个未知数的次数是1的所有整式方程叫二元一次方程。
5.二元二次方程:含有两个未知数,并且含有一个未知数的次数是2的所有整式方程叫二元二次方程。
三、三角形
1.几何图形:学过的立体图形有圆柱、圆锥和球以及长方体、正方体、棱柱、棱锥、棱台。
2.图形的三视图:俯视图、主视图、左视图。
3.三角形的稳定性。
4.三角形的分类:锐角三角形、直角三角形、钝角三角形。
5.三角形的内角和定理:三角形三个内角的和等于180度。
6.解直角三角形:解直角三角形需要运用勾股定理及锐角三角函数的定义。锐角三角函数的定义:在直角三角形中,一锐角的正切等于锐角A对边与邻边的比值;一锐角的余切等于锐角A的邻边与对边的比值;一锐角的正弦等于锐角A的对边与斜边的比值;一锐角的余弦等于锐角A的邻边与斜边的比值。
7.全等三角形:全等三角形的对应边相等;全等三角形的对应角相等。
8.等腰三角形的性质定理:等腰三角形的两个底角相等;(简称:等边对等角)以及等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。(简称:三线合一)
9.等腰三角形的.判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(简称:等角对等边)
10.等边三角形:三条边都相等的三角形是等腰三角形;三个角都相等的三角形是等边三角形。
11.相似的三角形:相似三角形的对应边成比例;对应角相等。
12.反证法:在证明一个命题的论证中,假设命题的结论不成立,从这个假设出发,经过推理论证,得出与定义、公理或已经证明过的命题或已经掌握的事实相矛盾,从而使这个假设成为一个不成立的命题,这种推证方法叫做反证法。证明两条线段相等时常常用反证法。
四、四边形
1.平行四边形及特殊平行四边形的重心:平行四边形及特殊平行四边形的重心是它的两条对角线的交点。
2.矩形、菱形、正方形的重心:矩形、菱形、正方形的重心是它们的对角线的交点。
3.梯形问题
初中数学知识点总结10
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等——补角=180-角度。
4、同角或等角的余角相等——余角=90-角度。
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理
xxx两边的和大于第三边
16、推论
xxx两边的差小于第三边
17、xxx内角和定理:
xxx三个内角的和等于180°
18、推论1
直角xxx的两个锐角互余
19、推论2
xxx的一个外角等于和它不相邻的两个内角的和
20、推论3
xxx的一个外角大于任何一个和它不相邻的内角
21、全等xxx的对应边、对应角相等
22、边角边公理(SAS):有两边和它们的夹角对应相等的两个xxx全等
23、角边角公理(ASA):有两角和它们的夹边对应相等的
两个xxx全等
24、推论(AAS):有两角和其中一角的对边对应相等的两个xxx全等
25、边边边公理(SSS):有三边对应相等的两个xxx全等
26、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角xxx全等
27、定理1
在角的平分线上的点到这个角的两边的距离相等
28、定理2
到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、推论1
等腰xxx顶角的平分线平分底边并且垂直于底边
31、推论2
等腰xxx的顶角平分线、底边上的中线和底边上的高互相重合,即三线合一;
32、推论3
等边xxx的各角都相等,并且每一个角都等于60°
33、等腰xxx的判定定理
如果一个xxx有两个角相等,那么这两个角所对的边也相等(等角对等边)
34、等腰xxx的性质定理
等腰xxx的两个底角相等
(即等边对等角)
35、推论1
三个角都相等的xxx是等边xxx
36、推论
有一个角等于60°的等腰xxx是等边xxx
37、在直角xxx中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角xxx斜边上的中线等于斜边上的一半
39、定理
线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理
和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1
关于某条直线对称的两个图形是全等形
43、定理
如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3
两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理
直角xxx两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理
如果xxx的三边长a、b、c有关系a2+b2=c2,那么这个xxx是直角xxx
48、定理
四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理
n边形的内角的和等于(n-2)×180°
51、推论
任意多边的外角和等于360°
52、平行四边形性质定理1
平行四边形的对角相等
53、平行四边形性质定理2
平行四边形的对边相等
54、推论
夹在两条平行线间的平行线段相等
55、平行四边形性质定理3
平行四边形的对角线互相平分
56、平行四边形判定定理1
两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2
两组对边分别相等的四边
形是平行四边形
58、平行四边形判定定理3
对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4
一组对边平行相等的四边形是平行四边形
60、矩形性质定理1
矩形的四个角都是直角
61、矩形性质定理2
矩形的对角线相等
62、矩形判定定理1
有三个角是直角的四边形是矩形
63、矩形判定定理2
对角线相等的平行四边形是矩形
64、菱形性质定理1
菱形的四条边都相等
65、菱形性质定理2
菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1
四边都相等的四边形是菱形
68、菱形判定定理2
对角线互相垂直的平行四边形是菱形
69、正方形性质定理1
正方形的四个角都是直角,四条边都相等
70、正方形性质定理2
正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1
关于中心对称的两个图形是全等的
72、定理2
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理
等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理
在同一底上的两个角相等的梯
形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理
如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1
经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2
经过xxx一边的中点与另一边平行的直线,必平分第三边
81、xxx中位线定理
xxx的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理
梯形的中位线平行于两底,并且等于两底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例
87、推论
平行于xxx一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理
如果一条直线截xxx的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于xxx的第三边
89、平行于xxx的一边,并且和其他两边相交的直线,所截得的xxx的三边与原xxx三边对应成比例
90、定理
平行于xxx一边的直线和其他两边(或两边的延长线)相交,所构成的xxx与原xxx相似
91、相似xxx判定定理1
两角对应相等,两xxx相似(ASA)
92、直角xxx被斜边上的高分成的两个直角xxx和原xxx相似
93、判定定理2
两边对应成比例且夹角相等,两xxx相似(SAS)
94、判定定理3
三边对应成比例,两xxx相似(SSS)
95、定理
如果一个直角xxx的斜边和一条直角边与另一个直角xxx的斜边和一条直角边对应成比例,那么这两个直角xxx相似(HL)
96、性质定理1
相似xxx对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2
相似xxx周长的比等于相似比
98、性质定理3
相似xxx面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的`平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理
不在同一直线上的三点确定一个圆。
110、垂径定理
垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧(直径)
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2
圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理
一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1
同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2
半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3
如果xxx一边上的中线等于这边的一半,那么这个xxx是直角xxx
120、定理
圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线L和⊙O相交
0
②直线L和⊙O相切
d=r
③直线L和⊙O相离
d>r
122、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理
圆的切线垂直于经过切点的半径
124、推论1
经过圆心且垂直于切线的直线必经过切点
125、推论2
经过切点且垂直于切线的直线必经过圆心
126、切线长定理
从圆外一点引圆的两条切线相交与一点,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理
弦切角等于它所夹的弧对的圆周角?
129、推论
如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理
圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论
如果弦与直径垂直相交,那么弦的一半是它分直径xxx的两条线段的比例中项
132、切割线定理
从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项?
133、推论
从圆外一点引圆的两条割线,这一点到每条
割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离
d>R+r
②两圆外切
d=R+r
③两圆相交
R-r<d<R+r(R>r)
④两圆内切
d=R-r(R>r)
⑤两圆内含
d<R-r(R>r)
136、定理
相交两圆的连心线垂直平分两圆的公共弦
137、定理
把圆平均分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理
任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理
正n边形的半径和边心距把正n边形分成2n个全等的直角xxx
141、正n边形的面积Sn=pn*rn/2
p表示正n边形的周长
142、正xxx面积√3a^2/4
a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:L=n兀R/180——》L=nR
145、扇形面积公式:S扇形=n兀R^2/360=LR/2
146、内公切线长=d-(R-r)
外公切线长=d-(R+r)
初中数学知识点总结11
1、菱形的定义:有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质:⑴矩形具有平行四边形的一切性质;
⑵菱形的四条边都相等;
⑶菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
⑷菱形是轴对称图形。
提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。
3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)
5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
6、公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
7、提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。
8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。
9、中被开方数的取值范围:被开方数a≥0
10、平方根性质:①一个正数的平方根有两个,它们互为相反数。②0的平方根是它本身0。③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。
11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。
12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是0
13、含根号式子的.意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。
14、求正数a的算术平方根的方法;
完全平方数类型:①想谁的平方是数a。②所以a的平方根是多少。③用式子表示。
求正数a的算术平方根,只需找出平方后等于a的正数。
初中数学知识点总结12
第十一章三角形
一、知识框架:
二、知识概念:
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
2.三边关系:三角形任意两边的和(大于或小于)第三边,任意两边的差(大于或小于)第三边.
3.高:从三角形的一个顶点向它的对边所在直线作,顶点和间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边的线段叫做三角形的中线.
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和之间的线段叫做三角形的角平分线.
6.三角形的稳定性:三角形的形状是,三角形的这个性质叫三角形的稳定性.
7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.
8.多边形的内角:多边形两边组成的角叫做它的内角.
9.多边形的外角:多边形的一边与它的邻边的线组成的角叫做多边形的外角.
10.多边形的对角线:连接多边形的两个顶点的线段,叫做多边形的对角线.
11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.
12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,
13.公式与性质:
⑴三角形的内角和:三角形的内角和为度。
⑵三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的的和.
性质2:三角形的`一个外角大于任何一个和它的内角.
⑶多边形内角和公式:n边形的内角和等于。
学无虑课后辅导中心编制
⑷多边形的外角和:多边形的外角和为度.
⑸多边形对角线的条数:
①从n边形的一个顶点出发可以引条对角线,把多边形分成个三角形.
②n边形共有条对角线.
第十二章全等三角形
一、知识框架:
二、知识概念:
1.基本定义:
⑴全等形:能够完全的两个图形叫做全等形.
⑵全等三角形:能够完全的两个三角形叫做全等三角形.
⑶对应顶点:全等三角形中互相的顶点叫做对应顶点.
⑷对应边:全等三角形中互相的边叫做对应边.
⑸对应角:全等三角形中互相的角叫做对应角.
2.基本性质:
⑴三角形的稳定性:三角形三边的确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.
⑵全等三角形的性质:全等三角形的相等,对应角相等.
3.全等三角形的判定定理:
⑴边边边(SSS):。
⑵边角边(SAS):。
⑶角边角(ASA):。
⑷角角边(AAS):。
⑸斜边、直角边(HL):。
4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的上.
5.证明的基本方法:
⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.
第十三章轴对称
一、知识框架:
二、知识概念:
1.基本概念:
⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相,这个图形就叫做轴对称图形.
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且这条线段的直线,叫做这条线段的垂直平分线.
⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
⑸等边三角形:都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段的距离相等.②与一条线段两个端点距离相等的点在这条线段的上.⑶关于坐标轴对称的点的坐标性质①点P(x,y)关于x轴对称的点的坐标为P"(,).②点P(x,y)关于y轴对称的点的坐标为P"(,).⑷等腰三角形的性质:
①等腰三角形两腰.
②等腰三角形两底角相等(等边对等角).
③等腰三角形的、,相互重合.④等腰三角形是图形,对称轴是三线合一(1条).⑸等边三角形的性质:
①等边三角形三边都相等.
②等边三角形三个内角都相等,都等于度。③等边三角形每条边上都存在三线合一.
④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:
⑴等腰三角形的判定:
①相等的三角形是等腰三角形.
②如果一个三角形有两个角相等,那么这两个角所对的边也(等角对等边).
⑵等边三角形的判定:
①都相等的三角形是等边三角形.②三个角都相等的三角形是三角形.
③有一个角是度。的等腰三角形是等边三角形.
4.基本方法:
⑴做已知直线的垂线:
⑵做已知线段的垂直平分线:
⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.
⑷作已知图形关于某直线的对称图形:
⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.
第十四章整式的乘除与分解因式
一、知识框架:
整式乘法乘法法则整式除法因式分解
二、知识概念:
基本运算:⑴同底数幂的乘法公式:。⑵幂的乘方公式:。⑶积的乘方公式:。
2.整式的乘法:⑴单项式单项式:系数,同字母,不同字母为积的因式.⑵单项式多项式:。⑶多项式多项式:.
3.计算公式:
⑴平方差公式:ababab
222222⑵完全平方公式:aba2abb;aba2abb
224.整式的除法:
⑴同底数幂的除法:aaamnmn
⑵单项式单项式:系数,同字母,不同字母作为商的因式.⑶多项式单项式:.⑷多项式多项式:用竖式.
5.因式分解:把一个多项式化成的积的形式,这种变形叫做把这个式子因式分解.
6.因式分解方法:
⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆项法⑸添项法第十五章分式一、知识框架:
二、知识概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意义的条件:分母不等于.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为的整式,分式的值不变.4.约分:把一个分式的分子和分母的(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成的分式,这一过程叫做通分.
6.最简分式:一个分式的分子和分母没有时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:
⑴同分母分式加减法则:同分母的分式相加减,分母,把相加减.用字
母表示
为:。
⑵异分母分式加减法则:异分母的分式相加减,先,化为同分母的分
式,然后再按同分母分式的加减法法则进行计算.用字母表示为:。
⑶分式的乘法法则:两个分式相乘,把相乘的积作为积的分子,把相乘的积作为积的分母.用字母表示为:。
⑷分式的除法法则:两个分式相除,把除式的和颠倒位置后再与被除式相乘.用字母表示为:。⑸分式的乘方法则:、分别乘方.用字母表示为:。8.整数指数幂:⑴aaam⑵amnmn(m、n是正整数)namn(m、n是正整数)nn⑶abab(n是正整数)n⑷aaanmnmn(a0,m、n是正整数,mn)ana⑸n(n是正整数)bb⑹an1(a0,n是正整数)na9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:
①(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;
③(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).
初中数学知识点总结13
一次函数的图象与性质的口诀:
一次函数是直线,图象经过三象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远。
拓展阅读:一次函数的解题方法
理解一次函数和其它知识的联系
一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。
掌握一次函数的解析式的特征
一次函数解析式的结构特征:kx+b是关于x的一次二项式,其中常数b可以是任意实数,一次项系数k必须是非零数,k≠0,因为当k = 0时,y = b(b是常数),由于没有一次项,这样的函数不是一次函数;而当b = 0,k≠0,y = kx既是正比例函数,也是一次函数。
应用一次函数解决实际问题
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪两种量是相关联的量,且其中一种量因另一种量的变化而变化;
2、找出具有相关联的两种量的等量关系之后,明确哪种量是另一种量的函数;
3、在实际问题中,一般存在着三种量,如距离、时间、速度等等,在这三种量中,当且仅当其中一种量时间(或速度)不变时,距离与速度(或时间)才成正比例,也就是说,距离(s)是时间(t)或速度( )的正比例函数;
4、求一次函数与正比例函数的关系式,一般采取待定系数法。
数形结合
方程,不等式,不等式组,方程组我们都可以用一次函数的观点来理解。一元一次不等式实际上就看两条直线上下方的关系,求出端点后可以很容易把握解集,至于一元一次方程可以把左右两边看为两条直线来认识,直线交点的横坐标就是方程的解,至于二元一次方程组就是对应2条直线,方程组的解就是直线的交点,结合图形可以认识两直线的位置关系也可以把握交点个数。
如果一个交点时候两条直线的k不同,如果无穷个交点就是k,b都一样,如果平行无交点就是k相同,b不一样。至于函数平移的问题可以化归为对应点平移。k反正不变然后用待定系数法得到平移后的方程。这就是化一般为特殊的解题方法。
数学解题方法分别有哪些
1、配方法
所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。
2、因式分解法
因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。
3、换元法
替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。
4、判别式法与韦达定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c属于 R, a≠0)根的判别, = b2-4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。
韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。
5、待定系数法
在解决数学问题时,如果我们首先判断我们所寻找的'结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。
数学经常遇到的问题解答
1、要提高数学成绩首先要做什么?
这一点,是很多学生所关注的,要提高数学成绩,首先就应该从基础知识学起。不少同学觉得基础知识过于简单,看两遍基本上就都会了。这种“自我感觉良好”其实是一种错觉,而真正考试时又觉得无从下手,这还是基础不牢的表现,因此要提高数学成绩先要把基础夯实。
2、基础不好怎么学好数学?
对于基础差的同学来说,课本是就是学好数学的秘籍,把课本上的定义、公式、定理全部弄懂,力争在理解的基础上全部背熟,每一道例题、每一道课后题都要掌握。我们知道只有把公式、定理烂熟于心,才能举一反三、活学活用,把课本的知识学透有两个好处,第一,强化基础;第二,提高得分能力。
3、是否要采用题海战术?
方法君曾不止一次提到了“题海战术”,题海战术究竟可不可取呢?“题海战术”其实也是一种学习方法,但很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题经验,这样才能取得理想成绩。
4、做题总是粗心怎么办?
很多学生成绩不好,会说自己是因为粗心导致的,其实“粗心”只是借口,真正的原因就是题做得少、基础知识不牢、没有清晰的解题思路、计算能力不强。因此在平时的学习中,一定要注重熟练度和精准度的练习。如果总是给自己找“粗心”的借口,也就变相否定了自己的学习弱点,所以,要告诉自己,高中数学没有“粗心”只有“不用心”。
为什么要学习数学
作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。
首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。
其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。
除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。
最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。
初中数学知识点总结14
一、圆
1、圆的有关性质
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:
圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆
l、过三点的圆
过三点的'圆的作法:利用中垂线找圆心
定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法
反证法的三个步骤:
①假设命题的结论不成立;
②从这个假设出发,经过推理论证,得出矛盾;
③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角
则两个钝角之和>180°
与三角形内角和等于180°矛盾。
∴不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。
实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。
五、圆周角
顶点在圆上,并且两边都和圆相交的角叫圆周角。
推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。
相关的角:
1、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
2、互为补角:如果两个角的和是一个平角,这两个角做互为补角。
3、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。
4、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。
角的性质
1、对顶角相等。
2、同角或等角的余角相等。
3、同角或等角的补角相等。
其实角的大小与边的长短没有关系,角的大小决定于角的两条边张开的程度。
角的静态定义
具有公共端点的两条射线组成的图形叫做角(angle)。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
角的动态定义
一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边
角的符号
角的符号:∠
角的种类
在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
锐角:大于0°,小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:等于180°的角叫做平角。
优角:大于180°小于360°叫优角。
劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。
角周角:等于360°的角叫做周角。
负角:按照顺时针方向旋转而成的角叫做负角。
正角:逆时针旋转的角为正角。
0角:等于零度的角。
特殊角
余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
邻补角:两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,互为邻补角。
内错角:互相平行的两条直线直线,被第三条直线所截,如果两个角都在两条直线的
内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角(alternate interior angle )。如:∠1和∠6,∠2和∠5
同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角。如:∠1和∠5,∠2和∠6
同位角:两个角都在截线的同旁,又分别处在被截的两条直线同侧,具有这样位置关系的一对角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7
外错角:两条直线被第三条直线所截,构成了八个角。如果两个角都在两条被截线的外侧,并且在截线的两侧,那么这样的一对角叫做外错角。例如:∠4与∠7,∠3与∠8。
同旁外角:两个角都在截线的同一侧,且在两条被截线之外,具有这样位置关系的一对角互为同旁外角。如:∠4和∠8,∠3和∠7
终边相同的角:具有共同始边和终边的角叫终边相同的角。与角a终边相同的角属于集合:
A{bb=k_360+a,k∈Z}表示角度制;
B{bb=2kπ+a,k∈Z}表示弧度制
①直线和圆无公共点,称相离。 AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d
③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
当x=-C/Ax2时,直线与圆相离;
初中数学知识点总结15
动点与函数图象问题常见的四种类型:
1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
2、四边形中的动点问题:动点沿四边形的边运动,判断函数图象.
3、圆中的动点问题:动点沿圆周运动,判断函数图象.
4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,判断函数图象.
图形运动与函数图象问题常见的三种类型:
1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,进行分段,判断函数图象.
2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,判断函数图象.
3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,判断函数图象.
动点问题常见的四种类型:
1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.
2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.
3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.
4、直线、双曲线、抛物线中的`动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.
总结反思:
本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.
解答动态性问题通常是对几何图形运动过程有一个完整、清晰的认识,发掘“动”与“静”的内在联系,寻求变化规律,从变中求不变,从而达到解题目的
解答函数的图象问题一般遵循的步骤:
1、根据自变量的取值范围对函数进行分段.
2、求出每段的解析式.
3、由每段的解析式确定每段图象的形状.
对于用图象描述分段函数的实际问题,要抓住以下几点:
1、自变量变化而函数值不变化的图象用水平线段表示.
2、自变量变化函数值也变化的增减变化情况.
3、函数图象的最低点和最高点.
【初中数学知识点总结】相关文章:
初中数学的知识点总结12-12
初中数学的知识点总结03-11
初中数学《整式》知识点总结10-21
初中数学毕业知识点总结07-06
初中数学知识点总结11-03
初中数学函数知识点总结04-08
初中数学圆的知识点总结12-05
初中数学几何知识点总结03-01
初中数学知识点总结03-07
初中数学知识点总结:圆08-29