物理知识点总结[锦集15篇]
总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以使我们更有效率,让我们一起来学习写总结吧。那么你真的懂得怎么写总结吗?下面是小编帮大家整理的物理知识点总结,仅供参考,希望能够帮助到大家。
物理知识点总结1
第七章力与运动
第一节牛顿第一定律
(1)牛顿第一定律:一切物体在没有受到外力作用时,总保持匀速直线运动状态或静止状态。
(2)惯性:我们把物体保持运动状态不变的性质叫惯性。牛顿第一定律也叫惯性定律。惯性是所有物
体都固有的一种属性。(决定大小因素质量)
(3)怎样分析惯性现象:
①确定对象是哪一个物体或同一物体的哪个部分②弄清研究对象原来运动状态(静止或运动)
③哪个物体或物体哪个部分运动状态发生了怎样变化
④由于惯性,研究对象要保持原来运动状态,于是出现了什么现象第二节力的合成
(1)合力与分力:如果一个力产生的作用跟几个力共同作用产生的效果相同,这个力就叫做那几个力
的合力。组成合力的每一个力叫分力。
(2)力的合成:如果已知几个力的大小和方向,求合力的大小和方向,称为力的合成。(3)同一直线上的二力合成:
①两个力同方向时:其合力方向不变,大小是这两个力的大小之和。即:F合=F1+F2②两个力方向相反时:合力方向与其中较大的力方向一致,大小是这两个力的大小之差。即:F合=F1-F2。
第三节力的平衡
(1)力的平衡状态和平衡力:物体在受到两个力(或多个力)作用时,如果能保持静止或匀速直线运
动状态,我们就说这是力的平衡状态。使物体处于平衡状态的两个力(或多个力)为平衡力。
(2)二力平衡条件:两个力大小相等、方向相反、作用在同一物体、并且在同一直线。二力平衡时合
力为零。(同体、等值、反向、共线)
判断是否为二力平衡时,以上四个条件,缺一不可,必须同时满足。
平衡力和相互作用力相同点不同点平衡力等值、反向、共线同体不同体相互作用力(3)物体在不受力或受到平衡力作用下都会保持静止状态或匀速直线运动状态。(4)力和运动关系
1)不受力→物体的运动状态保持不变。2)受平衡力→物体的运动状态保持不变。3)受非平衡力→物体的运动状态将改变
①合力与运动方向相同→物体做加速运动;②合力与运动方向相反→物体做减速运动;
③合力与运动方向不在同一条直线上→物体做曲线运动。
第七章力第1节力
1、力的概念:力是物体对物体的作用。
2、力产生的条件:①必须有两个或两个以上的物体。②物体间必须有相互作用(可以不接触)。
3、力的性质:物体间力的作用是相互的(相互作用力在任何情况下都是大小相等,方向相反,作用在不同物体上)。两物体相互作用时,施力物体同时也是受力物体,反之,受力物体同时也是施力物体。
4、力的作用效果:力可以改变物体的运动状态。力可以改变物体的形状。说明:物体的运动状态是否改变一般指:物体的运动快慢是否改变(速度大小的改变)和物体的运动方向是否改变
5、力的单位:国际单位制中力的.单位是牛顿简称牛,用N表示。力的感性认识:拿两个鸡蛋所用的力大约1N。6、力的三要素:力的大小、方向、和作用点。
7、力的表示法:力的示意图:用一根带箭头的线段把力的大小、方向、作用点表示出来,如果没有大小,可不表示,在同一个图中,力越大,线段应越长
第2节弹力
1、物体受力时发生形变,不受力时又恢复原来的形状的特性叫做弹性。物体变形后不能自动恢复原来形状的特性叫做塑性。
弹簧的弹性有一定的限度,超过这个限度就不能完全复原。弹力是物体由于弹性形变而产生的力。2、测量力的大小的工具叫做测力计。
弹簧测力计原理:弹簧受的拉力越大,弹簧的伸长就越长。在弹性限度内,
弹簧的伸长跟受到的拉力成正比。
弹簧测力计结构:弹簧、挂构、指针、刻度牌、外壳。弹簧测力计使用:使用前:①观察它的量程(测量范围),加在它上面的力不
能超过它的量程。②观察分度值,即认清它的每一小格表示多少牛。③检查它的指针是否指在“0”刻度,测量前应该把指针调节到指“0”的位置上。
测量时:注意防止弹簧指针卡住,沿轴线方向用力。读数时:视线与刻度面垂直。注意:物理实验中,有些物理量的大小是不宜直接观察的,但它变化时引起其他物理量的变化却容易观察,用容易观察的量显示不宜观察的量,是制作测量仪器的一种思路。这种科学方法称做“转换法”。利用这种方法制作的仪器象:温度计、弹簧测力计、压强计等。
第3节重力
1、宇宙间任何两个物体,都存在互相吸引的力,这就是万有引力。由于地球的吸引而使物体受到的力,叫做重力。地球上所有物体都受到重力的作用。重力的施力物体是地球。
2、重力的大小通常叫做重量。
物体所受的重力跟它的质量成正比,它们之间的关系是G=mg。符号的意义及单位:G重力牛顿(N)
M质量千克(kg)g=9.8牛/千克(N/kg)(在要求不很精确的情况下可取g=10N/kg)
3、重力的方向:竖直向下其应用是重垂线、水平仪分别检查墙是否竖直和面是否水平。
4、重力的作用点重心:重力在物体上的作用点叫重心。质地均匀外形规则物体的重心,在它的几何中心上。如均匀细棒的重心在它的中点,球的重心在球心。方形薄木板的重心在两条对角线的交点
☆假如失去重力将会出现的现象:(只要求写出两种生活中可能发生的)
①抛出去的物体不会下落;②水不会由高处向低处流③大气不会产生压强;
第八章运动和力第1节牛顿第一定律
1、伽利略斜面实验:
⑴三次实验小车都从斜面顶端滑下的目的是:保证小车开始沿着平面运动的速
度相同。
⑵实验得出得结论:在同样条件下,平面越光滑,小车前进地越远。
⑶伽利略的推论是:在理想情况下,如果表面绝对光滑,物体将以恒定不变的速度永远运动下去。
⑷伽科略斜面实验的卓越之处不是实验本身,而是实验所使用的独特方法在实验的基础上,进行理想化推理。(也称作理想化实验)它标志着物理学的真正开端。
2、牛顿第一定律:⑴牛顿总结了伽利略、笛卡儿等人的研究成果,得出了牛顿第一定律,其内容是:一切物体在没有受到力的作用的时候,总保持静止状态或匀速直线运动状态。⑵说明:
A、牛顿第一定律是在大量经验事实的基础上,通过进一步推理而概括出来的,且经受住了实践的检验所以已成为大家公认的力学基本定律之一。但是我们周围不受力是不可能的,因此不可能用实验来直接证明牛顿第一定律。
B、牛顿第一定律的内涵:物体不受力,原来静止的物体将保持静止状态,原来运动的物体,不管原来做什么运动,物体都将做匀速直线运动.C、牛顿第一定律告诉我们:物体做匀速直线运动可以不需要力,即力与运动状态无关,所以力不是产生或维持运动的原因。3、惯性:
⑴定义:物体保持运动状态不变的性质叫惯性。
⑵说明:惯性是物体的一种属性。一切物体在任何情况下都有惯性,惯性大小只与物体的质量有关,与物体是否受力、受力大小、是否运动、运动速度等皆无关。4、惯性与惯性定律的区别:
A、惯性是物体本身的一种属性,而惯性定律是物体不受力时遵循的运动规律。B、任何物体在任何情况下都有惯性,(即不管物体受不受力、受平衡力还是非平衡力),物体受非平衡力时,惯性表现为“阻碍”运动状态的变化;惯性定律成立是有条件的。
☆人们有时要利用惯性,有时要防止惯性带来的危害,请就以上两点各举两例(不要求解释)。答:利用:跳远运动员的助跑;用力可以将石头甩出很远;骑自行车蹬几下后可以让它滑行。防止:小型客车前排乘客要系安全带;车辆行使要保持距离;包装玻璃制品要垫上很厚的泡沫塑料。
物理知识点总结2
串联电路:
定义:用电器首尾依次连接在电路中。
规律:串联电路两端的总电压等于各用电器两端电压之和,即:U=U1+U2。
优点:在电路中,若想控制所有电路,即可使用串联的电路。
缺点:若电路中有一个用电器坏了,整个电路意味着都断了。
特点:电路只有一条路径,任何一处开路都会出现开路。
1、电流只有一条通路。
2、开关控制整个电路的通断。
3、各用电器之间相互影响。
4、串联电路电流处处相等:I总=I1=I2=I3=……=In。
5、串联电路总电压等于各处电压之和:U原=U1+U2+U3+……+Un。
6、串联电阻的等效电阻等于各电阻之和:R总=R1+R2+R3+……+Rn。
7、串联电路总功率等于各功率之和:P总=P1+P2+P3+……+Pn【推导式:P1P2/(P1+P2)】。
8、串联电容器的等效电容量的倒数等于各个电容器的电容量的倒数之和:1/C总=1/C1+1/C2+……+1/Cn。
9、串联电路中,除电流处处相等以外,其余各物理量之间均成正比(串联电路又名分压电路):(电流做的功指在通电相同时间内的大小)R1∶R2=U1∶U2=P1∶P2=W1∶W2=Q1∶Q2。
10、开关在任何位置控制整个电路,即其作用与所在的位置无关。电流只有一条通路,经过一盏灯的电流一定经过另一盏灯。如果熄灭一盏灯,另一盏灯一定熄灭。
11、在一个电路中,若想控制所有电路,即可使用串联的电路。
12、串联电路中,只要有某一处断开,整个电路就成为断路。即所相串联的电子元件不能正常工作。
并联电路:
定义:并联电路是使在构成并联的电路元件间电流有一条以上的相互独立通路,为电路组成二种基本的方式之一。
优点:可将一个用电器独立完成工作,一个用电器坏了,不影响其他用电器。适合于在马路两边的路灯。
缺点:若并联电路,各处电流加起来才等于总电流,由此可见,并联电路中电流消耗大。
特点:电路有多条路径,每一条电路之间互相独立,有一个电路元件开路,其他支路照常工作。
1、电路有若干条通路。
2、干路开关控制所有的`用电器,支路开关控制所在支路的用电器。
物理知识点
1 温度和温度计: 温度:物体的冷热程度叫温度.
温度计:用来测量温度的仪器.
2 摄氏温度的规定:规定冰水混合物的温度为0℃,一标准大气压下沸水的
温度为100℃,0℃到100℃之间分成100等分,每一分就是摄氏1℃.
x 摄氏温度的单位为摄氏度,用℃表示。
3 绝对零度:宇宙中的温度下限-273℃,叫绝对零度。
4 热力学温度:以绝对零度为起点的温度叫热力学温度。单位:开尔文 K
5 热力学温度与摄氏温度的转换:T=t+273K t=T-273℃
6 体温计的温度范围:35℃-42℃
物理学习方法总结
注意物理过程
1、会看
例如,老师在空矿泉水瓶子的侧面不同高度处扎了几个小洞,将水倒入瓶中。你睁大了眼睛,像看电影一样,就怕漏掉哪个环节。做好实验,老师问观察到什么现象?集体回答“水喷出来了”。其实,还有一个答案,“越是下面的小洞水喷得越远”。两个现象,两个结论,而后一个更是研究重点。物理是以观察和实验为基础的一门学科,初中物理的实验更多,但实验不是看热闹的。
会想上述例子中两个现象说明什么问题?回顾前面的知识,木块压在海面上,海绵凹陷,即产生形变,说明木块对海绵有压强。类比一下,水喷出来,说明水对瓶子侧壁有压强,且水越深压强越大。那么如果倒入其他液体会产生什么现象呢?“心中存疑,小疑则小进,大疑则大进”,惟有动脑思考,才能实现思维升华。
2、会探
上述是《研究液体压强规律》的引入课,若要深入研究,还需要分组探究。动手准备充足的实验器材,设计实验必须注意控制变量,编制数据表格要分清有几行几列,需填写什么内容,小组成员分工明确,沟通协作,这都是很重要的实验技能。
兴趣
伴随着有趣的演示实验和动手实验,一个个意想不到的现象吸引你走入深奥的物理世界,但更多时候,老师为了讲清某一物理规律或物理情景,考虑到知识的整体性和逻辑性,经常会进行大段讲解。这是理解较高层次的知识所必需的,也是物理的“理”性所在,因此课堂气氛可能不象小学时那样“热烈”,随着学习的深入,物理的简洁美、逻辑美、对称美、统一美等更高层次的魅力就会吸引你欲罢不能,对这一过程同学们应该有思想准备,同时自己要尽快养成这种严谨的思维习惯和分析问题的方法。
物理知识点总结3
电流和电路
一、摩擦起电
摩擦过的物体具有吸引轻小物体的现象叫摩擦起电;
二、两种电荷
用丝绸摩擦过的玻璃棒带的电荷叫正电荷;用毛皮摩擦过的橡胶棒带的电荷叫负电荷;
三、电荷间的相互作用
同中电荷相互排斥,异种电荷相互吸引;
四、验电器
1、用途:用来检验物体是否带电;2、原理:利用同种电荷相互排斥;
五、电荷量(电荷)
电荷的多少叫电荷量,简称电荷;单位是库仑,简称库,符号为C;
六、元电荷
1、原子是由位于中心的带正电的原子核和核外带负电的电子组成;
2、最小的电荷叫元电荷(一个电子所带电荷)用e表示;e=1。6×10—19;
3、在通常情况下,原子核所带正电荷与核外电子总共所带负电荷在数量上相等,电性相反,整个原子呈中性;
七、摩擦起电的实质
电荷的转移。(由于不同物体的原子核束缚电子的本领不同,所以摩擦起电并没有新的电荷产生,只是电子从一个物体转移到了另一个物体,失去电子的带正电,得到电子的带负电)
八、导体和绝缘体
善于导电的物体叫导体(如金属、人体、大地、酸碱盐溶液),不善于导电的物体叫绝缘体(如橡胶、玻璃、塑料等);导体和绝缘体在一定条件下可以相互转换;
九、电流
电荷的定向移动形成电流;电流方向:正电荷定向移动的方向为电流的方向(负电荷定向移动方向和电流方向相反);在电源外部,电流的方向从电源的正极流向负极;
十、电路
用导线将用电器、开关、用电器连接起来就组成了电路;电源:提供电能(把其它形式的能转化成电能)的装置;用电器:消耗电能(把电能转化成其它形式的能)的装置;
十一、电路的工作状态
1、通路:处处连通的电路;2、开路:某处断开的电路;3、短路:用导线直接将电源的正负极连同;
十二、电路图及元件符号
用符号表示电路连接的图叫电路图(记住常用的符号)
画电路图时要注意:整个电路图导线要横平竖直;元件不能画在拐角处。
十三、串联和并联
1、把电路元件逐个顺次连接起来的电路叫串联电路;串联电路特点:电流只有一条路径;各用电器互相影响;
2、把电路元件并列连接起来的电路叫并联电路;并联电路特点:电流有多条路径;各用电器互不影响;
3、常根据电流的'流向判断串、并联:从电源的正极开始,沿电流方向走一圈,回到负极,则为串联,若出现分支则为并联;
十四、电路的连接方法
1、线路简捷、不能出现交叉;
2、连出的实物图中各元件的顺序一定要与电路图保持一致;
3、一般从电源的正极起,顺着电流方向,依次连接,直至回到电源的负极;
4、并联电路连接中,先串后并,先支路后干路,连接时找准节点。
5、在连接电路前应将开关断开;
十四、电流的强弱
1、电流:表示电流强弱的物理量,符号I,单位是安培,符号A,还有毫安(mA)、微安(?A)1A=103mA=106?A
2、电流强度(I)等于1秒内通过导体横截面的电荷量;I=Q/t
十五、电流的测量
用电流表;符号A
1、电流表的结构:接线柱、量程、示数、分度值
2、电流表的使用
(1)先要三“看清”:看清量程、指针是否指在临刻度线上,正负接线柱;
(2)电流表必须和用电器串联;(相当于一根导线);
(3)选择合适的量程(如不知道量程,应该选较大的量程,并进行试触。)
注:试触法:先把电路的一线头和电流表的一接线柱固定,再用电路的另一线头迅速试触电流表的另一接线柱,若指针摆动很小(读数不准),需换小量程,若超出量程(电流表会烧坏),则需换更大的量程。
3、电流表的读数
(1)明确所选量程;
(2)明确分度值(每一小格表示的电流值);
(3)根据表针向右偏过的格数读出电流值;
十六、串、并联中电流的特点
串联电路中电流处处相等;并联电路干路电流等于各支路电流之和;
物理知识点总结4
力和运动学:
力是物体之间的相互作用。运动学研究物体位置随时间的变化。
牛顿运动定律是高中物理的核心内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。
机械能守恒定律和能量守恒定律:
能量守恒定律是指能量既不会凭空产生,也不会凭空消失,它只会从一种形式转化为另一种形式,或者从一个物体转移到其他物体,而能量的总玳保持不变。
机械能守恒定律是指在一个只有保守力(见保守力与耗散力)做功的物理系{(见牛顿运动定律;亦称“势力学”)}中,动能和势能相互转化,但机械能的总量保持不变。
振动和波动:
振动是指物体沿直线或曲线并经过其平衡位置所作的往复运动。
波动是指振动在介质中的传播。
热力学定律:
热力学第一定律(能量守恒定律)世间万物总能量不会变,但能源可由一种形式转为另一种形式。
热力学第二定律(熵增定律)不可能把热从低温物体传到高温物体而不产生其他影响;不可能从单一热源取热使之完全转换为有用的功而不产生其他影响;不可逆热力过程中熵的微增量总是大于零。
总的来说,高中物理知识点需要掌握基本的物理概念、原理和数学方法,注重理解和应用,掌握物理实验技能,并通过练习加深对知识点的理解和运用能力。
高中物理知识点
1.气体的状态参量:
温度:宏观上,物体的冷热程度 高一;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
高中物理重要知识点
1.光本性学说的发展简史
(1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象.
(2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象.
2、光的干涉
光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:⑴利用激光(因为激光发出的`是单色性极好的光)。⑵设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。
2.干涉区域内产生的亮、暗纹
⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ=nλ(n=0,1,2,……)
⑵暗纹:屏上某点到双缝的'光程差等于半波长的奇数倍,即δ=(n=0,1,2,……)
相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。
3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。
⑴各种不同形状的障碍物都能使光发生衍射。
⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射现象。)
⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。
4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光是横波。
5.光的电磁说
⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。)
⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。
各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。
⑶红外线、紫外线、X射线的主要性质及其应用举例。
种类产生主要性质应用举例
红外线一切物体都能发出热效应遥感、遥控、加热
紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2
X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤
高中物理知识点归纳
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
物理知识点总结5
提高物理成绩的方法有哪些
一、重视基础知识点的记忆和理解
没有把基础知识掌握牢,课本上的公式记不住,物理绝对不可能考高分!掌握住课本的基本概念是一个很痛苦的过程,谁都不可能看一遍就牢牢记住,要想彻底吃透就要课下反反复复的回头看,有一段艰苦困难的历程。物理内容涵盖面太广,分支之间的联系又紧密,把基础知识做到融会贯通,考试才能游刃有余。要做好这一步,首先要在课堂上虚心听老师的讲解,又要不断思考总结,循序渐进地提高自己;同时,课下还要多做题,在细心、耐心的解题过程中总结解题方法,提高和锻炼应试水平。
二、同学们要认真去总结和反思自己的错题
犯错的地方都反映出我们的薄弱环节,每一道错题都是值得深入挖掘的知识宝藏。研究透一道典型的错题,找出自己的知识漏洞,胜过做十道新题。
三、通过做题和总结来深入理解考点,把一些典型解题规律、公式使用条件搞清楚
学物理,离不开做题,多做一些练习题既能巩固知识点,也能加快解物理题的速度,拓展思维并提高物理分析能力。不过要明白,做题的目的还是为了巩固考点,巩固教材上的基础内容。常见的考点最好做一个总结,当然要结合自己做过的题了。比如,机械能守恒的条件(零势能面的规定原则);动能定理的典型应用场景;动量守恒定律的使用环境(前提条件)等。
四、细节上重视敌人,战略上藐视敌人
学习物理不能总是抱怨物理难学,那样你永远也学不好,要有自信,要相信自己通过努力就能考高分。当然了,不能盲目的自信,还是要反思方法,找到应对的策略。经常听到同学们说物理难,抱怨考题多,自己考分低,究其原因,大多情况还是自己的学习方法不对路;可别忘了,咱们身边总有物理学的特别好的学生。所以,要放下抱怨,咱们要向他们学习,改善自己的学习效率。高中生学物理也重在学习思路和方法,理清处理、解决问题的思路与方法,通过习题我们才能对考点举一反三,触类旁通,拓展解题思维,逐步提高解题的质量与速度。
物理的学习方法
一、学会用量纲检查题目结果的对错
高中物理阶段没有专门针对量纲进行学习,但量纲真的是一个十分好用的工具,熟知基本量纲和导出量纲的推导公式,对于你检查题目有很大的帮助,能够很容易检查出计算时由于幂的丢失而引起的错误,并且在应对一些选择题时也会有意想不到的效果。
二、细心分析题目中的每一个关键词
比如"恰好",我最喜欢那些严谨简练的题目,及题目中的每一个词语都是解题的关键,每一个已知量都是不可或缺的。例如:“一个质量为m的立方体静止于光滑水平面上。”这样的一句在题目中经常出现的话就堪称完美。这句话中的每一个词都不能缺少,否则题目就无法解出。因此在做题时我们要认真分析题目中的每一个词,很可能解题的关键就在题目中。
三、小心规避题目中的重重陷阱
随着近年来学生的学习水平越来越高,单纯的考知识点已经很难在学生中间拉开档次,因此在题目中设置陷阱,诱使那些不小心的学生掉进坑里是高考出题老师最喜欢干的一件事。
四、重在理解
学好物理,应对所学知识有确切的理解,弄清其中的道理。物理知识是在分析物理现象的基础上经过抽象、概括得来的或者是经过推理得来的,获得知识,要有一个科学思维的过程,不重视这个过程,头脑里只是剩下一些干巴巴的公式和条文,就不能真正理解知识,思维也得不到训练,要重在理解,有意识地提高自己的科学思维能力。
五、要重视观察和试验
物理知识来源于实践,特别是来源于观察和试验。要认真观察物理现象产生的条件和原因,要认真做好学生实验,学会使用仪器和处理数据,了解用试验研究问题的基本方法,要通过观察和试验,有意识地提高自己的观察能力和试验能力。
初中中考复习物理的方法
一、遇到任何物理疑难问题,都先从基本知识、规律、方法中寻找错误根源
初三学生几乎每天都要做各种物理习题,在此过程中会出现各种各样的错,然而有些同学对待这些错题的态度是——以为听懂了就是会做了,从此置之不理!学霸们则能继续抽时间归纳总结,前者与后别差别之大会在中考那天显现的淋漓尽致!前者所犯的错误之后还会犯同样的错误,后者则尽最大可能的杜绝了错误再次发生。
学霸们在整理归纳这些错题的过程中,有一个非常大的优点——从基础知识、规律、方法中寻找到错误的根源,从物理课本中寻找到错误的根源!这种追根溯源会让人几乎一针见血的找到错误所在,从而步步为营,稳步前进!
这种方法是中考物理学霸们屡试不爽的学好物理的诀窍之一!
二、从中考物理真题中找做题方向和学习重点
中考前的最后这几个月,物理学霸们都会透彻研究当地历年中考物理真题,从中寻找出各种“共性出题规律”,寻找到各种“个性化习题”。他们会从这些中考真题规律中找到做题方向和学习重点!
因此,他们在之后的物理学习中都会很有目的、有选择、有重点!这样的学习才是最高效的!
三、有取舍的做物理题、有取舍的听课
最后复习阶段,各种物理资料、试卷、习题丛出不穷,无穷无尽的题海很容易让人陷入机械做题的过程中而无法自拔。
其实,真正的物理学霸往往会有所取舍的做题,他们往往在看到一份试卷之后,能迅速找出哪些是自己一定会做、且能保证万无一失的;哪些是有些懵懂、需要一定时间思考且不能确保做对的;哪些是感觉有难度,几乎想不出思路的。然后,他们会迅速的把这些习题分为易、中、难三类。
对待会做的`容易题,他们一略而过、几乎不耗费太多时间;对待有点难度、不太把握的题,他们就重点且认真对待,花最多的时间去研究;对于偏题、怪题可以花稍许时间思考,如果能思考出其中一两步就做出一两步,如果再也没有思路去突破,就果断暂时舍弃,留待以后解决。
与之相对应的就是学霸们对于这三种类型题的听课过程,学霸们往往无需再听易题,重点听中等难度题,集中精力认真听难题!
四、熟练掌握各种物理题型的分析归纳思路、方法、技巧,形成条件反射
在中考最后几个月,初三学生一定要在每天复习时,熟练掌握当天所有需要掌握的物理题型的分析思路方法、技巧,形成适合自己的一套思路方法和技巧。
从而做到,看到某种题就条件反射似地想到这一类题的做法,提高做题效率。
五、归纳常错知识点、方法,形成系统化的知识网络
中考物理学霸几乎每天都总结归纳常错知识点,并记录形成错题集,这些错题集里面既有各种类型的错题归纳,也有各种常错一级知识点、二级知识点以及方法技巧,当他们把一切基础知识和这些易错知识方法达到融会贯通时,物理就变得的简单易学了。
初三的学生们,以上就是历届中考学霸们都在一直采用的五种实用复习物理知识的方法。这些方法非常实用,且能快速提高物理成绩。
初中提升物理成绩的方法
第一,注重基础,立足课本
很多孩子在学习的过程中并没有很注重课本,没有做过或者看过笔记,因为课本上讲的知识都很简单,可能一听都懂,所以学生很容易忽视这些最基础的东西。很多同学感觉自己课本学得很“扎实”,上课也认真听讲,可就是考不好,我也有这样的经历和感受。直到初三一轮复习我才发现问题所在,初二初三一年半时间没有深入地理解基础知识,只是机械地做题,不去思考回扣知识点,导致自己学的内容像“空中花园”,而我又被这种假象所蒙蔽,自以为学的很好,但一走进总复习就尝到了自己种下的苦果,虽然那时还不算晚,但是却浪费了大量的时间和精力。所以在此我提醒大家,在学新课时就要深入下去,只记忆几个谁都会背的公式定理是行不通的,还要“顺藤摸瓜”,做完题目及时回扣课本内容,且把课本当作自己的根,经常翻看课本,每一遍深入的阅读都会带给你“豁然开朗”的顿悟。
第二,学贵在悟
记得看过这样一句话:学生的差距不主要在于智力,而在于顿悟的能力。悟性高固然好,但悟性不好也无需灰心,须知顿悟能力是可以培养和提高的。学物理不在于做了多少题目,而在于掌握了多少方法。针对一种类型的题目,加以比较分析,找到共性,悟到出题人在此出题的原因和意图,也即变被动接受为主动吸收,感悟纷繁精美包装下的相同内涵,赢得顿悟后的喜悦。
第三,相信老师,相信自己
紧跟老师的步伐走,没有一个老师不为了学生的明天,他们会琢磨教法,反复论证,然后教授给学生,所以每个老师都是我们最值得感谢的人。要尽快适应分科后的变化和其他相应的改变,积极应对。多和代课老师交流,多问自己、问老师、问同学,并且相信自己一定能行!
第四,动手能力很重要
其实刚刚也有讲过,拿电学和力学来说,都需要动手能力,也就是说要学好力学和电学的话,动手画图能力、看图能力、对图形的掌握能力等等都需要掌握。但是很多学生没办法养成这个习惯,都只是靠两只眼睛读题,很少愿意动手去画图,计算的时候更加不愿意动手,而是利用计算器这个数学工具来代替手算。这些小细节对于学习物理都起到了阻碍的作用。
第五,学习物理要经常性地在适当的时间做回顾复习
因为物理的知识点相对来说不会特别多,学生可以在学了一个专题之后,对前面的知识做一个简单的回顾,不停学习,复习,学习,复习,这样对知识点的掌握才会更牢固。
物理知识点总结6
教科版物理八年级下册知识点复习总结
第七章力
一、力
1、定义:力是物体对物体的,物体间力的作用是。
2、力的作用效果
①力可以改变物体的;(运动状态的改变是指运动快慢或运动方向发生改变)。举例:用力推小车,小车由静止变为运动;守门员接住飞来的足球。
②力可以改变物体的(或者说使物体发生)。举例:用力压弹簧,弹簧变形;用力拉弓,弓变弯。
3、力的单位:,简称,符号。托起一个鸡蛋的力大约是。
4、力的三要素是指:、和。它们都能影响力的。
5、力的表示方法:力的图示和力的示意图。(注意:图示要取标度)
二、弹力
1、定义:物体由于发生而产生的力叫弹力。
如、 、 、
2、弹力产生的条件:发生,互相
3、测量力的工具叫,实验室常用的测力计是。
4、弹簧测力计的工作原理是:。
5、使用弹簧测力计的注意事项:
a、观察弹簧测力计的和,不能超过它的。 b、使用前指针要;
c、被测力的方向要与弹簧轴线方向;
三、重力
1、概念:地面附近的物体由于的吸引而受到的力,用字母表示
2、重力的施力物体是。
3、重力的作用点叫,质地均匀、形状规则的物体的重心在它的。
4、重力的方向:
物体受到的重力与它的质量成。
5、重力计算公式:,(g=)。
g的物理意义:
四、摩擦力
1、定义:两个相互接触的物体要发生或已发生相对滑动时,在接触面间会产生的力,叫滑动摩擦力。
2、方向:,理解时注意:滑动摩擦力的方向与物体相对运动的方向相反,与物体的运动方向不一定相反,如人在行走时摩擦力与人行走的方向相同,用传输带运送货物时摩擦力与物体运动的方向相同。滑动摩擦力作用点在物体间的上,一般把作用点画在物体的上。
3、测量摩擦力的方法:用弹簧测力计拉着物体沿方向做运动,此时测力计的示数即为滑动摩擦力的大小。
4、摩擦力类型:
5、结论:滑动摩擦力的大小与的大小和有关,越大,滑动摩擦力;越粗糙,滑动摩擦力。
6、应用:增大摩擦力的方法: 减小摩擦力的方法:
第八章力与运动
一、惯性和牛顿第一定律
1、牛顿第一定律:(又叫定律)
2、运动的物体之所以会停下来,是因为受到了。
3、探究阻力对物体运动的影响:让同一小车从同一斜面的高度由滑下(控制变量法),是为了使小车滑到时有相同的。
4、内容:一切物体在作用时,总保持或状态。
5、说明:
a、或者说总保持原来的运动状态,原来运动的则会做,原来静止的仍保持。
b、牛顿第一定律也说明力不是维持物体运动的原因,而是的原因。 c、维持物体的运动状态不变不需要力,改变物体的运动状态需要力。
6、惯性:物体保持原来运动状态不变的性质叫。惯性是一切物体所固有的一种属性,任何物体在任何时候、任何状态下都。
7、惯性不是力,不能说受到惯性力的作用,惯性的大小只与物体的有关,与物体的形状、速度、物体是否受力等因素。
8、防止惯性带来伤害的现象:开车系安全带,保持车距,严禁超载。
9、利用惯性的现象:跳远助跑提高成绩,拍打衣服可除尘。
二、二力平衡
1、平衡状态:物体处于或运动状态。
2、平衡力:物体在受到两个力作用时,如果能保持或称为二力。物体处于平衡状态时受到的几个力称为。
3、二力平衡条件:、 、 、 。
4、平衡力与相互作用力比较:
相同点:大小相等、方向相反、作用在同一直线上。
不同点:平衡力作用在同一物体上,可以是不同性质的力;相互作用力作用在不同的物体上,
是性质相同的力。
5、物体在不受力或受平衡力作用时,将保持或状态;物体受非平衡力作用时,运动状态将会,包括物体由静到动,由动到静,由快到慢,由慢到快,运动方向发生改变。
第九章压强
一、压力
1、定义:在物体表面的力叫压力。
2、方向:
3、作用点:作用在受力面上
4、大小:只有当物体在时,物体对水平支持面的压力才与物体受到的重力在数值上相等,有:F=G=mg,但压力并不是重力。
二、压强
1、压力的作用效果与和有关。
2、物理意义:压强是表示的物理量。
3、定义:物体单位面积上受到压力叫。
4、计算公式:,其中P代表,F代表,S表示。在国际单位制中,压力的单位是,受力面积的单位是,
2压强的单位是,1Pa=1N/m。1Pa表示的意义:
5、增大或减小压强的方法:
增大或减小,都可以增大压强,减小或增大,都可以减小压强。
三、液体压强
1、产生原因:液体受到作用,对支持它的容器底部有压强。液体具有对容器侧壁有压强。
2、液体内部压强规律
①液体内部向都有压强;
②在,液体内部向各个方向的压强;
③液体内部的压强随深度的增加而;
④液体的压强与液体的密度有关,在不同液体的同一深度,密度越大压强。
(微小压强计的作用是探究压强的大小。当它的橡皮膜不受压强时,U形管两边的液面保持,橡皮膜受到的压强越大,两边的液面高度差就。)
3、液体压强公式:,其中P表示,单位是,ρ表示,单位是,h表示(深度不是高度),单位是。
注意:液体压强只与和有关,而与液体的体积、质量,与浸入液体中物体的密度。
4、液体对容器底部的`压力F与容器所盛液体的重力G液的关系:
①上大下小容器F G液②柱体容器F G液③上小下大容器F G液。
5、计算固体压力、压强问题一般是先用F=G=mg计算压力,再用P=F/S计算压强;计算液体压力、体压强问题一般是先用P=ρgh计算压强,再用F=pS计算压力。
6、上端开口下部相连通的容器叫,连通器原理是:连通器中的液体不流动时,各容器中的液面总保持。举例:、 、等都是连通器的应用。
四、大气压强
1、定义:大气对浸在它里面的物体的压强叫,简称。
2、产生原因:气体受到,且有,故能向各个方向对浸于其中的物体产生压强。
3、著名的证明大气压存在的实验:
4、首次准确测出大气压值的实验:
5、1个标准大气压=水银柱=水柱= Pa。
6、常用气压计:水银气压计、金属盒气压计。
7、大气压强的规律:大气压强随海拔高度的增加而,液体的沸点随表面气压的增大而,随气压的减小而。
8、应用:高压锅、用吸管喝饮料、活塞式抽水机、医生用针筒抽药水都利用了大气压。
第十章流体的力现象
一、流体压强与流速的关系
1、和统称为流体。
2、伯努利原理:流体在流速大的地方,流速小的地方
3、机翼升力的获得:飞机机翼做成流线型,上表面空气流动速度比小表面快,因而上表面压强小,下表面压强大,在机翼上下表面就存在着,从而获得向上的。
二、浮力
1、定义:浸在液体(或气体)中的物体会受到叫。
2、浮力产生的原因:液体对浸在其中的物体的下上表面产生的。浮力的大小与物体浸在液体中的及液体的有关。
3、阿基米德原理:。
4、浮力的计算方法及公式:
(1)称重法:;
(2)压力差法:;
(3)原理法法:;
(4)公式法:;
(5)平衡法:;(只适用于漂浮或悬浮)
4、沉浮条件:
①当F浮G物时,ρ物ρ液物体上浮;
②当F浮G物时,ρ物ρ液物体悬浮,ρ物ρ液漂浮;
③当F浮G物时,ρ物ρ液物体下沉。
5、漂浮问题五规律:
规律一:漂浮在液体中的物体,所受浮力其所受重力;
规率二:同一物体浸没在不同的液体中,所受浮力;
规律三:同一物体在不同的液体里漂浮,在密度大的液体中浸入的体积;
规律四:漂浮的物体浸入液体的体积是总体积的几分之几,其物体的密度就是液体密度的;规律五:将漂浮物体全部浸入水中,需加的竖直向下的外力等于液体对其增加的。
6、计算方法总结:
(1)分析题意,确定研究对象;
(2)根据题意画出受力图,并判断物体在液体中所处的状态(看是否静止或匀速直线运动);
(3)根据力的平衡,列出等式。
7、浮力的应用:
(1)轮船的排水量,即轮船满载时排开水的;
(2)潜水艇是靠改变来上浮或下沉的;
(3)气球和飞艇充入的气体密度比空气的密度;
(4)比重计(密度计)的工作原理(其刻度是上小下大)。
第十一章机械与功
一、杠杆
1、定义:在力的作用下能绕支撑点转动的坚实物体叫,
2、杠杆的五要素:
①:杠杆绕着转动的支撑点,用表示;
②:使杠杆转动的力,用表示;
③:阻碍杠杆转动的力,用表示;
④:从支点到的垂直距离,用表示;⑤:从支点到的垂直距离,用表示。
3、杠杆的平衡条件:,即:
4、探究杠杆平衡条件的实验中:(1)首先要调节使杠杆在不挂钩码时保持。这样做的好处是。
(2)多次测量的目的是
5、1、定滑轮:
定义:使用时轴固定不动的滑轮。
实质:是一个,
特点:
2、动滑轮:
定义:使用时轴和重物一起移动的滑轮。
实质:是一个。
特点:。
3、滑轮组:
定义:定滑轮和动滑轮组合在一起成为滑轮组。
特点:
在摩擦、绳重不计时:F=,s=
方法:滑轮组绳子段数n的判别方法:奇动偶定,即如果绳子自由端最后绕过动滑轮,则绳子段数n为奇数,如果绳子自由端最后绕过定滑轮,则绳子段数n为偶数;绳子段数为几段,则绳子自由端通过的距离就是重物上升距离的。
三、功
1、物理意义:是表示物体做功多少的物理量。
2、定义:在物理学中把与的乘积,叫做这个力对物体做的功。
3、计算公式:
4、单位:,1J=1N·m;
5、做功的两个必要因素:
①;
② 。
6、力对物体没有做功的情况:
①物体受到了力的作用,但物体没有移动距离;
②物体虽然移动了距离,但物体没有受到力的作用;
③物体移动了距离,也受到了力的作用,但力的方向与距离互相垂直。
四、功率
1、物理意义:它表示做功的物理量。
2、定义:单位时间内做的功叫、
3、公式:,
4、单位及换算:国际单位:,1W=1J/s,1W表示的意义:。常用单位:千瓦(kW)、兆瓦(MW);1kW= W,1MW= W。
五、机械效率
1、有用功:对人们有用的功,用符号表示
2、额外功:并非我们需要但又不得不做的功,用符号表示
3、总功:有用功加额外功或动力所做的功。公式:
4、机械效率:①定义:与的比值叫机械效率。
②公式:,一般情况下η 1。
③提高机械效率的方法:,
3、实验:测量滑轮组的机械效率:
①实验原理:
②要测量的物理量:钩码的重力、拉力、钩码上升的高度,拉力F移动的距离
③器材:钩码、铁架台、细线、滑轮、 、
④实验时必须地拉动弹簧测力计上升。拉力F移动的距离s等于绳子段数n与钩码上升的高度h的积,即s=
⑤结论:影响滑轮组机械效率高低的主要因素有:
A.动滑轮重力越大机械效率越
B、物体重力越大机械效率越
C.机械效率与绕线方法和重物提升高度
六、功的原理:
原理:使用任何机械都(即机械:“黄金定律”)。
应用:①轮轴:做功特点:拉动轮做的功等于绕在轴上绳拉动重物所做的功,即有;轮轴的两个主要功能:一是,二是;
②斜面:特点:斜面长是斜面高的几倍,推力就是重力的。(斜面光滑)斜面公式:。斜面的机械效率公式:
第十二章机械能
机械能:动能和势能统称机械能。
(一)动能和势能
1、动能:物体由于运动而具有的能叫。动能的大小由物体的和决定:质量相同,速度越大,动能;质量速度相同,质量越大,动能。
2、势能:
(1)重力势能:物体由于位置较高而具有的能叫,重力势能的大小由物体的和决定:质量相同,高度越大,重力势能;高度相同,质量越大,重力势能。
(2)弹性势能:物体由于弹性形变而具有的能叫。弹性形变越大,弹性势能。重力势能和弹性势能统称。
(二)动能和势能的相互转化:
动能转化为重力势能时,速度,高度,重力势能,动能;重力势能转化为动能时,速度,高度,重力势能,动能;动能转化为弹性势能时,速度,弹性形变,弹性势能,动能;弹性势能转化为动能时,速度,弹性形变,弹性势能,动能。
物理知识点总结7
1、电路:把电源、用电器、开关、导线连接起来组成的电流的路径。
2、通路:处处接通的电路;开路:断开的电路;短路:将导线直接连接在用电器或电源两端的电路。
3、电流的形成:电荷的定向移动形成电流.(任何电荷的定向移动都会形成电流)
4、电流的方向:从电源正极流向负极.
5、电源:能提供持续电流(或电压)的装置.
6、电源是把其他形式的能转化为电能.如干电池是把化学能转化为电能.发电机则由机械能转化为电能.
7、在电源外部,电流的方向是从电源的正极流向负极。
8、有持续电流的条件:必须有电源和电路闭合.
9、导体:容易导电的物体叫导体.如:金属,人体,大地,盐水溶液等.导体导电的原因:导体中有自由移动的电荷;
10、绝缘体:不容易导电的物体叫绝缘体.如:玻璃,陶瓷,塑料,油,纯水等.原因:缺少自由移动的电荷
11、电流表的使用规则:
①电流表要串联在电路中;
②电流要从"+"接线柱流入,从"-"接线柱流出;
③被测电流不要超过电流表的量程;
④绝对不允许不经过用电器而把电流表连到电源的两极上.
实验室中常用的电流表有两个量程:
①0~0.6安,每小格表示的电流值是0.02安;
②0~3安,每小格表示的电流值是0.1安.
12、电压是使电路中形成电流的原因,国际单位:伏特(V);常用:千伏(KV),毫伏(mV).1千伏=1000伏=1000000毫伏.
13、电压表的使用规则:
①电压表要并联在电路中;
②电流要从"+"接线柱流入,从"-"接线柱流出;
③被测电压不要超过电压表的量程;
实验室常用电压表有两个量程:
①0~3伏,每小格表示的电压值是0.1伏;
②0~15伏,每小格表示的电压值是0.5伏.
14、熟记的电压值:
①1节干电池的电压1.5伏;
②1节铅蓄电池电压是2伏;
③家庭照明电压为220伏;
④安全电压是:不高于36伏;
⑤工业电压380伏.
15、电阻(R):表示导体对电流的阻碍作用.国际单位:欧姆(Ω);常用:兆欧(MΩ),千欧(KΩ);1兆欧=1000千欧;1千欧=1000欧.
16、决定电阻大小的因素:材料,长度,横截面积和温度
17、滑动变阻器:
A.原理:改变电阻线在电路中的长度来改变电阻的
B.作用:通过改变接入电路中的电阻来改变电路中的电流和电压.
C.正确使用:a,应串联在电路中使用;b,接线要"一上一下";c,闭合开关前应把阻值调至最大的地方.
18、欧姆定律:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比.
公式:I=U/R.公式中单位:I→安(A);U→伏(V);R→欧(Ω).
19、电功的单位:焦耳,简称焦,符号J;日常生活中常用千瓦时为电功的单位,俗称“度”符号
kw.h1度=1kw.h=1000w×3600s=3.6×10^6J
20.电能表是测量一段时间内消耗的`电能多少的仪器。
A、“220V”是指这个电能表应该在220V的电路中使用;
B、“10(20)A”指这个电能表长时间工作允许通过的最大电流为10安,在短时间内最大电流不超过20安;
C、“50Hz”指这个电能表在50赫兹的交流电路中使用;
D、“600revs/KWh”指这个电能表的每消耗一千瓦时的电能,转盘转过600转。
21.电功公式:W=Pt=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒).
22、电功率(P):表示电流做功的快慢的物理量.国际单位:瓦特(W);常用:千瓦(KW)公式:P=W/t=UI
23.额定电压(U0):用电器正常工作的电压.额定功率(P0):用电器在额定电压下的功率.实际电压(U):实际加在用电器两端的电压.实际功率(P):用电器在实际电压下的功率.当U>U0时,则P>P0;灯很亮,易烧坏.当U 24.焦耳定律:电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比,表达式为.Q=I^2Rt 25.家庭电路由:进户线(火线和零线)→电能表→总开关→保险盒→用电器等组成. 26.所有家用电器和插座都是并联的而用电器要与它的开关串联接火线. 27.保险丝:是用电阻率大,熔点低的铅锑合金制成.它的作用是当电路中有过大的电流时,它升温达到熔点而熔断,自动切断电路,起到保险的作用. 28.引起电路电流过大的两个原因:一是电路发生短路;二是用电器总功率过大. 29.安全用电的原则是: ①不接触低压带电体; ②不靠近高压带电体 30.磁性:物体吸引铁,镍,钴等物质的性质. 31.磁体:具有磁性的物体叫磁体.它有指向性:指南北. 32.磁极:磁体上磁性最强的部分叫磁极.任何磁体都有两个磁极,一个是北极(N极);另一个是南极(S极) 33.磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引. 34.磁化:使原来没有磁性的物体带上磁性的过程. 35.磁体周围存在着磁场,磁极间的相互作用就是通过磁场发生的 36.磁场的基本性质:对入其中的磁体产生磁力的作用. 37.磁场的方向:小磁针静止时北极所指的方向就是该点的磁场方向. 38.磁感线:描述磁场的强弱,方向的假想曲线.不存在且不相交.在磁体周围,磁感线从磁体的北极出来回到磁体的南极 39.地磁的北极在地理位置的南极附近;而地磁的南极则在地理的北极附近.但并不重合,它们的交角称磁偏角,我国学者沈括最早记述这一现象. 40.奥斯特实验证明:通电导线周围存在磁场.其磁场方向跟电流方向有关 41.安培定则:用右手握螺线管,让四指弯向螺线管中电流方向,则大拇指所指的那端就是螺线管的北极(N极). 42.影响电磁铁磁性强弱的因素:电流的大小,铁芯的有无,线圈的匝数 43.电磁铁的特点: ①磁性的有无可由电流的通断来控制; ②磁性的强弱可由电流的大小和线圈的匝数来调节; ③磁极可由电流的方向来改变. 44.电磁继电器:实质上是一个利用电磁铁来控制的开关.它的作用可实现远距离操作,利用低电压,弱电流来控制高电压,强电流.还可实现自动控制. 45.电话基本原理:振动→强弱变化电流→振动. 46.电磁感应:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流,这种现象叫电磁感应,产生的电流叫感应电流.应用:发电机 47.产生感应电流的条件: ①电路必须闭合; ②只是电路的一部分导体做切割磁感线运动. 48.感应电流的方向:跟导体运动方向和磁感线方向有关. 49.磁场对电流的作用:通电导线在磁场中要受到磁力的作用.是由电能转化为机械能.应用:电动机. 50.通电导体在磁场中受力方向:跟电流方向和磁感线方向有关.主要构造工作原理能量转化电动机定子和转子通电线圈在磁场中受力而转动电能转化为机械能发电机定子和转子电磁感应现象机械能转化为电能电学特点与原理公式 特点或原理电流:I电压:U电阻:R电功:W电功率:P分压原理分流原理分功原理分功率原理串联电路I=I1=I2U=U1+U2R=R1=R2W=W1+W2P=P1+P2U1:U2=R1:R2无W1:W2=R1:R2P1:P2=R1:R2并联电路I=I1+I2U=U1=U21/R=1/R1+1/R2或R=R1R2/(R1+R2)W=W1+W2P=P1+P2无I1:I2=R2:R1W1:W2=R2:R1P1:P2=R2:R1 一、温度: 1、温度:温度是用来表示物体冷热程度的物理量; 注:热的物体我们说它的温度高,冷的物体我们说它的温度低,假设两个物体冷热程度一样,它们的温度亦相同;我们凭感觉判断物体的冷热程度一般不可靠; 2、摄氏温度: (1)我们采用的温度是摄氏温度,单位是摄氏度,用符号〝℃〞表示; (2)摄氏温度的规定:把一个大气压下,冰水混合物的温度规定为0℃;把一个标准大气压下沸水的温度规定为100℃;然后把0℃和100℃之间分成100等份,每一等份代表1℃。 (3)摄氏温度的读法:如〝5℃〞读作〝5摄氏度〞;〝-20℃〞读作〝零下20摄氏度〞或〝负20摄氏度〞 二、温度计 1、常用的温度计是利用液体的热胀冷缩的原理制造的; 2、温度计的构成:玻璃泡、均匀的玻璃管、玻璃泡总装适量的液体(如酒精、煤油或水银)、刻度; 3、温度计的使用:使用前要:观察温度计的量程、分度值(每个小刻度表示多少温度),并估测液体的温度,不能超过温度计的量程(否那么会损坏温度计)测量时,要将温度计的玻璃泡与被测液体充分接触,不能紧靠容器壁和容器底部;读数时,玻璃泡不能离开被测液、要待温度计的示数稳定后读数,且视线要与温度计中夜柱的上表面相平。 三、体温计: 1、用途:专门用来测量人体温的; 2、测量范围:35℃~42℃;分度值为0.1℃; 3、体温计读数时可以离开人体; 4、体温计的特殊构成:玻璃泡和直的玻璃管之间有极细的、弯的细管叫做缩口; 物态变化:物质在固、液、气三种状态之间的变化;固态、液态、气态在一定条件下可以相互转化。物质以什么状态存在跟物体的温度有关。 四、熔化和凝固: 1、物质从固态变为液态叫熔化;从液态变为固态叫凝固;熔化和凝固是可逆的两物态变化过程;熔化要吸热,凝固要放热; 2、固体可分为晶体和非晶体;晶体:熔化时有固定温度(熔点)的物质;非晶体:熔化时没有固定温度的物质;晶体和非晶体的根本区别是:晶体有熔点(熔化时温度不变继续吸热),非晶体没有熔点(熔化时温度升高,继续吸热);(熔点:晶体熔化时的.温度);同一晶体的熔点和凝固点相同; 3、晶体熔化的条件:温度达到熔点;继续吸收热量;晶体凝固的条件:温度达到凝固点;继续放热; 4、晶体的熔化、凝固曲线: 注意:1、物质熔化和凝固所用时间不一定相同;2、热量只能从温度高的物体传给温度低的物体,发生热传递的条件是:物体之间存在温度差; 八年级上册物理物态变化。 五、汽化和液化 1、物质从液态变为气态叫汽化; 2、物质从气态变为液态叫液化;汽化和液化是互为可逆的过程,汽化要吸热、液化要放热; 3、汽化的方式为沸腾和蒸发; (1)蒸发:在任何温度下都能发生,且只在液体表面发生的缓慢的汽化现象; 注:蒸发的快慢与 A、液体温度高低有关:温度越高蒸发越快(夏天洒在房间的水比冬天干的快;在太阳下晒衣服快干); B、跟液体表面积的大小有关,表面积越大,蒸发越快(凉衣服时要把衣服打开凉,为了地下有积水快干要把积水扫开); C、跟液体表面空气流速的快慢有关,空气流动越快,蒸发越快(凉衣服要凉在通风处,夏天开风扇降温); (2)沸腾:在一定温度下(沸点),在液体表面和内部同时发生的剧烈的汽化现象; 注:沸点:液体沸腾时的温度叫沸点;不同液体的沸点一般不同;同种液体的沸点与压强有关,压强越大沸点越高(高压锅煮饭);液体沸腾的条件:温度达到沸点还要继续吸热; (3)沸腾和蒸发的区别和联系: 它们都是汽化现象,都吸收热量;沸腾在一定温度下才能进行;蒸发在任何温度下都能进行;沸腾在液体内部、外部同时发生;蒸发只在液体表面进行;沸腾比蒸发剧烈; (4)蒸发可致冷:夏天在房间洒水降温;人出汗降温;发烧时在皮肤上涂酒精降温; (5)不同物体蒸发的快慢不同:如酒精比水蒸发的快; 4、液化的方法:(1)降低温度;(2)压缩体积(增大压强,提高沸点)如:氢的储存和运输;液化气; 六、升华和凝华 1、物质从固态直接变为气态叫升华;物质从气态直接变为固态叫凝华,升华吸热,凝华放热; 2、升华现象:樟脑球变小;冰冻的衣服变干;人工降雨中干冰的物态变化; 3、凝华现象:雪的形成;北方冬天窗户玻璃上的冰花(在玻璃的内表面)八年级上册物理物态变化 七、云、霜、露、雾、雨、雪、雹、〝白气〞的形成 温度高于0℃时,水蒸汽液化成小水滴成为露;附在尘埃上形成雾;温度低于0℃时,水蒸汽凝华成霜;水蒸汽上升到高空,与冷空气 相遇液化成小水滴,就形成云,大水滴就是雨;云层中还有大量的小冰晶、雪(水蒸汽凝华而成),小冰晶下落可熔化成雨,小水滴再与0℃冷空气流时,凝固成雹;〝白气〞是水蒸汽遇冷液化而成的 一、原子结构知识点: 1、电子的发现和汤姆生的原子模型: (1)电子的发现: 1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。 电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。 (2)汤姆生的原子模型: 1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。 2、α粒子散射实验和原子核结构模型 (1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成 ①装置: ② 现象: a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。 b. 有少数α粒子发生较大角度的偏转 c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。 (2)原子的核式结构模型: 由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。 1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。 原子核半径小于10-14m,原子轨道半径约10-10m。 3、玻尔的原子模型 (1)原子核式结构模型与经典电磁理论的矛盾(两方面) a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。 b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。 (2)玻尔理论 上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设: ①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。 ②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即 hv=E2-E1 ③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因而电子可能轨道的分布也是不连续的。即轨道半径跟电子动量mv的乘积等于h/2π的整数倍,即:轨道半径跟电了动量mv的乘积等于h/2π的整数倍,即 n为正整数,称量数数 (3)玻尔的氢子模型: ①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。) 氢原子中电子在第几条可能轨道上运动时,氢原子的能量En,和电子轨道半径rn分别为: 其中E1、r1为离核最近的第一条轨道(即n=1)的氢原子能量和轨道半径。即:E1=-13.6ev, r1=0.53×10-10m(以电子距原子核无穷远时电势能为零计算) ②氢原子的能级图:氢原子的各个定态的`能量值,叫氢原子的能级。按能量的大小用图开像的表示出来即能级图。 其中n=1的定态称为基态。n=2以上的定态,称为激发态。 二、原子核知识点 1、天然放射现象 (1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。 放射性:物质能发射出上述射线的性质称放射性 放射性元素:具有放射性的元素称放射性元素 天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象 天然放射现象:表明原子核存在精细结构,是可以再分的 (2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹: 2、原子核的衰变: (1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒 γ射线是伴随α、β衰变放射出来的高频光子流 在β衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子 (2)半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。 一放射性元素,测得质量为m,半衰期为T,经时间t后,剩余未衰变的放射性元素的质量为m 3、原子核的人工转变:原子核的人工转变是指用人工的方法(例如用高速粒子轰击原子核)使原子核发生转变。 (1)质子的发现:1919年,卢瑟福用α粒子轰击氦原子核发现了质子。 (2)中子的发现:1932年,查德威克用α粒子轰击铍核,发现中子。 4、原子核的组成和放射性同位素 (1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子 在原子核中: 质子数等于电荷数 核子数等于质量数 中子数等于质量数减电荷数 (2)放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。 正电子的发现:用α粒子轰击铝时,发生核反应。 发生+β衰变,放出正电子 三、核能知识点: 1、核能:核子结合成的子核或将原子核分解为核子时,都要放出或吸收能量,称为核能。 2、质能方程:爱因斯坦提出物体的质量和能量的关系: E=mc2——质能方程 3、核能的计算:在核反应中,及应后的总质量,少于反应前的总质量即出现质量亏损,这样的反就是放能反应,若反应后的总质量大于反应前的总质量,这样的反应是吸能反应。 吸收或放出的能量,与质量变化的关系为: 为了计算方便以后在计算核能时我们用以下两种方法 方法一:若已知条件中以千克作单位给出,用以下公式计算 公式中单位: 方法二:若已知条件中以作单位给出,用以下公式计算 公式中单位: 4、释放核能的途径——裂变和聚变 (1)裂变反应: ①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。 ②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。 链式反应的条件: ③裂变时平均每个核子放能约1Mev能量 1kg全部裂变放出的能量相当于2500吨优质煤完全燃烧放出能量 (2)聚变反应: ①聚变反应:轻的原子核聚合成较重的原子核的反应,称为聚变反应。 ②平均每个核子放出3Mev的能量 ③聚变反应的条件;几百万摄氏度的高温 一、电场 1.两种电荷、电荷守恒定律、元电荷(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(真空中的点电荷){F:点电荷间的作用力(N);k:静电力常量k=9.0×109Nm2/C2;Q1、Q2:两点电荷的电量(C);r:两点电荷间的距离(m);作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理);q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=ΔEP减/q 8.电场力做功:WAB=qUAB=qEd=ΔEP减{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m);ΔEP减:带电体由A到B时势能的减少量} 9.电势能:EPA=qφA{EPA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEP减=EPA-EPB{带电体在电场中从A位置到B位置时电势能的减少量} 11.电场力做功与电势能变化WAB=ΔEP减=qUAB(电场力所做的功等于电势能的减少量) 12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/(4πkd)(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器 14.带电粒子在电场中的加速(Vo=0):W=ΔEK增或qU=mVt2/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用): 类平抛运动(在带等量异种电荷的平行极板中:E=U/d) 垂直电场方向:匀速直线运动L=Vot 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m=qU/m 注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的分布要求熟记; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体 外表面; (6)电容单位换算:1F=106μF=1012PF; (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J; (8)其它相关内容:静电屏蔽、示波管、示波器及其应用、等势面二、恒定电流 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ωm),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR(纯电阻电路); E=U内+U外;E=U外+Ir;(普通适用) {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间 (s),P:电功率(W)} 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的.电阻值(Ω),t:通电时间(s)} 7.纯电阻电路和非纯电阻电路 8.电源总动率P总=IE;电源输出功率P出=IU;电源效率η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 9.电路的串/并联:串联电路(P、U与R成正比)并联电路(P、I与R成反比) 10.欧姆表测电阻 11.伏安法测电阻1、电压表和电流表的接法 2、滑动变阻器的两种接法 注:(1)单位换算:1A=103mA=106μA;1kV=103V=106mV;1MΩ=103kΩ=106Ω (2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;半导体和绝缘体的电阻率随温度升高而减小。 (3)串联时,总电阻大于任何一个分电阻;并联时,总电阻小于任何一个分电阻;(4)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(4r); 三、磁场 1.磁感应强度是用来表示磁场的强弱和方向的物理量,B=Φ/S,是矢量,单位(T),1T=1N/(Am) 2.安培力F=BIL(注:I⊥B);{B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)} 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种): (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下(a)f洛=F向=mV2/r=mω2r=m(2π/T)2r=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下); (c)解题关键:画轨迹、找圆心、定半径、圆心角(=弦切角的二倍)注: (1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒 子的正负; (2)磁感线的特点及其常见磁场的磁感线分布要掌握; (3)其它相关内容:地磁场、磁电式电表原理、回旋加速器、磁性材料 一、长度的测量 1、长度的测量:长度的测量是最基本的测量,最常用的工具是刻度尺。 2、长度的单位及换算 长度的国际单位是米(m),常用的单位有:千米(Km),分米(dm)、厘米(cm)、毫米(mm)、微米(um)、 纳米(nm)换算:1km=103m;1m=10dm;1dm=10cm;1cm=10mm;1mm=103um;1um=103 nm长度的单位换算时,小单位变大单位用乘,大单位换小单位用除 3、正确使用刻度尺 (1)使用前要注意观察零刻度线、量程、分度值 (2)使用时要注意 ①尺子要沿着所测长度放,尺边对齐被测对象,必须放正重合,不能歪斜。 ②不利用磨损的零刻度线,如因零刻线磨损而取另一整刻度线为零刻线的,切莫忘记最后读数中减掉所取代零刻线的刻度值。 ③厚尺子要垂直放置 ④读数时,视线应与尺面垂直 4、正确记录测量值:测量结果由数字和单位组成。 (1)只写数字而无单位的记录无意义; (2)读数时,要估读到刻度尺分度值的下一位。 5、误差 测量值与真实值之间的差异;误差不能避免,能尽量减小,错误能够避免是不该发生的 减小误差的基本方法:多次测量求平均值,另外,选用精密仪器,改进测量方法也可以减小误差 6、特殊方法测量 (1)累积法:如测细金属丝直径或测张纸的厚度等; (2)卡尺法; (3)代替法 二、简单的运动 1、机械运动:物体位置的变化叫机械运动 一切物体都在运动,绝对不动的物体是没有的,这就是说运动是绝对的,我们平常说的运动和静止都是相对于另一个物体(参照物)而言的,所以,对运动的描述是相对的2、参照物:研究机械运动时被选作标准的物体叫参照物 (1)参照物并不都是相对地面静止不动的物体,只是选哪个物体为参照物,我们就假定物体不动 (2)参照物可任意选取,但选取的参照物不同,对同一物体的运动情况的描述可能不同 3、相对静止:两个以同样快慢、向同一方向运动的物体,或它们之间的位置不变,则这两个物体相对静止。 4、匀速直线运动:快慢不变、经过的路线是直线的运动,叫做匀速直线运动。匀速直线运动是最简单的机械运动。 5、速度 (1)速度是表示物体运动快慢的物理量。 (2)在匀速直线动动中,速度等于运动物体在单位时间内通过的路程 (3)速度公式:v=S/t (4)速度的单位:国际单位:m/s;常用单位:km/h;1m/s=3.6km/h 6、平均速度:做变速运动的物体通过某段路程跟通过这段路程所用的时间之比,叫物体在这段路程上的平均速度求平速度必须指明是在哪段路程或时间内的平均速度7、测平均速度: 原理:v=s/t;测理工具:刻度尺、停表(或其它计时器) 三、声现象 1、声音的发生 一切正在发声的物体都在振动,振动停止,发声也就停止。 声音是由物体的振动产生的,但并不是所有的振动都会发出声音。 2、声音的传播:声音的传播需要介质,真空不能传声 (1)声音要靠一切气体、液体、固体作媒介传播出去,这些作为传播媒介的物质称为介质。登上月球的宇航员即使面对面交谈,也需要靠无线电波,那就是因为月球上没有空气,真空不能传声。 (2)声音在不同介质中传播速度不同3、回声 声音在传播过程中,遇到障碍物被反射回来人再次听到的声音叫回声 (1)区别回声与原声的条件:回声到达人的耳朵比原声晚0.1秒以上;或者声源与障碍物的距离不小于17m。 (2)低于0.1秒时,则反射回来的声间只能使原声加强。 (3)利用回声可测海深或发声体距障碍物有多远。 4、音调:声音的高低叫音调,它是由发声体振动频率决定的,频率越大,音调越高。 5、响度:音的大小叫响度,响度跟发声体振动的振幅大小有关,还跟声源到人耳的距离远近有关 6、音色:不同发声体所发出的声音的品质叫音色 7、噪声及来源 从物理角度看,噪声是指发声体做无规则地杂乱无章振动时发出的声音。从环保角度看,凡是妨碍人们正常休息、学习和工作的声音都属于噪声。乐音是指发声体做规则振动时发出的声音。从环保角度看,悦耳动听的声音就叫做乐音。8、声间等级的划分 人们用分贝来划分声音的等级,30dB—40dB是较理想的安静环境,超过50dB就会影响睡眠,70dB以上会干扰谈话,影响工作效率,长期生活在90dB以上的噪声环境中,会影响听力。 9、噪声减弱的途径:可以在声源处、传播过程中和人耳处减弱 关于初二年级上册物理知识点 1.声音的发生和传播 发生体在振动——实验;声音靠介质传播——介质:一切固液气;真空不能传声 声速——空气中声速(约340m/s);一般的,固体中速度>液体中速度>气体中速度;声音速度随温度上升而上升 回声——回声所需时间和距离;应用 计算——和行程问题结合 2.音调、响度和音色 客观量——频率(注意人听力范围和发声范围)、振幅 主观量——音调、响度(高低大小的含义);影响响度的因素:振幅、距离、分散程度 音色——作用;音色由发声体本身决定 3.噪声的危害和控制 噪声——物理和生活中的噪声(物理-不规则振动,生活-影响工作、学习、休息的声音);噪声等级:分贝(0dB-刚引起听觉);减小噪声方法(声源处、传播过程中、人耳处);四大污染(空气污染、水污染、固体废物污染、噪声污染) 1.光源——火把、蜡烛、电灯、恒星(月亮和行星不是光源) 2.光的直线传播 光的直线传播——条件(均一);可在真空中传播;现象(激光准直、影子、小孔成像P78及大树下的光斑、日食、月食);真空中的光速(3×10[sup]8[/sup]m/s),光年是长度单位 3.光的反射 反射定律——三线共面;分居两侧;角相等;光路可逆(注意叙述顺序要符合因果关系) 镜面反射和漫反射——每一条光线都符合反射定律(现象解释:抛光的金属表面、平静的水面、冰面、玻璃面可看作镜面;其他看作粗糙面,P79图5-40;应根据现象回答) 4.平面镜 平面镜成像——规律(等距、等大、正立、虚像);能看见(看不见)像的范围;潜望镜 5.作图——按有关定律做图 1.光的折射 折射——定义(……方向一般发生变化);折射规律(三线共面、两侧、角不等;光路可逆;注意叙述顺序要符合因果关系);现象解释(水中的鱼变浅、水中筷子弯曲、海市蜃楼等) 2.光的传播综合问题 注意区分折射和反射光线;注意区分不同的影子和像 3.透镜 透镜中的名词——主光轴、光心、焦距、焦点(测量焦距的方法) 凸透镜、凹透镜对光线的作用——“会聚光线”和“使光线会聚”的区别:“会聚光线”是能聚于一点的光线,“使光线会聚”是光线经过凸透镜后比原来接近主光轴) 透镜的原理——多个三棱镜组合;光线在透镜的`两个表面发生折射 变化了的凸透镜——玻璃球、盛水的圆药瓶、玻璃板上的水滴等 黑盒问题 4.凸透镜成像 三条特殊光线(过光心-方向不变;平行于主光轴-过光心;过光心的光线-平行于主光轴);像距/像的大小/虚实/正倒和物距的关系;像移动的快慢(依据:光路图);实际应用 1.温度计 温度计——常见温度计的测温物质、原理、量程(体温计:35~42℃;寒暑表:-20~50℃) 使用方法——体温计构造及使用(缩口部分;甩体温计的作用、原理;不甩的后果-只影响测低温)、温度计的使用(注意量程的选择);校正温度计;读数(一般地,读数时不能离开物体) 温标——摄氏温标、热力学温标及换算;绝对零度;常见温度 2.物态变化 熔化和凝固——实验装置(水浴加热);常见晶体、非晶体;熔点、凝固点;图象 汽化——蒸发;影响蒸发快慢的因素;沸腾实验装置;蒸发和沸腾的联系、区别(都是汽化;剧烈程度、发生条件等);酒精灯的使用(可参照化学相关内容) 液化——两种途径(降温一定可使气体液化;压缩可能使气体液化) 升华和凝华——实例 3.物态变化中的热量传递 吸热——固→液→气(即使温度不变也有热量的传递);放热——气→液→固 4.其他 现象解释——例:P3图0-3、纸锅烧水、“白气”和玻璃上的水珠(液化)、霜、露、晾衣服(蒸发和升华)、樟脑等;电冰箱原理;物态变化中的热量计算;注意名词的写法(汽、气;溶、融、熔;化、华;凝)以及字母(t和T;℃和K) 第四章 电路 1.摩擦起电 两种电荷 静电——电荷种类的判断;验电器结构(P45图);电量(单位:库仑C) 物质微观结构——原子结构(可与化学中原子概念对照);摩擦起电原因(核外电子的转移) 2.电路相应概念 电流(及方向:正电荷移动方向);电源;导体、绝缘体;串联、并联;电路中的自由电荷及运动方向;电路图;通路、断路及短路;常见电路(楼道电路;电冰箱电路:第一册P60图4-18) 等效电路的判断——先去除电流表/电压表(电流表:短路;电压表:断路)再做判断 1.各个物理量(I、U、R、P)的定义、单位(单位符号)及含义、换算 电流表、电压表的使用方法(量程及量程的选择、串并联、正负极、能否直接接电源两端)及其构造 2.电阻的测量(基本方法及变化);影响电阻的因素;滑动变阻器的构造及使用(P94图7-7);变阻箱的使用及读数(P95图7-9、7-10;电位器);滑动变阻器的变形(如P101图7-19) 3.欧姆定律及变形(注意物理意义) 4.串并联电流、电压、电阻公式(注意条件。如串联时功率和电阻成正比,并联时成反比;焦耳定律求功率只适用于纯电阻电路,求热量时适用于一切电路) 常用结论(各比例式;当滑动变阻器的阻值变化时,电路中各物理量的变化情况-注意推导顺序) 5.电功——W=UIt=UQ;电能表及利用电能表测功率(P130); 电器铭牌;电冰箱工作时间系数(P130) 6.电学计算——①画等效电路图(几个状态画几个图);②按串联、并联找等量关系和比例关系;③求解(注意电流、电压、电功率均应取同一状态下的值) 怎样夯实物理学科基础? 首先是翻课本,把公式都列在一张纸上。但在在摘录之前,肯定是要理解那个公式的,比如各个符号代表的意思,通常使用的单位,还有整个公式表示的意思。只有理解了这个公式,才能把它用起来。 列完公式之后,当然就是要把它记下来,背诵下来。但其实当你理解的时候,就已经把公式背下来了。接下来就是要好好锻炼这些基础公式运用的熟练程度。基础不好的同学,有可能是没有把握好一轮复习这个时机去掌握基础。那么一轮复习的时候,那些一轮资料,也有可能是没有好好完成的。可能错了好多没有去理解它,或者都没做。 公式列出来,理解之后,就可以去找一些基础的题目来练习一下熟练度,特别是,一轮的复习资料,可以把它找出来,然后重新用一下。可以根据现在对公式的理解,然后去改正以前的那些错题,或者是再写一下自己之前没有做的那些题目,来提升自己对公式运用的熟练度。 在自己感觉自己对公式的熟练度差不多的时候,可以试着去做一些大题,这是需要同学们,去综合运用各个公式的题目。这样子去理解各公式之间的关联。不过,到这种程度的话,就已经达到中上层的水平了! 流程大致是:理解公式→摘录公式→记忆公式→做基础题训练熟练度→做大题锻炼综合能力。 磁场 1、磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m 2、安培力F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)} 3、洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)} 4、在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种): (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下); 解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负; (2)磁感线的特点及其常见磁场的磁感线分布要掌握; (3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料 电磁感应 1、[感应电动势的大小计算公式] 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)} 2、磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)} 3、感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极} 4、自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)} 注: (1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点; (2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。 (4)其它相关内容:自感/日光灯。 交变电流(正弦式交变电流) 1、电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf) 2、电动势峰值Em=nBSω=2BLv电流峰值(纯电阻电路中)Im=Em/R总 3、正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2 4、理想变压器原副线圈中的电压与电流及功率关系 U1/U2=n1/n2;I1/I2=n2/n2;P入=P出 5、在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R; (P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻); 6、公式1、2、3、4中物理量及单位:ω:角频散誉率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T); S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。 注: (1)交变电流的变化频率与发电机中线圈敬掘渗的转动的频率相同即:ω电=ω线,f电=f线; (2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变; (3)有效值是根据电流热效应定义的`,没有特别说明的交流数值都指有效值; (4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入; (5)其它相关内容:正弦交流电图象/电阻、电感和电容对交变电流的作用。 电磁振荡和电磁波 1、振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)} 2、电磁波在真空中传播的速度c=×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率} 注:(1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大; 1、电视 简单地说:电视信号是电视台先把影像信号转变为可以发射的电信号,发射出去后被接收的电信号通过还原,被还原为光的图象重现荧光屏。电子束把一幅图象按照各点的明暗情况,逐点变为强弱不同的'信号电流,通过天线把带有图象信号的电磁波发射出去。 2、雷达工作原理 利用发射与接收之间的时间差,计算出物体的距离。 3、手机 在待机状态下,手机不断的发射电磁波,与周围环境交换信息。手机在建立连接的过程中发射的电磁波特别强。 匀变速直线运动 1、速度Vt=Vo+at 2.位移s=Vot+at?/2=V平t= Vt/2t 3.有用推论Vt?-Vo?=2as 4.平均速度V平=s/t(定义式) 5.中间时刻速度Vt/2=V平=(Vt+Vo)/2 6.中间位置速度Vs/2=√[(Vo?+Vt?)/2] 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT?{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点.位移和路程.参考系.时间与时刻;速度与速率.瞬时速度。 自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 力 1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近) 2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)} 3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)} 4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力) 注:(1)劲度系数k由弹簧自身决定; (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定; (3)其它相关内容:静摩擦力(大小、方向); 2)力的合成与分解 1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2 (F1>F2) 2.互成角度力的`合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注:(1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。 动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN 6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动 一、本节学习指导 本节知识较为简单,同学们多看即可,要注意温度计的使用原则。本节有配套免费学习视频。 二、知识要点 1、物体的冷热程度叫温度,测量温度的仪器叫温度计。 2、温度计 (1)温度计原理:是利用了水银、酒精、煤油等液体的热胀冷缩性质制成的。 (2)基本结构:玻璃外壳、液体泡、毛细管等。 3、摄氏温度 (1)单位符号:摄氏度用符号℃来表示。 (2)摄氏温度是这样规定的: 把一标准大气压下冰水混合物的温度规定为0度;把一标准大气压下的沸水规定为100度; 0度和100度之间分成100等分,每一等分为1摄氏度; (3)读法:-6℃读作负6摄氏度或零下6摄氏度。 4、温度计的使用【重点】 (1)使用温度计之前应:观察它的量程;认清它的最小刻度。 (2)在温度计测量液体温度时,正确的方法是: ①温度计的'玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;②温度计玻璃泡浸入被测液体后要稍候一会儿,待温度计的示数稳定后再读数;③读数时玻璃泡要继续留在被测液体中,视线与温度计中的液柱上表面相平。 加速度学习网我的学习也要加速 例:下图中,对温度计的使用错误的是: 分析:图1中,①读数时玻璃泡没有浸在液体内;②读数时视线应与温度计的液柱上表面平行,而他是斜视,所以错误。图2中,①温度计碰到了杯底部;②同图一的错误②。 5、温度计的分类 (1)实验室用的温度计 量程:-20℃~110℃,分度值:1℃,特殊结构:无缩口,用途:测液体温度,使用方法:读数时不能离开被测液体。 (2)体温计 量程:35℃~42℃,分度值:0.1℃,特殊结构:有缩口,用途:测体温,使用方法:读数时可离开人体,使用前要用了甩几下。 (3)寒暑表 量程:-60℃~50℃,分度值:1℃,特殊结构:无缩口,用途:测气温,使用方法:读数时不能离开被测气体。 三、经验之谈: 本节考得最多的是温度计的使用规则,注意三条: 1、读数的视线要与液柱上平面平行。 2、温度计不能碰到杯壁,容易损坏仪器。 3、温度计在读数时必须将玻璃泡浸在液体中。 在物理实验中,同学们一定要对仪器的各个部位的名称要叫得出,很多同学考试中知道错在哪儿,却叫不出名字,这样的丢分是非常不应该的。 有疑问的题目请发在“51加速度学习网”上,让我们来为你解答 【物理知识点总结】相关文章: 物理知识点总结05-28 物理知识点的总结07-19 物理知识点总结11-19 物理的知识点总结06-09 物理知识点总结03-26 物理知识点总结04-25 初中物理知识点总结08-17 物理必考知识点总结01-09 中考物理知识点总结11-14 中考物理知识点总结07-31物理知识点总结8
物理知识点总结9
物理知识点总结10
物理知识点总结11
物理知识点总结12
物理知识点总结13
物理知识点总结14
物理知识点总结15